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Abstract 

 
The increasing prominence of data streams has been lead to the study of online mining in order 
to capture interesting trends, patterns and exceptions. Recently, temporal regularity in occurrence 
behavior of a pattern was treated as an emerging area in several online applications like network 
traffic, sensor networks, e-business and stock market analysis etc. A pattern is said to be regular 
in a data stream, if its occurrence behavior is not more than the user given regularity threshold. 
Although there has been some efforts done in finding regular patterns over stream data, no such 
method has been developed yet by using vertical data format. Therefore, in this paper we 
develop a new method called VDSRP-method to generate the complete set of regular patterns 
over a data stream at a user given regularity threshold. Our experimental results show that highly 
efficiency in terms of execution and memory consumption. 
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1. INTRODUCTION 

Unlike mining static databases, data stream mining [1, 2, 3] creates many new challenges. It is 
unrealistic to keep the entire stream in the main memory or even in a secondary storage device 
because data stream is a continuous, massive (e.g., terabytes in volume), unbounded, timely 
ordered series of data elements generates at a rapid rate. Incredible volumes of data streams are 
often generated by communication networks, Internet traffic, real-time surveillance systems, online 
transactions in the financial market, remote sensors, scientific and engineering experiments and 
other dynamic environments. Discovering knowledge in data streams is an important research 
area in data mining and knowledge discovery process. 
 
Mining Frequent patterns [4, 5] from static databases has been broadly studied in Stream data 
mining [1, 2, 3]. Apriori algorithm [5] is a classical algorithm proposed by R. Agarwal and R. 
Srikanth in 1993 for mining frequent item sets for Boolean association rules. The algorithm uses 
prior knowledge and employs an iterative approach known as a level–wise search to generate 
frequent item sets. First it generates with 1-item sets, recursively generates 2-item set and then 
frequent 3-item set and continues until all the frequent item sets are generated. Later Han et. al 
[4] proposed the frequent pattern tree (FP-tree) and FP-growth algorithm to mine frequent 
patterns without candidate generation. The Apriori and FP-growth algorithms find outs the 
occurrence frequencies of a pattern i.e., support. Several algorithms have been proposed so far 
to mine frequent patterns in a transaction databases as well as in data streams. However, the 
significance of a pattern may not always depend upon the occurrence frequency of a pattern (i.e., 
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support). The significance of a pattern may also depend upon other occurrence characteristics 
such as temporal regularity of a pattern. For example, to improve web site design the web site 
administrator may be interested in regularly visited web page sequence rather than heavily hit 
web pages only for a specific period of time. Also, in a retail market some products may have 
regular demand than other products. To know how regularly a product has been sold is essential 
rather than the occurrence frequency of a product. Therefore, finding patterns at regular intervals 
also plays an important role in data mining. 
 
Recently, Tanbeer et. al [6] introduced a new problem of discovering Regular Patterns that follow 
a temporal regularity in their occurrence behavior. With the help of user given maximum regularity 
measure at which pattern occurs in a database is called a regular pattern. They also extended the 
same problem in Data Streams. They proposed a tree based data-structure, called RPS-tree [7] 
that captures user-given regularity threshold and mines regular patterns in a data stream with the 
help of FP-growth algorithm and conditional pattern bases and corresponding conditional trees. 
Therefore, in this paper, we propose a new method called Vertical Data Stream Regular Patterns 
method (VDSRP - method in short), using the same Data Stream which is in [7] to mine regular 
patterns using vertical data format. By using Vertical Data Format [8, 9, 10, 11], it will be able to 
judge the non-regular item sets before generating candidate item sets. The main idea of our new 
method is to develop a simple, but yet powerful, that captures the data stream content in a 
window by using sliding-window technique to find regular items. The experimental results show 
the effectiveness of VDSRP-method in finding regular patterns in a Data Stream. 
 
The rest of the paper is organized as follows. Section 2 summarizes the existing tree structure to 
mine regular patterns. Section 3 introduces the problem definition of regular pattern mining. The 
method of VDSRP to find regular patterns using vertical data format are given in section 4. Section 
5, our experimental results are shown. Finally, we conclude the paper in section 6. 
 

2. RELATED WORK 

In data mining, one of the most important techniques is Association rule mining. It was first 
introduced by Agarwal et al. [5]. It extracts frequent patterns, correlations, associations among 
sets of items in databases. The main drawback with the classical Apriori algorithm is that it needs 
repeated scans to generate candidate set. After that Frequent pattern tree and FP-growth 
algorithm [4] is introduced by Han et al. to mine frequent patterns without candidate generation. 
Periodic patterns [12], [13] and Cyclic patterns [14] are also closely related with Regular patterns. 
Periodic pattern mining in time-series data focuses on the cyclic behavior of patterns either in 
whole or some part of time-series. Although periodic pattern mining is closely related with our 
work, it cannot be applied directly to mine regular patterns from  a data stream because it process 
with either time-series or sequential data.  
 
Tanbeer et al. [7] have proposed a tree based data-structure, called RPS-tree that captures user-
given regularity threshold and mines regular patterns in a data stream with the help of FP-growth 
[4] algorithm and conditional pattern bases and corresponding conditional trees. First, they 
constructed RPS-tree consists of one root node referred to as “null” and a set of item-prefix sub-
trees called children of the root. Each node in an RPS-tree represents an itemset in the path from 
the root up to that node. The RPS-tree maintains the occurrence information of all transactions in 
the current window with the tree structure. Also RPS-tree maintains two types of nodes called 
ordinary nodes and tail nodes. Nodes of both types explicitly maintain parent, children and node 
traversal pointers. In addition each tail node maintains a tid-list and a tail-node pointer. The tail-
node pointer points to either the next tail node in the tree if any, or “null”. Then they construct an 
item header table called RPS-table consists of each distinct item in the current window with 
relative regularity and a pointer pointing to the first node in the RPS-tree that carries the item. 
RPS-table of a RPS-tree consists of three fields, they are item name (i), regularity of i (r), and a 
pointer to the RPS-tree for i (p). Similar to FP-growth mining, they mine the RPS-tree of 
decreasing size to generate regular patterns by creating conditional pattern-bases and 
corresponding conditional trees.  
. 
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3. PROBLEM DEFINITION 

Let I = {i1, i2, . . . , in} be the set of items. A set X = {ij, . . . , ik} ⊆ I, where j ≤ k and j, k ∈ [1, n] is 
called a pattern (or an itemset). A transaction t = (tid, Y) is a couple where tid is a transaction-id 

and Y is a patter or an itemset. If X ⊆ Y, which means that t contains X or X occurs in t. Let size(t) 
be the size of t, i.e., the number of items in Y. 
 
3.1 Definition 1 (Data Stream) 
A data stream DS can be defined as infinite sequence of transactions, i.e., DS = [t1, t2, …, tm, …], 

i ∈ [1, m] where ti is the i
-th

 arrived transaction. A window W can be referred to as a set of all 

transactions between the i
-th

 and j
-th 

arrival of transactions, where j > i and the size of W is W= j 
– i, i.e., the number of transactions between i

-th
 and j

-th 
arrival of transactions. Let each slide of 

window introduce and expire slide_size, 1 ≤ slide_size ≥ W, transactions into and from the 

current window. If X occurs in tj, j ∈ [1, W], such transactions-id is denoted as tj
X
, j ∈ [1, W]. 

Therefore Tw
X
 = { tj

X
, . . . tk

X
 }, j, k ∈ [1, W] and j ≤ k is the set of all transaction-ids where X 

occurs in the current window W. 
 
3.2 Definition 2 (A period of X in W) 

Let t
X

j+1
 
 and tj

X
 , j ∈ [1, ( W-1)], be two consecutive transaction-ids in Tw

X
. the number of 

transactions between t
X

j+1
 
 and tj

X
 is defined as a period of X, say p

X
 (i.e., p

X
 = t

X
j+1

 
 - tj

X
, j ∈ [1, ( 

W-1)]). For the simplicity of period computation, a “null” transaction with no item is considered 
at the beginning of W, i.e., tf = 0(null), where tf represents the tid of the first transaction to be 

considered. Similarly, tl, the tid of the last transaction to be considered, is the tid of the W-th
 

transaction in the window, i.e., tl = t W. For instance, the stream data in Table 1, consider the 
window is composed of eight transactions (i.e., tid = 1 to tid = 8 make the first window, say W1). 
Then set of transactions in W1 where pattern (b, c) appears in (2, 3, 5). Therefore, the periods for 
(b, c) are {(2 – tf) = 2, (3 – 2) = 1, (5 – 3) = 2 and (tl – 5) = 3}, where tf = 0 and tl = 8. 
 
The occurrence periods of X in W defined as above will be the precise information about the 
occurrence behaviour of a pattern. A pattern will not be a regular in W, if it appears after large 
period at any stage. The largest occurrence period of a pattern can provide the upper limit of its 
periodic occurrence characteristic. Hence, the measure of the characteristic of a pattern of being 
regular in a W (i.e., the regularity of a pattern in W) can be defined as follows. 
 
3.3 Definition 3 (Regularity of a pattern X in W) 
Let in a TwX,  PwX  be the set of all periods of X in W  i.e., PwX = { p1X , . . . , psX}, where s is 
the total number of periods of X in W. Then, the regularity of X in W can be denoted as regw(X) = 
Max(p1X, ..., psX}. For example, in DS of Table 1 regw(b, c) = 3, since Pw1{b, c} = Max(2, 1, 2, 
3) = 3. Therefore a pattern is called a regular pattern in W if its regularity in W must not more than 

a user given maximum regularity threshold called max_reg λ, with 1 ≤ λ ≤ W. The regularity 
threshold is given as the percentage of window size. 
 
Therefore the regular patterns in W satisfy the downward closure property [6]. i.e., if a pattern is 
found to be regular, then all of its non-empty subsets will be regular. Accordingly, if a pattern is 
not regular, then none of its supersets can be regular. Given DS, W, and max_reg, finding the 
complete set of regular patterns in W, Rw that have regularity of not greater than the max_reg 
value is the problem of mining regular patterns in data stream. 

 
4. MINING REGULAR PATTERNS 

In contrast with traditional data sets, the continuous flow (in and out) of stream data in a computer 
system updates with varying rates. So, we had taken sliding window technique and vertical data 
format to mine regular patterns from the data stream.  
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Let Figure 1. be the data stream which contains transaction-id i.e., tid, and itemset i.e., transaction 
with respect to tid. Now consider the window size may be 8 i.e., the size of the window |W| = 8. Let 
the first window W1 handles the transactions of data stream from tid-1 to tid-8, now convert this W1 
into vertical data format i.e., (itemset : tid). Then find out the periods for each itemset which are 
given in the data stream to get the regular patterns which are less than or equal to the user given 
regularity threshold. After finding W1 regular patterns generate second window W2 and repeat the 
same procedure to find out latest regular patterns from the data stream.  
 

         tid  transaction 

 
1. a, c, e, f 
2. b, c, f 
3. b, c, f 
4. c, d, e 
5. a, b, c, e 
6. c, d, e 
7. a, c, d, e 
8. c, d, e, f 
9. a, c 

 
 

Window size | W | = 8 
 

FIGURE 1: A data stream DS 

 

Our proposed method is given below to mine regular patterns from the data stream with the help of 
sliding-window technique and vertical data format. Both the Apriori algorithm and FP-growth 
algorithm mine frequent patterns in Horizontal data format (i.e., {TID : itemset}), where TID is a 
transaction-id and itemset is the set of items in transaction TID. But the data can also be present in 
{item : TID-set} format where item is an item name and TID-set is the set of transactions containing 
the item. This is known as Vertical data format. We are going to mine regular patterns from the 
given data stream using vertical format. 
 
VDSRP – Method 
 

Input : DS, λ = 3 
Output: Complete set of regular patterns 

Procedure:                                  

1. For each window W of size 8 in DS                         12.     Delete inext 
2. Convert Tw into VTw                                                   13.     Else 

3. For each item i in X where X ⊆ VTw                         14.       Result ← Result ∪ (i, next) 

4. If(Find R(i) > λ)   //FindR returns max_reg                 15.     Do “and” operation till all regular 
5.             Delete i                                                                                   itemsets found 
6.      Else                                                                 16.       }              
7.       {                                                                      17.  Update W(i, j) 

8.         Result ← Result ∪ (i)                                        
9.         For each item inext in X 
10. { 

11.      If(Find R (inext) > λ)   } 
By using the example data stream in Figure 1. We convert the first window into vertical database 
format and then we calculated period of X as explained in problem definition.  
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Itemset Tid-set P
X
 R 

a 1, 5, 7 1,4,2 4 
b 2, 3, 5 2,1,2,3 2 
c 1,2,3,4,5,6,7,8 1,1,1,1,1,1,1,1 1 

d 4,6,7,8 4,2,1,1 4 
e 1,4,5,6,7,8 1,3,1,1,1,1 3 
f 1,2,3,8 1,1,1,5 5 

 
TABLE 1:  VDSRP-table with P

X
 and R 

 

Finding periods is a simple procedure in our VDSRP-method. Create individual array to every 
itemset. Find all the periods of each itemset by subtracting i.e., p

X
 = t

X
j+1

 
 - tj

X
. Among number of 

periods that we get from the window we consider the maximum period from the tid-set of each 
itemset. For example in Table 1, the periods of {a} are (1, 4, 2). Its regularity is 4 because it is the 

maximum regularity for {a} and compare with the user given regularity threshold i.e., λ = 3. So {a} 
is not a regular itemset because it is greater than the user given threshold. 
 

Itemset Tid-set P
X
 R 

(b, c) 2,3,5 2,1,1,3 3 
(b, e) 5 5,3 5 
(c, e) 1,4,5,6,7,8 1,3,1,1,1,1 3 
(b, c, e) 5 5,3 5 

 
TABLE 2:  VDRSP-table with P

X
 and R 

 
After getting 1-item set we go for 2-item set as shown in Table 2. The regular patterns in W1 satisfy 
the down-ward closure property [5] i.e., if a pattern that found regular then all of its non-empty 
subsets will be regular, if a pattern which is not regular then none of its supersets can be regular. 
So we consider only the itemsets which are found regular to generate k+1 itemsets. From Table 2 
we can say that itemsets (b, c), (c, e) are 2-item regular itemsets. We mine with the same 
procedure until no regular item set generated in the window.  
 

Itemset Tid-set P
X
 R 

a 4,6,8 4,2,2 4 
b 1,2,4 1,1,2,4 4 
c 1,2,3,4,5,6,7,8 1,1,1,1,1,1,1,1, 1 

d 3,5,6,7 3,2,1,1,1 3 
e 3,4,5,6,7 3,1,1,1,1,1 3 
f 1,2,7 1,1,5,1 5 

 
TABLE 3: VDRSP-table with P

X
 and R from W2 

 

Generally, the regularity of patterns may change with the sliding of window i.e., with the deletion of 
old transaction and the insertion of new transaction. For example, in Table 1 and Table 2 the 
regular patterns {b} and {b, c} in W1 become irregular patterns in W2 because their regularity is 
greater than max_reg. Again, the irregular patterns {d} and {c, d, e} in W1 become regular in W2. 
Therefore to reflect the correct regularity of each item in the current window, we perform the 
refreshing operation on VDSRP-table to get new window. The process continues to W2, W3 and 
soon to find out the latest regular patterns from the data streams. 
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Itemset Tid-set P
X
 R 

(c, d) 3,5,6,7 3,2,1,1,1 3 
(c, e) 3,4,5,6,7 3,1,1,1,1,1 3 
(d, e) 3,5,6,7 3,2,1,1,1 3 

(c, d, e) 3,5,6,7 3,2,1,1,1 3 
 

TABLE 4: VDRSP-table with P
X
 and R from W2 

 

5. EXPERIMENT RESULTS 

In this section we are going to present our results. All the programs are written in VC++ 6.0 and 
executed in Windows XP on a 2.66 GHz machine with 2GB of main memory. We used our 
VDSRP-method over several synthetic and real datasets which are frequently used to find out 
frequent pattern mining experiments. With our proposed method we present our experiment 
results by comparing with the existing RPS-tree. The detailed characteristics of the datasets are 
available in Table 5 which are obtained from [15]. 
 

Dataset #Trans #Items MaxTL AvgTL Type 
Kosarak 9,90,000 41,270 673 8.10 Real 

Mushroom 8,124 119 23 23 Real 

T1014D100K 1,00,759 870 30 10.10 Synthetic 

 
TABLE 5: Database Characteristics 

 
The above table shows some statistical information about the datasets. We consider the 
slide_size = 1 for all the experiments. We report the results on Kosarak dataset which contain 
9,90K transactions, 41,270 items and 8.10 average transaction length. We also report on 
T1014D100K dataset which contains 1,00,759 transactions, 870 items, 10.10 average transaction 
length and also on mushroom dataset which contains 8,124 transactions, 119 items and 23 is the 
average transaction length. 
 
5.1     Memory Efficiency 
The memory requirements for our VDSRP-method on different datasets with different window 
sizes are shown in Table 6. For example, in kosorak dataset when window size is 100K, the 
memory required on an average of 3.57MB and when window size is 500K, it requires on an 
average of 16.83 MB. Hence from table 6 it can be observed that VDSRP-method is memory 
efficient on different real and synthetic datasets. 
 

Kosorak W1 (100K) W2 (300K) W3 (500K) W4 (700K) W5 (900K) 

 3.57 MB 10.71 MB 16.83 MB 24.96 MB 32.1 MB 

Mushroom W1 (1 K) W2 (3 K) W3 (5 K) W4 (7 K) W5 (8 K) 

 0.7 MB 0.14 MB 0.31 MB 0.48 MB 0.56 MB 

T1014D100K W1 (20 K) W2 (40 K) W3 (60 K) W4 (80 K) W5 (100 K) 

 0.82 MB 1.74 MB 2.57 MB 3.31 MB 4.12 MB 

 
TABLE 6: Memory Requirement for different window sizes 

 
5.2     Runtime Efficiency 
From figures 2(a) and 2(b) we can see that our proposed method runs faster than RPS-tree under 
various regularity thresholds and with different window sizes respectively. We conducted 
experiments on kosarak dataset with window size 500K on different max_reg(%) values. In figure 
2(a) y-axis shows different regularity threshold values and x-axis shows the average total time 
taken to convert the data into vertical format and mining time as well. Our proposed method is 
taking on an average 38 seconds time when max_reg is 0.04%. If the max_reg value increases, 
the execution time also increases to mine regular patterns from the window. 
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FIGURE 2  (a) On Kosarak (|W|)= 500K 

 
In figure 2(b) the graph shows x-axis with different window sizes and y-axis with the average time 
taken in seconds to mine regular patterns at max_reg is 0.06%.  Our proposed method takes less 
average time when compare with RPS-tree on different window sizes. For example, when window 
size is 300K the average time taken is only 45 seconds. 
 

                   
 

 
FIGURE 2 (b) On Kosarak (max_reg = 0.06%) 

 

6. CONCLUSION 

In this paper we presented a VDSRP method which is much better than the existing RPS-tree 
algorithm because it uses sliding-window technique and the advantages of Vertical Database 
Format. This method is very simple to use with simple operations like arrays, unions, intersection, 
deletion etc. to find out regular patterns over data streams. Our experiment results outperforms in 
both execution and memory consumption. 
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