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Abstract 

 

The single source shortest path problem is one of the most s t u d i e d  problem in algorithmic graph theory. 
Single Source Shortest Path is the problem in which we have to find shortest paths from a source vertex v to 
all other vertices in the graph. A number of algorithms have been proposed for this problem.  Most of the 
algorithms for this problem have evolved around the Dijkstra’s algorithm. In this paper, we are going to do 
comparative analysis of some of the algorithms to solve this problem. 
 
The   algorithms   discussed   in  this   paper   are-   Thorup’s algorithm, augmented shortest path, adjacent node 
algorithm,  a heuristic genetic algorithm, an  improved faster version of the Dijkstra’s algorithm and a graph 
partitioning based algorithm. 
 
Keywords:  Single Source Shortest Path Problem, Dijkstra, Thorup, Heuristic Genetic Algorithm, Adjacent Node 
Algorithm. 

 
 
1.   INTRODUCTION 
The single source shortest path problem can be defined as: given a weighted graph (that is, a set V 
of vertices, a set E of edges, and a real-valued weight function f: E → R), and one element s of V 
(i.e. a distinguished source vertex), we have to find a path P from s to a v of V so that 
 

 
 
is minimal among all paths connecting s to v . 
Refer figure 1. 

 
 

FIGURE 1: An Undirected Graph of 6 nodes and 7 edges 

SSSP is applied in various areas such as: 
1. Road Network 
2. Computer Network 
3. Web Mapping
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4.   Electronic Circuit Design 
5.   Geographical Information System (GIS) 
 
In all six papers [1][2][3][4][5][6], the authors have given an improvement over the Dijkstra’s 
algorithm. 

 
2. BACKGROUND STUDY AND ANALYSIS 
The Dijkstra’s algorithm makes assumption that there is no negative-weight edges in the graph G 

(V, E) : w(u, v) >0 ,  (u,  v) E. The algorithms in [1][2][3][4][5][6] also follows this assumption. 

For simplicity, we use n = |V| and m = |E| and K distinct edge lengths. 

Several algorithms have been proposed for this problem which is based on different design 
paradigms, improved data structure, parameterization and input restrictions. According to survey it 
is found that no algorithm based on the Dijkstra’s algorithm has achieved the linear time complexity 
due to drawbacks of Dijkstra’s algorithm. Dijkstra’s algorithm maintains an adjacency matrix which 
consumes n*n space in the memory. When the number of nodes (n) is very large, it is difficult to apply 
Dijkstra’s algorithm. 
 
So,  in  paper  [1],  an  algorithm  has  been  proposed  which modify Dijkstra’s algorithm to overcome 
its bottlenecks. Dijkstra’s algorithm visits the vertices corresponding to a sorting algorithm (in order of 
increasing d (v)). Since there is no linear ime algorithm for sorting problem. Unless the order of 
visiting vertices is not modified, a linear time complexity cannot be achieved.  The  performance  of  
an  algorithm  for single  source  shortest   path  problem   depends  on   the  3 attributes: 

 
      (1)  Preprocessing time: time required to construct a search structure suitable for search. 
      (2)  Space: storage used for constructing and representing the search structure. 
      (3)  Search Time: time required to find shortest path from a query source s, using the search structure. 

 
In year 2000 Thorup proposed a concept of components and using some complicated data 
structures which overcome the problem in Dijkstra’s algorithm. There are 3 interesting features of the 
Thorup’s algorithm [1]: 
(i)It contains a minimum spanning tree algorithm as its sub procedure. To achieve the linear time 
complexity Thorup used a linear time MST algorithm. 
(ii) Thorup’s   algorithm   consists   of   2   phases:   a construction   phase   which   constructs   a   
data structure suitable for a shortest path search from the given query source s; a search phase of 
finding the shortest paths from s to all vertices using the data structure constructed in construction 
phase. 
(iii)  Construction   phase   in   Thorup’s algorithm   is independent of the source, while data structures 
in previous algorithms heavily depend on the source. 
Summary of the Thorup’s Algorithm: 
Step1. Construct an MST (M). 
Step2. Construct a component tree (T) using MST. 
Step3:  Compute widths of buckets (B) to maintain the components. 
Step4:  Construct an interval tree (U) to store unvisited children. 
Step5: Visit all components in T by using B and U. Also known as search phase. 
The running time of each step is as follows: step1: O (m) time, step2, 4: O (n) time, step5: O (m+n) 
time. 
 
In year 2000, a linear time algorithm for SSSP problem [4] was proposed called an improvement over  
 
Augmented Shortest Path Algorithm.  
They proposed this algorithm for situations where no edge is unreasonably larger than the other edge 
and the ratio of maximum and minimum weights of the edges (f) of the graph is not very large. 
 
The algorithm  converts  the graph  G into an  augmented graph (Ga) in we replace every edge in 
the original graph by number of edges having equal weights and number of new edges for each edge 
in the graph is bounded. Then the shortest path tree is obtained. The major drawback in the ASP 
algorithm was that if some heavy weight edge is included in the shortest path tree ASP fails to 
perform well so an improvement is done in improved ASP algorithm [4].  
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New_Augmented_Shortest_Path (G,s) 
1. Find the minimum edge weight wmin in O(m) time from the adjacency list. 
2. for all (u,v) ε E do 
3.  inqueue [u,v] <- false 
4.  edge [u,v] <- ∞ 
5. end do 
6. d[s]<-0 
7. nowmin=∞ 
8. nextmin=∞ 
9.  nowcount = 0 
10. for all (s,u) ε  E do 
11.    enqueue (u,s) 
12.    inqueue[s,u] <- true 
13.    edge [s,u] <- w[s,u]  
14.    if (w[s,u] < nowmin) 
15.    nowmin=w[s,u] 
16.   nowcount = nowcount+1 
17. end do 
18. nextcount = 0 
19. while queue != empty do 
20.   v,p <- serve() 
21.   wv<- edge[p,v]-max(wmin , nowmin) 
22.   if w <= 0 then 
23. if d[p]+w[p,v] <d[v] then 
24. d[v] <- d[p]+w[p,v] 
25. ∏[v] <- p 
26. for all (v,u) ε E do 
27. if inqueue[v,u] = false then 
28. if d[v]+w[v,u] < d[u] then 
29. enqueue(u,v) 
30. inqueue[v,u] <- true 
31. edge[v,u] <- w[v,u]+wv 
32. nextcount = nextcount + 1 
33. if(egde[v,u] < nextmin) 
34. nextmin = edge[v,u] 
35. endif 
36. endif 
37. else 
38. edge[v,u]<-min(edge[v,u],w[v,u] 
39. + wv ) 
40. if(edge[v, u] < nextmin) 
41. nextmin = edge[v,u] 
42. endif 
43. endif 
44. enddo 
45. endif 
46.   endif 
47.   else 
48.   if d[p]+w[p,v] <d[v] then 
49. enqueue(v,p) 
50. edge[p,v] <-wv 
51. if(wv   < nowmin) 
52. nextmin = wv 
53. endif 
54.   endif 
55. endif 
56. nowcount=nowcount-1 
57. if (nowcount==0) 
58.  nowcount=nextcount 
59.  nowmin=nextmin 
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60.  nextmin = ∞ 
61.  nextcount = 0 
62. enddo 
63. Return the shortest path. 

 
This new algorithm proposes that the distance order search will advance by the maximum of w(min) 
and the minimum weight in the queue. So, the problem of larger weight edge got removed in this 
new version.  The new augmented shortest path algorithm takes O(mf/2 + n) time which is linear if 
f is not large. The space requirement is O(m+n). This algorithm proved to perform better than the 
bucket based algorithm. 

 
In year 2006, an approach was proposed by the authors of [6] to speed up the Dijkstra’s algorithm. 
An acceleration method   called   arc-flag   is   used   to   improve   Dijkstra’s algorithm. In this 
approach we follow a preprocessing of the graph to generate some additional information about the 
graph which is then used to speed up shortest path queries. In the preprocessing step graph is 
divided in the regions and checked whether an arc belongs to the shortest path in the given region. 
This preprocessing method is combined with an appropriate partitioning technique and bi-directed 
search which achieves an average speed up factor of more than 500 compared to the Dijkstra’s 
algorithm on large networks. They tested different combinations of the arc-flag method with different 
partitioning technique. 

 
They used A*, bi-directed search techniques and chosen bi- directed search because A* didn’t 
improve the speed up factor. They considered Grid, kd, Tree or METIS as the base partitioning 
method and made 11 combinations of the searching, partitioning and preprocessing techniques. They 
applied the 11 different combinations on the German road network data. Kd trees and METIS 
yields the best speed- up. Bi-directed search proved to be better than the unidirected search and 
the two level partitioning was better than the single level partitioning. The preprocessing takes O 
(m(m+n+nlogn)) time. It increases for the dense graph. 
 
In year 2007, a heuristic genetic algorithm [3] was proposed to achieve high performance. Their 
proposal starts with the initial population of candidate solution paths than a randomly generated one. 
HGA also uses a new heuristic order crossover (HOC) and mutation (HSM) to keep the limited 
search domain. 
The components required to develop HGA requires chromosome coding, initialization, genetic 
crossover operator, genetic mutation operator, and parent selection & termination rules. 

 
Summary of HGA: 
Step1: Chromosome Coding Scheme and Initialization: Chromosome Coding Scheme: 
The complete chromosome of a candidate is divided into node fields equal to the number of 
nodes in a network. Refer Figure 2. 

 

3 3 0 3 2 11 
 

FIGURE 2: Part of Chromosomal structure of a candidate path
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This structure uses the node indices and the distance weight between 2 nodes. 
N i0 = Previous (Ni) N i1 = Ni 
N i2 = dist (Ni) 
Previous (Ni) is same as the predecessor array and dist (Ni) is same as an array of best estimates of 
shortest path to each vertex in the Dijkstra’s algorithm. 

Initialization: First node of every candidate path is the source node. So each chromosome (s,s,0). 
Other entries are random nodes, covers all other nodes in the graph. 
Step2: Parent Selection, HOC, HSM and Termination: Parent Selection: 
Here, algorithm chosen for the selection is Tournament Selection Algorithm. The idea behind this is to 
pick a pair at random, compare their fitness and the fittest is selected. 
To find the fitness value we need to know the objective function (path cost). Path cost = sum of (dist 
(Ni)) where i = 1 to n. 
Using this the fitness function value is calculated as: Fitness (Chromosome) =   1   

                                                                                             Path Cost 
 
HOC: 
Here node fields are chosen as the cut points. The portion of the first parent between them is 
copied to the offspring, the rest of the offspring is selected from the second parent with the 
following conditions: 

      1. The source node fields remains at the first position in new generated offspring. 
      2. While taking other nodes from the second parent, all nodes should be included only once in the 

offspring. 
And  the  offsprings  are  evaluated  and  added  as  the  new solution path candidate. 
HSM: 
Two node fields are chosen randomly and swapped given that the source node is never mutated. 
And again new mutated chromosome is evaluated. HOC and HSM don’t generate new edges in 
any candidate path , they just adjust the initially generated nodes into a legal minimum cost path 
Termination: 
The algorithm can be terminated when the number of generation crosses an upper bound specified 
by the algorithm. With an increased number of generations, HGA converges to the optimal solution. 

 
In year 2009, an algorithm based on Dijkstra for huge data [5] was proposed. In the paper author 
has pointed out the drawbacks of the Dijkstra’s algorithm and proposed an algorithm as adjacent 
node algorithm which an optimization over Dijkstra’s algorithm. He proved that his algorithm can 
save lot of memory and is more suitable for graph with huge nodes.  The adjacent node algorithm 
makes improvement by improving the method of creating the adjacency matrix. First the number of 
the maximum adjacent nodes r is found. Then the adjacency matrix of n*r is made which is much 
smaller that n*n matrix. One more judgement matrix is made of order m*r.  The  shortest  path  is  
found  with  the  help  of  both adjacency and  judgement  matrix.  In their experiment, this algorithm 
performed 6 times better than the Dijkstra’s algorithm for the data size of 12000 nodes. 

In year 2009, a faster algorithm [2] has been proposed for SSSP problem. They have proposed an 
efficient method for implementing the Dijkstra’s algorithm with the same assumptions. In addition to it 
two  more assumption is made that : Let L= {l1,l2,........lk} be the set of distinct nonnegative edge 
weights given in an increasing order as part of the input stored as an array and the number of distinct 
edge lengths (k) is small. The author’s solution is motivated by the “gossip” problem for social 
networks. 

 
Two algorithms are proposed by the author in this paper: 

1. Simple implementation of Dijkstra’s algorithm that runs in O (m+nk) time. 
      2. Second algorithm is the modification of first algorithm by using binary heaps to speed up the 

FindMin() operation. Its running time is O( m log (nK/m) ) if nK>2m. 
Both the algorithms are identical to Dijkstra’s algorithm. The difference is that it uses some 
additional data structures to carry out FindMin() operation. The algorithm is as follows: 
Step1: 
Function INITIALIZE() 
1: S:={s}; T := V-{s}. 
2: d(s):=0;  pred(s):=.Ф 
3: for (each vertex vε T) do 
4: d(v)= ∞; pred(v)=. Ф 
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5: end for 
6: for (t=1 to K) do 
7: Et(S):=. Ф. 
8: CurrentEdge(t):=NIL. 
9: end for 
10: for each edge(s, j) do 
11: Add(s, j) to the end of the list Et (S),where lt =csj . 
12: if (CurrentEdge(t)=NIL) then 
13: CurrentEdge(t):=(s, j) 
14: end if 
15: end for 
16: for (t=1to K) do 
17: UPDATE(t) 
18: end for 

 
Step2: 
Function NEW-DIJKSTRA() 
1:  INITIALIZE () 
2:  while (T= Ф) do 
3: let r = argmin {f(t):1t K}. 
4: let (i, j) = CurrentEdge(r). 
5: d(j):=d(i) + lr ; pred(j):=i. 
6: S= S Ụ{j}; T :=T - {j}. 
7: for (each edge (j,k) ε E(j)) do 

              8. Add the edge (j,k) to the end of the list Et(S),where lt =cjk . 
 9: if (CurrentEdge (t) = NIL) then 
10: CurrentEdge (t): = (j,k) 
11: end if 
12: end for 
13: for (t = 1to K) do 

14: UPDATE(t). 
15: end for 
16: end while 

 
Step3: 
Function UPDATE(t) 
1:Let (i, j) = CurrentEdge(t). 
2: if (jεT) then 
3: f(t)=d(i)+cij 
4: return 
5: end if 
6: while ((j ε T) and (CurrentEdge(t).next != NIL)) do 
7: Let(i, j) = CurrentEdge(t).next. 
8: CurrentEdge(t)=(i, j). 
9: end while 
10: if (jT) then 
11: f(t)=d(i)+cij . 
12: else 
13: Set CurrentEdge(t) to Ф. 
14: f(t)= ∞ . 
15: end if 

 
The initialization step takes O (n) time.  The potential time taking operations are step 3 of New- 
Dijkstra and the Update procedure. In New-Dijkstra step3 takes O (k) per iteration of the while loop 
and O (nk) over all the iterations. Procedure Update is called O (nk) times and its total running time is 
O (m+nk). Iteration in which CurrentEdge (t) is not changed, running   time  is   O (nk)   and   
the   iterations   in   which CurrentEdge(t) is changed, the running time is O(m). 
So the total time taken by the algorithm is O (m+nk). 

 



Shweta Srivastava 

 

International Journal of Computer Science and Security (IJCSS), Volume (6) : Issue (4) : 2012 294 

3. USEFULNESS OF ALGORITHMS IN VARIOUS APPLICATIONS 
Thorup’s algorithm [1] is much slower than the algorithms with the heaps as for the whole execution 
time is compared. It is very slow for SSSP due to the time of the construction of the data 
structures. Due to need of huge amount of memory and the complicated, large programs, 
Thorup’s algorithm is not useful in practice today. 
The  algorithm  in  paper  [2]  works  well  for  the  graphs having  smaller  number  of  distinct  edge  
lengths  than  the density of the graph. 
The Heuristic Genetic algorithm [3] proved to be suitable for the network of different size and 
topology.  HGA took reasonable CPU time to reach the exact solution and didn’t variate much with 
increased input size. 
The Augmented Shortest path algorithm [4] is suitable for the graphs with less value of f.  
According to author it is suitable for the road networks, electronic circuit designs etc. 
The Adjacent Node algorithm in [5] is efficient for the huge data and takes less space.  So it is suitable 
for the traffic analysis type of applications. 
The algorithm based on partitioning of graph [6] although performed better than Dijkstra’s algorithm for 
some cases but for large networks its performance is degraded than that of Dijkstra’s.

 
4. CONCLUSIONS 
In this paper it is tried to be explained- first, what are the different algorithms for the SSSP problem. 
Second, how do they perform in comparison of the Dijkstra’s algorithm. Third, which algorithm is 
suitable for a particular application or situation. 
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