
RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 48

A Crypto-System with Embedded Error Control for Secure and
Reliable Communication

Ranya Alawadhi ralawadhi@smu.edu
HACNet Labs, Bobby B. Lyle School of Engineering
Southern Methodist University
Dallas, TX, 75275, US

Suku Nair nair@smu.edu
HACNet Labs, Bobby B. Lyle School of Engineering
Southern Methodist University
Dallas, TX, 75275, US

Abstract

In this paper we propose a novel Crypto-System with Embedded Error Control (CSEEC). The
system supports data security and reliability using forward error correction codes (FEC). Security
is provided through the use of a new symmetric encryption algorithm, while reliability is provided
through the support of FEC codes. The system also supports joint security and reliability in which
encryption and encoding are performed in a single step. The system aims at speeding up the
encryption and encoding operations and reduces the hardware dedicated to each of these
operations.In addition, the proposed system allows users to achieve secure and reliable
communication in which they can alternate between a priority onsecurity and reliabilityand scale
their choice to the desired level in order to attain communication quality and fulfill application
needs. The system targets resource constrained nodes such as remote sensor nodes operating
in noisy environments.

Keywords: Joint Encryption and Error Correction, Data Security, Data Reliability, Erasure
Coding, Forward Error Correction.

1. INTRODUCTION

Data security and reliability are integral aspects of modern communication systems. They are
achieved through encryption and forward error correction (FEC). Conventional encryption
schemes provide a high level of protection at the expense of processing time and energy. These
methods force devices with constrained resources to settle for either low or no strength schemes.

Security and reliability operations have always been dealt with separately due to their
contradicting objectives. There have been some efforts to combine them by joining encryption
and coding into a single step. The aim was to have a faster more efficient communication in terms
of time, energy, and area[1]. However, many efforts [2]–[5]did not get a lot of attention due to their
large key size, high overhead or inefficient correction capability, while others[2], [4], [6]–[8]did not
achieve enough strength to compete with conventional encryption schemes.

With consideration to the work that has been done previously in the area of joint security and
reliability, we propose a novel Crypto-System with Embedded Error Control (CSEEC) for secure
and reliable communication. Thissystem supports data security and reliability. In addition to the
support of these functions separately, the systemalso supports the joint functionality when
encryption and encoding are combined in a single process. CSEEC provides all these
functionsusing forward error correction (FEC) codes. FEC codes are commonly used to achieve
data reliability. However in this system, they are combined with specially designed operations
thatallow them achieve data security as well.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 49

To achieve data security we propose a new symmetric encryption scheme with a 128-bit key. The
idea is based on the ability of erasure codes to recover from errors only when the exact locations
of these errors are determined. Thus to encrypt a block of data, it is first encoded using the FEC
code, then an amount equal to the amount of added redundancy is intentionally deleted. The
deletion process is controlled by the encryption key. Thus, only those who possess the key are
able to recover the original data. However, the idea of deletion by itself is not enough to achieve
confusion and diffusion, the two properties that characterize a secure system[9]. Hence the
deletion operation is combined with other operations,as well as permutation and randomization.
Permutation rearranges the bits within a block while mixing combines the processed data with a
random sequence. The proposed encryption scheme is not a strict block encryption sinceit does
not have a traditional S-box. It is not a strict stream encryption either sinceit processes the stream
of bits in fixed-sized blocks.

The support of data reliability or error control capability intuitively comes from the support of
forward error correction code. This capability can be used to detect errors, correct errors, or
correct erasures. The exact function will be determined by the application, the channel, and the
amount of redundancy added. To achieve joint security and reliability, we extend the encryption
scheme by making the amount of redundancy deleted less than the amount of redundancy
added. Thus, the extra amount can be used to control the errors introduced by the channel. Due
to our ability to range the amount of data deleted, the security and reliability levels are easily
scaled.

CSEEC is different from previous proposals [3], [4], [11]. It does not incur any communication
overhead when FEC codes are used as a mean of security. This is due to the notion of erasures,
as opposite to errors. Erasure allows CSEEC to maintain the ciphertext size equal to the plaintext
size. It also uses dynamic random permutations in which each processed block is permuted
differently. In addition, it has a reasonable key size(128-bit)from whichall components are
initialized or derived.

The rest of the paper is organized as follows. In Section 2 we discuss related work. In Section3
we describe the proposed encryption scheme. In Section 4 we present the joint reliability and
security scheme. In Section 5 we provide an analysis of results showing the superiority of our
method. And finally, in Section 6, we conclude the paper and describe directions for future work.

2. RELATED WORK

The first effort in the field of joint encryption and error correction was contributed by McElience[2].
McEliece introduced a public key cryptosystem based on algebraic coding theory. His idea was
based on the fact that the decoding problem for an arbitrary linear code is NP-complete. The
system was based on a class of error correcting code known as the Goppa code. The McEliece
system is inefficient in terms of error correction capability because it requires very large public
keys and large block sizes to correct the large number of errors,which result in high
computational overhead. Also, the original system has been shown to be vulnerable to chosen-
ciphertext attacks [12]. More work, with mixed results,have been done to extend theMcEliece
system. However, the large key size remains an unsolved problem for McEliece-based systems.

A general encryption scheme based on MDS codes was proposed by Xu[13]. Xu proposed
combining cryptographically strong random key stream generators with erasure correction codes.
In general, the scheme makes use of any ��, ��MDS code, where � � �. A ciphertext
corresponding to � symbols plaintext is chosen to be � symbols selected from the � symbols
codeword generated from encoding the plaintext. The symbols are selected based on a sequence
generated from the random number generator each time a plaintext block is to be encrypted.
Clearly, as in stream ciphers, the security of the scheme depends on the strength of the random
number generator. Further analysis is required to assess the system.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 50

Another scheme that makes use of erasure codes was proposed in [4], a secure erasure coding
scheme(SEC) for peer-to-peer storage systems. The scheme aims at ensuring the confidentiality
of long term archive data through the use of the proposed encryption scheme along with fragment
naming and placement procedures. SEC uses a customized version of the Reed-Solomon
erasure code in whicha secret generator matrix is constructed from a user specified key by
customizing the Cauchy matrix. The encryption scheme is susceptible to known plaintext attack
when used in stand-alone mode.

In [3], a symmetric encryption scheme based on erasure correction codes is presented. The
scheme starts by compressing and permuting the plaintext. Then, the result was encoded using
an erasure correction code. The encoding phase was followed by intentional data loss through
which a number of columns were removed from the block. Finally, another transposition was
applied. This scheme, however, suffers from a couple of problems. The first one is the use of
compression. Although compression removes redundancy, it does not add randomness [14]. In
addition, compression may increase the data size when encrypting previouslycompressed data.
The second issue is the key that includes all encryption parameters. This results in a large and
variable key size.

An error correction cipher calleda High Diffusion (HD) cipher is presented in[5]. They used the
Advanced Encryption Standard (AES) structure and replaced its diffusion layer with an error
correcting code. They proposed usingHD codes that possess maximum diffusion and achieve
optimal error correction. The cipher is composed of multiple iterations of the round function and
key mixing operations. Though the system provides both data security and reliability, it is highly
complex.

A more recent work is presented in [11], Error Correction-Based Cipher (ECBC). It is a scheme
that combines error correction and security. ECBC is hardware based and designed for wireless
networks. It is based on the McEliece scheme and employs a block chaining technique. The
ciphertext is generated by adding a randomly generated error vector to a permuted block where
the permuted block is the result of multiplying a nonlinearly transformed encoded plaintext viaa
permutation matrix. In [15], it was found that ECBC is vulnerable to chosen plaintext attacks.

3. THE ENCRYPTION SCHEME
We propose symmetric encryption with a 128-bit key. The idea is to make use of the fact that a
plaintext block can be recovered from a subset of the encoded block provided that enough
information is available. Based on that, we intentionally introduce erasures by deleting part of the
encoded block in the encryption process and later use the decoding algorithm to recoverthe
deleted values from those erasures. The success of the decryption process depends on the
knowledge of how erasures are introduced in the first place. Thus to prevent anyone from
decrypting the data, erasures are introduced in a way known only to communicating parties.

3.1. System Parameters
Before processing the data, the sender and receiver must agree on a number of parameters. The
parameters are: the error correction code �, block size determined by the number of rows � and
columns 	, number of parity columns
, number of parity columns used toward reliability �, and a
pseudo random number generator PRNG.
 �can be any correction code with erasure correction capability. The erasure correction codes can
correct any number of erasures up to the number of added redundancy. Usually, the error
correction code supports specific block sizes. Therefore, the sender and receiver must choose a
suitable block size and, accordingly, determine �and 	. For example, in Linear codes for Erasure
error Correction (LEC) [16],	 has to be prime and � is set at	 � 1. The selected size will depend
on the application and the supported hardware capabilities and it should be chosen for fast
decoding and high throughput.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 51

represents the number of extra columns that will be generated by the error correction code. Out
of these
columns, � columns will be used toward reliability. Thus,
 � � columns will be
intentionally discarded and will not be included in the output. When the system is used for
encryption only, � is set to zero. This means that an amount equal to the amount of added
redundancywill be deletedfrom the encoded block. However, what is deleted does not necessary
have to be part of the original block; it could be part of the added redundancy. This is determined
by the key.

PRNG is used to generate a random sequence that is added to the processed block. This
component is used to achieve the desired confusion. The selected generator will be initialized
with a secret key and an initialization vector (IV). Overall, the generator should be selected with
speed, efficiency, and security in mind.

3.2. Initialization
The initialization process is the same for encryption and decryption. In this process, the system
state is determined and the necessary components are initialized with the shared secret key. The
two main components are PRNG and a number of random permutation arrays.

The PRNGisused to generate random sequences ����� that will be mixed with the encoded block.
The initialization process is dependent on the generator in use. Generally, this process ismade
sensitive to key changes such that small changes in the key will be reflected in the generator
output. It is also necessary to use a different initialization vector (IV) every time the PRNG is
initialized. This is a measure taken to make sure that no relationships can be deduced from
ciphertexts encrypted with same key at different sessions.

The random permutation arrays have two purposes. They are used to shuffle or arrange bits
within a block and identify the columns that will be deleted from the encoded block. For these
purposes three random permutations are required:

1.
1: is a bit permutation that will enable permuting bits within a block of size� � 	.
2.
2: is another bit permutation that will enable permuting bits within a block of size� � �	 ���.
3.
3: is a column permutation that will specify the order of	 �
 columns within a block.

We propose using a modified version ofthe RC4 key scheduling algorithm to derive these
permutations. We are not restricted to this specific algorithm; any other algorithm maybe used as

1 procedure permutations-initialization(key,KeyLen,c,r,P,R)

2 forifrom 0 to (r*c)-1

3 P1[i] ←←←←i

4 enfor

5 forifrom 0 to (r*(c+R))-1

6 P2[i] ←←←←i

7 enfor

8 forifrom 0 to c+P-1

9 P3 [i] ←←←←i

10 enfor

11 j ←←←← 0

12 forifrom 0 to (r*(c+R))-1

13 j ←←←←(j+Key[i mod KeyLen]+P1[i mod(r*c)])mod (r*c)

14 SWAP(P1[imod (r*c)], P1[j])

15 j ←←←←(j+Key[i mod KeyLen]+P2[i])

16 SWAP(P2[i] , P2[j])

17 j ←←←←(j+Key[i mod KeyLen]+P3[i mod c+P])modc+P

18 SWAP(P3[imodc+P], P3 [j])

19 enfor

20 return (P1,P2,P3)

FIGURE 1: Permutation Generation Pseudo Code.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 52

long as it can achieve the desired results and it is sensitive to small changes in the key. In other
words, two keys that differ in a very small number of bits will produce two completely different
sets of random permutation arrays. Furthermore, the algorithm must not be known to have any
structural weaknesses that could be used later to attack the system.

To generate these arrays, we start by filling each one of them with the identity permutation and
then permute them according to a key in the same way RC4 uses its key to setup its internal
state. Specifically, weuse two indices and loop over all positionsand, at each iteration, swap the
contents pointed by these two indices. One of these indices is incremented as a counter, while
the other is incrementedrandomly using the key. To generate multiple permutation arrays, we
chain them together instead of generating each one independently from the other as describe in
Figure 1.

3.3. Encryption
As mentioned earlier the main idea of encryption is the partial deletion of the encoded block.
However, the deletion by itself is not enough to achieve the two properties identified by Shannon
[9]: diffusion and confusion. For that purpose we use dynamic permutations combined with
randomization. The encryption process is described in Figure 2.

To encrypt, start by permuting the bits of the input block �� using the permutation array
1.
Figure 3 illustrates how a permutation array is applied to a small input block of size 3 � 3.

�� � ��
1�

Then, encode the permuted block �� using the agreed on �. The encoding process will generate

parity columns, thus extending the size of the output block ��to� � �	 �
�: �� � �����

Next, the encoded block �� is randomized by XORing it with the random sequence ����� from
PRNG. The block in this step is processed row by row to make the maximum continuous
sequence available from the PRNG after deletion is no more than 	 �
 bits.
 �� � ��������

FIGURE 2: Encryption.

Pre-permution

Encode

Delete

Post-permution

Block B
i

Ciphertext C
i

P1
i

P3
i

P2
i

S
i

V
i

T
i

U
i

rSeq
i

PRNG

U
p

d
a

te
 p

e
rm

u
ta

ti
o

n

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 53

Data Block
D

Permutation Array
M

Permuted Block
D`

D0 D3 D6

D1 D4 D7

D2 D5 D8

5 7 2

1 8 0

6 4 3

D5 D7 D2

D1 D8 D0

D6 D4 D3

D’= D M
*

��0 �1 �2 �3 �4 �5 �6 �7 �8 $

%&
&&
&&
&&
'0 0 0 0 0 0 0 1 00 1 0 0 0 0 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 10 0 0 0 0 1 0 0 01 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 0()

))
))
))
*

= ��5 �1 �6 �7 �8 �4 �2 �0 �3$

FIGURE 3: Permutation Example.

This is followed by the delete step where
 out of the 	 �
 columns are selected and removed
from the randomized block. The selection is determined using
3. The first
 entries of
3specify
the ids of the columns that will be removed. Figure 4 illustrates this step. It shows the deletion of
two columns from a 3 � 4data block using a permutation array.

+� � ��
3�

The objective of performing the XOR operation after encoding and before deletion is to increase
the complexity of the PRNG cryptanalysis. In this case, part of the generator output will be
deleted and there is no way to recover what is deleted especially when is not protected by the
correction code. Thus, an attacker will not have a continuous output sequence from the PRNG.
Therefore, he will not have reliable knowledge as a basis for his cryptanalysis.

Data Block
D

Column Permutation
M

Block After Deletion
D`

D0 D3 D6 D9

D1 D4 D7 D10

D2 D5 D8 D11

3 1 0 2

2 columns to
delete

D0 D6

D1 D7

D2 D8

D`= D M
*

 � ��0 �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11$

%&
&&
&&
&&
&&
&'
1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 0 1 0 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0()

))
))
))
))
)*

� ��0 �1 �2 �6 �7 �8$

FIGURE 4: Delete Step Illustration.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 54

Finally, generate the ciphertext-� by performing another bit permutation:

-� � +�
2�

At the end of processing each block, a new set of permutation is generated. This new set allows
different columns to be deleted as well as different bit permutations to be performed every time a
block is encrypted. The new set is derived from the existing set using the encryption key. For that
purpose, a slightly modified version of the permutation generation algorithm is used. In this
version, start with the existing permutations and loop over the key bytes rather than the array
entries. This means that, for those arrays with a number of entries more than the number of bytes
in the key, common or fixed entries may be found in the initial set and the derived one. However,
that should not affect the security of the system as a whole since the key and the initial and
derived permutations are all kept secret. The update permutation algorithm is described in
Figure 5.

FIGURE 5: Update Permutations Pseudo Code.

3.4. Decryption
The success of the decryption is based on theability to identify the exact positions of the deleted
data for the decoding algorithm. It is not necessary to decrypt previous blocks successfully.
However, it is necessary to be synchronized with the encryption process to maintain the right
system state in terms of the permutation arrays and the PRNG state. The decryption process is
described in Figure 6.

To decrypt, start by reversing the post-permutation:
 +� � -�
2�.

Then, identify deleted columns using
3 and rearrange them into their proper order. This step will
expand the block to include the deleted columns. This is an important step for successful
decryption for a number of reasons:(1) to ensure that the XORing with the random sequence is
performed correctly and (2)because the order of symbols is as important as the value of symbols
to decoding. ��/ � +�
3�.

Once the columns are put in order, the data can be extracted by adding �����:
 ��/ � ��/������

Next, reconstruct the
 deleted columns using the decoding algorithm of �:
 �� � �01���/�

1 procedure Update-Permutations(key,KeyLen,c,r,P,R,P1,P2,P3)

2 j=0

3 forkfrom 0 to keyLen-1

4 j ←←←← (j+Key[k]+P1[k])modc+P

5 SWAP(P1[k], P1[j])

6 j ←←←← (j+Key[k]+P2[k]) mod r*(c+R)

7 SWAP(P2[k] , P2[j])

8 j ←←←← (j+Key[k]+P3[kmod r])modc+P

9 SWAP(P3[kmodc+P], P3 [j])

10 endfor

11 return(P1,P2,P3)

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 55

Finally, recover the plaintext�� by reversing the bit permutation: �� � ��
1�.

As in encryption, after processing a block, a new set of permutation arrays are generated. They
are derived from the existing one using the algorithm described in Figure 3. The permutation
update function in decryption must be identical to the one in theencryption ifupcoming blocksare
to be decrypted successfully.

4. JOINT SECURITY AND RELIABILITY
Joint securityand reliability allows us to perform encryption and error control simultaneously in a
single process. This process is an extension ofencryption where the number of deleted columns
is less than the number of added parity. In this scenario, when determining
 one needs to
consider how many columns will be deleted and how many will be added for error control
purposes.

The number of deleted columns is set with the amount of securitythat is required in mind. The
more columns deleted the more complex the attacks on the system get, and the more columns
need to be reconstructed. Generally, the decoding process is more expensive than the encoding
one,which means the more columns recovered the more delay one may expect. Overall, the
number of columns deleted should not affect the system performanceand, at the same time,
should achieve the desired security level.

As to those columns added for error control, one needs to determine what type of error control is
required: error detection vs. error correction. This will be determined by application needs and
thecommunication channel. Based on the channel, the type and number of errors expected may
beidentified. Consequently, � is determined suitably. In case � is set to be equal to
, then no
columns will be removed and the securityof the data will be maintained only by the randomization
and permutations.

P2
i

P3
i

P1
i

V
i

S
i

U`
i

T`
i

rSeq
i

U
p

d
a

te
 p

e
rm

u
ta

ti
o

n

Post-permution
-1

IdentifyDeleted

Decode

Pre-permution
-1

Ciphertext C
i

Block B
i

 PRNG

FIGURE 6: Decryption.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 56

Once the system parameters are determined, the initialization process can be followed as in
Section 3.2. In this process the key is used to set up the system by initializing the PRNG and
deriving the random permutations. Upon successful initialization the blocks can be processed,
essentially, as in the encryption case(Figure 2). First, the bits of �� are permuted within the whole
block. Then, the permuted block is encoded by � where
 extra columns are generated. Next, the
encoded block is XORedwith a random sequence generated from the PRNG. This is followed by
the deletion step where the encryption and the joint functions differ. In this case,
 � � columns
are deleted using
3 where the first
 � �entries determine the ids of those columns. Finally,
coded ciphertext is generated by permuting the bits within the whole block where the masked
parity and data bits are mixed together. The encoded ciphertext -� is expressed as follows:

-� � 2�2��
1� 3 � �����3
3�
2�

Error control can only be performed by those who possess the key. To be able to at least detect
channel errors, the permutation and XOR steps must be reversed first before applying the
decoding process. Those two operations—although performed on data as well as parity bits—do
not propagate errors when they occur.

To decrypt an encoded ciphertext -�, proceed as in Figure 6. First, the bit permutation is
reversed. Then, the deleted columns are identified and the remaining ones are rearranged in their
proper order with the use of
3. Next, the random sequence is extracted by XORing it back with
the block. The decoding algorithm is then applied to recover the deleted columns and detect or
correct communication errors. Communication errors can only be handled if they are within the
capability of the correction code. Finally, the bit permutation is reversed to obtain the plaintext
block �� back.
 �� � �01�-�
2�.
3�. � ������
1�.

4.1. Data Reliability
Data reliability, where no security measures are required, is achieved through the use of forward
correction codes. These codes are used to detect errors, correct errors, or correct erasures. The
exact functionality is determined by the application and communication channel. These two
factors also determine the number of parity added to the data. In this case, � is set to be equal to
and only the correction code is used without the other operations.

For reliable communication, data is encoded using the agreed on error correction code. The
encoding process generates
 parity columns. Then, the data along with the parity are sent to the
destination. At the other end, the decoding algorithm is executed to detect errors and if possible
correct them, or, in case of erasures, if they are identified, they are corrected in orderto recover
the original data.

5. ANALYSIS
This section provides an assessment of the proposed scheme in terms of security, randomness,
and highlights the system performance. In terms of the correction capability, the analysis is the
same as the analysis applied to the error correction code as no modification is applied on the
code itself. However, when considering the correction capabilities of the code with respect to
communication errors, one needs to consider the amount of redundancy assigned to the reliability
rather than the amount of redundancy generated from the code.

5.1. Security
The security of the system depends on how hard it is to find the encryption key. CSEEC key is
used in two ways: to initialize the PRNG and to derive the random permutations. Extracting the
key from the random permutation is a very challenging task for a number of reasons. First, these
permutations are kept secret. Second, the permutations are updated every time a block is

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 57

processed, which means there will not be enough blocks that use the same permutations for
analysis. Third, the randomization and deletion add an extra burden on the process of extracting
the key. Thus, extracting the key from the PRNG output sequence isa more applicable approach
in determiningthe key.

For known PRNGs, there are a set of attacks that can be applied to determine the key used to
initialize the PRNG state. However, any attack can only be applied on reliable knowledge of the
output sequence, which is not the case here. All the PRNG sequences used to encrypt any
ciphertext are randomly permuted and partially deleted. Thus, before applying any attack, the
effect of the random permutation and deletion need to be reversed first to be able to identify the
PRNG sequence. These operations are guided by the unknown key that we want to find and the
only way to reverse these operations is by trying every possibilityin which these operations can
be performed.

For known plaintext attacks, the number of possible PRNG sequences used in randomizing a
single block is determined by the number of possible pre-permutations, post-permutations,
number of ways to select deleted columns, andthe values ofthe deleted columns. These
possibilities are determined as follows:

• The number of permutations that result in unique sequences is determined by the
number of ones or zeros in a sequence, and that number is maximal when the sequence

is balanced. Thus, the maximum number of possible pre-permutations is 4 � � 	� � 	 2⁄ 6 and

post-permutations is 7 � � �	 � ��
� � �	 � �� 2⁄ 8.

• The number of possible ways to select P-R columns from a block with 	 �
 columns is

4	 �

 � �6.

• The number of possible values that can be assigned to
 � � deleted columns is 29:�;0<�.

Using the above possibilities brings the number of possible sequences generated from the PRNG
for a single block to

 4 � � 	� � 	 2⁄ 6 : 4	 �

 � �6 : 29:�;0<� : 7 � � �	 � ��
� � �	 � �� 2⁄ 8 1

Fora chosen plaintext attack, the ability to customize a plaintext can reduce the number of
possible PRNG sequences. In this case, the effectof the pre-permutation can be eliminated by
setting the plaintext to all zeros or all ones. Thus, the number of possible PRNG sequences is
reduced to:

 4	 �

 � �6 : 29:�;0<� : 7 � � �	 � ��
� � �	 � �� 2⁄ 8 2

Once the possible sequences are determined, then an attack is applied on each candidate
sequence until the right key is determined. However if the attack in consideration requires a long
sequence of size =that expands multiple blocks, then the above enumeration is repeated for each
block until a sequence with the desired length is obtained.This sums up the total number of
possible candidates for known plaintext attacks to:

>4 � � 	� � 	 2⁄ 6 : 4	 �

 � �6 : 29:�;0<� : 7 � � �	 � ��
� � �	 � �� 2⁄ 8?

@
A��BCD�

 3

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 58

And for chosen plaintext attacks to:

>4	 �

 � �6 : 29:�;0<� : 7 � � �	 � ��
� � �	 � �� 2⁄ 8?

@
A��BCD�

 4

The above formulas are used to express how much it takes just to prepare the data before
applying an attack. This is the amount by which the complexity of an attack is increased.

It is clear that the security of CSEEC depends on the security of the PRNG. The level of security
also depends on the combination of parameters. This dependence allowsusing less secure more
efficient PRNG without compromising the confidentiality of information. Therefore, when setting
these parameters one should consider the effect of these choices on the overall security of the
system and whether these choices result in reachingthe targeted security level.

If it is necessary to use the same key again, then a distinct initialization vector must be used for
every PRNG initialization process. This is a necessary condition to ensure the following:
 -1�-E F -1/�-E/

where -1, -E, -1/ and -E/ are the ciphertexts that correspond to the following plaintexts �1 , �E, �1/ and �E/ respectively and the plaintexts satisfy the following:
 �1��E � �1/ ��E/

5.2. Randomness
One of the criteria used to evaluate any cipher is the assessment of its suitability as a source of
randomness. A good cipher is a cipher that can be considered a true random number generator.
Randomness testing is used for that purpose. Such tests do not guarantee that the generator is
indeed random, however, the more tests the generator passes, the more confidence they give in
its randomness.

We used the National Institute of Standard and Technology (NIST) statistical test suite for random
number generators [17]. The suite consists of 15 core tests that are extended to 188 tests under
different parameter inputs [18].

For the purpose of evaluation, we selectedthe Reed-Solomon code with two stream ciphers as
random number generators, Grain-128 [19] and A5/1. Grain-128 is a 128-bit stream cipher
designed for highly restricted environments. A5/1 is a 64-bit stream cipher used in GSM
communications. The key setup process for A5/1 is extended to incorporate all the 128 key bits
used by CSEEC. Both of these selections have good statistical properties and are chosen for
their efficient hardware evaluations.

To evaluate the system against randomness, we developed two data sets. The first data set
evaluated the randomness of the ciphertexts. A sequence in this set wasthe result of
concatenating ciphertexts formed from encrypting random plaintexts and one random key
wasused per sequence. The second one evaluated the correlation between plaintexts and
ciphertexts. Each sequence in this set consisted of blocks formed from XORing a plaintext with
the corresponding ciphertext.One random key was used per sequence.

As for the system parameters, �was set to 8, 	 to 16 and
 to 3. We ranged � from zero to
 for
each data set. A total of 16 samples were generated, each with300 sequences. Then, all the 188
tests were applied with the default parameters.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 59

R 0 1 2 3

Ciphertext block Size 128 136 144 152

Sequence Length 1,048,576 1,048,696 1,048,608 1,048,648

Data Set 1 0/188 0/188 0/188 0/188

Data Set 2 0/188 0/188 0/188 0/188

TABLE 1: NIST Tests Result for Grain-128 and A5/1.

The results of the two generators were the same: all tests were passed. Table 1 shows the
number of failed tests for each data set and the range of values for �. The results obviously
depend on the randomness of the PRNG in use. As expected, the randomness of CSEEC output
depends heavily on the randomness of the random number generator. However, the goal of these
tests is to examine the effect of the other operations: permutations and, specifically, deletion on
the output of the PRNG and whether these operations change the statistical properties of the
output sequence. Asthe results indicate, the permutations and deletion do not affect the
randomness of the PRNG in use.

5.3. Implementation
The scheme was implemented in software and hardware as a proof of concept. The goal of the
software implementation was to verify the correctness of the algorithm and to generate the data
for randomness testing. On the other hand, the goal of the hardware implementation was to
understand the complexity associated with each operation.

An RTL implementation was made for the described algorithm and Altera Quartus II was used to
simulate the design using a Stratix III device (EP35E50F780C2). The implementation generates 3
parity symbols using Reed-Solomon (RS) encoding for each block of size 8 � 8. Thus, up to 3
columns can be deleted from a block. The implementation results are shown in Table 2. The
numbers in this table do not include the area dedicated to the PRNG nor the error correction code
because it is assumed that a system that implements CSEEC will already have these two
functions implemented. The throughput of encryption is 96 Mbps and decryption is 95 Mbps.
Comparingthese numbers with other encryption schemes indicates that CSEEC has good
processing speed. However, comparing the joint functionality of CSEEC with encryption schemes
combined with error correction codes shows that CSEEC exceeds them since the time it takes to
process a block does not change whether the scheme is used for security or for joint security and
reliability. On the other hand, when any encryption scheme is combined with error correction code
then the time to process a block isincreased by the amount it take to encode or decode a block.

Operation Encryption Decryption

Frequency 53.75 MHz 79.28 MHz

Logic Utilization 14% 21%

Combinational ALUTs 3,964 6,279

TABLE 2: Hardware Implementation Results.

6. CONCLUSION AND FUTURE WORK
A novel systemthat provides data reliability and security using FEC is proposed. The user is given
the option to choose both or either services depending on his/her needs. Data security is
achieved through a new encryption scheme based on intentional deletion. Joint securityand
reliability is achieved through the extension of the encryption scheme by intentionally deleting an
amount less than the amount of added redundancy.

The system was implemented withthe Reed-Solomon code and two possible PRNGs, Grain-128
and A5/1. The system design is general enough that it can use any forward error correction code

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 60

and any PRNG. Thus, users have the ability to use existing implementations with minimum
additional operations. It is shown that the system security depends on the strength of the
combination of its components, not on the individual security of each one of them. Moreover, the
randomness of the PRNG is preserved and reflected in the system output. Also the
implementations show the applicability and superiority of the scheme.

Currently, the hardware implementation is being optimized and possible enhancements to the
algorithm are being investigated. It is expected that processing speed can be further enhanced.

7. REFERENCES

[1] O. Adamo and M. R. Varanasi, “Hardware based encryption for wireless networks,”

presented at the Military Communication Conference, 2010, pp. 1800–1805.

[2] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory,” Deep

Space Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

[3] S. Nair, E. Celikel, and M. Marchetti, “Adaptive Security and Reliability using Linear Erasure

Correction Codes,” in Proceedings of 7th International Business Information Management
Conference, Brescia, Italy, 2006.

[4] J. Tian, Y. Dai, and Z. Yang, “SEC: A practical secure erasure coding scheme for peer-to-

peer storage system,” 14th Symposium on Storage System and Technology, pp. 210–222,
2006.

[5] C. H. Mathur, “A Mathematical Framework for Combining Error Correction and Encryption,”

Ph.D. Dissertation, Stevens Institute of Technology, Hoboken, NJ, USA, 2007.

[6] R. Ma, L. Xing, and H. E. Michel, “Fault-Intrusion Tolerant Techniques in Wireless Sensor

Networks,” in 2nd IEEE International Symposium on Dependable, Autonomic and Secure
Computing, 2006, pp. 85 –94.

[7] W. Godoy Jr and D. Pereira Jr, “A proposal of a cryptography algorithm with techniques of

error correction,” Computer Communications, vol. 20, no. 15, pp. 1374–1380, 1997.

[8] T. Hwang and T. R. N. Rao, “Secret error-correcting codes (SECC),” in Proceedings on

Advances in cryptology, New York, NY, USA, 1988, pp. 540–563.

[9] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Systems Technical

Journal, vol. 28, pp. 656–715, 1949.

[10] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical Journal,

vol. 27, pp. 379–423, 1948.

[11] O. Adamo, E. Ayeh, and M. Varanasi, “Joint encryption error correction and modulation

(JEEM) scheme,” in 2012 IEEE International Workshop Technical Committee on
Communications Quality and Reliability (CQR), 2012, pp. 1–5.

[12] T. A. Berson, “Failure of the McEliece Public-Key Cryptosystem Under Message-Resend

and Related-Message Attack,” in Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, London, UK, 1997, pp. 213–220.

RanyaAlawadhi & Suku Nair

International Journal of Computer Science and Security (IJCSS), Volume (7) : Issue (2) : 2013 61

[13] L. Xu, “A general encryption scheme based on MDS code,” in Information Theory, 2003.
Proceedings. IEEE International Symposium on, 2003, p. 19.

[14] W. Chang, B. Fang, X. Yun, S. Wang, and X. Yu, “Randomness Testing of Compressed

Data,” Journal of Computing, vol. 2, no. 1, Jan. 2010.

[15] Q. Chai and G. Gong, “Differential Cryptanalysis of Two Joint Encryption and Error

Correction Schemes,” in 2011 IEEE Global Telecommunications Conference (GLOBECOM
2011), 2011, pp. 1 –6.

[16] Z. Alkhalifa, “Application and system layer techniques for hardware fault tolerance,” Ph.D.

Dissertation, Southern Methodist University, Dallas, TX, USA, 1999.

[17] “NIST.gov - Computer Security Division - Computer Security Resource Center.” [Online].

Available: http://csrc.nist.gov/groups/ST/toolkit/rng/index.html.

[18] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Aandel, D.

Banks, A. Heckert, J. Dray, and S. Vo, “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications,” National Institute of
Standards and Technology, Apr. 2010.

[19] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family of Stream Ciphers,” in

New stream cipher designs the eSTREAM finalists, vol. 4986, Berlin; New York: Springer,
2008, pp. 179–190.

