
Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 21

An Empirical Comparison
Of

Supervised Learning Processes

Sanjeev Manchanda* smanchanda@thapar.edu
School of Mathematics and Computer Applications,

Thapar University, Patiala-147004 (INDIA).

*Corresponding author

Mayank Dave mdave67@yahoo.com
Department of Computer Engg.,

National Instt. Of Technology, Kurukshetra, India.

S. B. Singh sbsingh69@yahoo.com
Department of Mathematics,

Punjabi University, Patiala, India.

Abstract

Data mining as a formal discipline is only two decades old, but it has registered
phenomenal development and has become a mature discipline in this short span.
In this paper, we present an empirical study of supervised learning processes
based on empirical evaluation of different classification algorithms. We have
included most of the supervised learning processes based on different pre
pruning and post pruning criteria. We have included ten datasets, collected from
internationally renowned agencies. Different specific models are presented and
results are generated. Issues related to different processes are analyzed
suitably. We also present a comparison of our study with benchmark results of
different datasets and classification algorithms. We have presented results of all
algorithms with fifteen different performance measures out of a set of twenty
three calculated measures, making it a comprehensive study.

Keywords: Data Mining, Knowledge Discovery in Databases, Supervised learning algorithms, Stacking,

Classification, Regression etc.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 22

1. Introduction

Knowledge discovery in databases (KDD) is the theme of many discussions for last two decades.
A large number of techniques and algorithms have been developed for mining the knowledge
from large databases. Supervised learning techniques are usually used for the solution of
classification problems. Usually a general process is recommended for supervised learning. But
practical implementation of a general process becomes difficult, when we need to implement this
general process for some specific problem solving. There are possibly many processes that are
used for supervised learning. Problem arises with finding a suitable process for extracting
knowledge for problem at hand. This type of dilemma motivated us to analyze the environmental
factor that affect the selection of a suitable process and to handle potential issues involved in
such processing.

 Figure 1: The KDD process (Fayyad et al. [10])

Present work is mainly motivated through following three objectives. First of all, supervised
learning processes can vary from simple to very complex processing. No single process can fulfill
all needs and suitability of any process depends upon many environmental factors. So, there is a
need to analyze different processes by identifying different environmental factors. Secondly,
Different techniques and algorithms are used to extract knowledge from data. These algorithms
involve certain criteria to extract knowledge. Different techniques and algorithms are suitable for
different types of problems. There is no unique technique/algorithm to solve all types of problems.
So, there is a need to analyze suitability of different techniques/algorithms with specific domain of
problems. Thirdly, Different performance metrics are considered appropriate for different
domains, e. g. Precision/Recall measures are preferred metrics for information retrieval, ROC
curves/area is preferred metric for the problems related to medical domain, Lift is preferred for
marketing tasks etc. Each metric is dedicated to some specific nature of algorithm evaluation. No
individual metric may be used for all domains. So, there is a need to test different learning
algorithms based on a large set of metrics. Overall present paper is an effort to explore
relationship between types of problems with specific technique/algorithm as well as with type of
processing required for extracting knowledge based on different metrics. Experiments are
performed through many suitable processes on a variety of supervised learning techniques and
algorithms. Results are presented for fifteen different metrics out of generated results for twenty
three metrics. Output of these experiments is compared with the results obtained from direct
experimentation of classification algorithms and the results obtained through cross validations.
Results are also compared with the available benchmark results of the problems involved for
study. This paper includes a comprehensive study of different possible supervised learning
processes. Internationally renowned datasets are chosen for evaluating six most important
processes for study. These datasets are applied on these processes and comprehensive results
are presented.

Rest of the content of this paper is organized in following manner. Second section includes the
literature review of related work. Third section includes the description of various processes for
supervised learning. Fourth section includes the description of different techniques and
algorithms included for study. Fifth section explains methodology of study. Sixth section includes
experimental results of present study. Seventh section includes a comparison of present study
with other studies. Eighth section concludes the study with future directions. Last but not the
least, Ninth section lists the references used during present study.

2. Literature Review

Data mining has originated just two decades back. Within this short span, data mining has grown
up as a mature discipline. Large numbers of techniques and algorithms have been developed for
extraction of knowledge. Out of these algorithms, majority of algorithms are developed for

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 23

supervised learning. Supervised learning is mostly performed for classification tasks. Data mining
itself has emerged from other disciplines like Machine Learning, Artificial Intelligence and
Statistics etc., so it is obvious to get initial references related to this study from its parent
disciplines. Many researches were being performed before the time data mining was coined as a
separate discipline for study.

In a study, the results of a point awarding approach were compared with the results obtained by
the linear discriminant (Fahrmeir et al. [9]). One study reported that back-propagation
outperformed nearest neighbour for classifying sonar targets (Gorman et al. [13]), whereas some
Bayes algorithms were shown to be better on other tasks (Shadmehr et al. [30]). A symbolic
algorithm, ID3 (Kirkwood et al. [16]) was developed, which performed better than discriminant
analysis for classifying the gait cycle of artificial limbs.

The CART (Classification and Regression Trees) method (Breiman et al. [6]) was used to analyze
consumer credit granting (Hofmann [14]). It concluded that CART had major advantages over
discriminant analysis and emphasized the ability of CART to deal with mixed datasets containing
both qualitative and quantitative attributes. However, on different tasks other researchers found
that a higher order neural network (HONN) performed better than ID3 (Spikvoska et al. [32]) and
back-propagation did better than CART (Atlas et al., [1]).

A study was conducted for a coordinated comparison of many algorithms on the MONK’s problem
(Mitchell et al. [20]). A diverse set of statistical methods, neural networks, and a decision tree
classifier was compared on the Tsetse fly data (Ripley [28]). After many small comparative
studies, STATLOG is known as first comprehensive study that analyzed different data mining
algorithms (King et al. [15]). Another research work compared several learning algorithms
(including SVMs) on a handwriting recognition problem using three performance criteria:
accuracy, rejection rate, and computational cost (LeCun et al. [18]). One other study evaluated
nearly a dozen learning methods on a real medical data set using both accuracy and an ROC-like
metric (Cooper et al. [8]). In one other study, an impressive empirical analysis was presented
about different ensemble methods such as bagging and boosting (Bauer et al. [3]). An empirical
comparison of decision trees and other classification methods was performed using accuracy as
the main criterion (Lim et al. [19]). An empirical study conducted comparison between decision
trees and logistic regression (Perlich et al. [23]). One study examined the issue of predicting
probabilities with decision trees, including smoothed and bagged trees (Provost et al. [25]). One
research work presented the comparison of different tools and techniques of data mining (Witten
et al. [33]). Recently, one study was conducted to rank different many learning algorithms
(Caruana et al. [7]). Present research work is dedicated to analyze all type of classification
techniques and algorithms on a variety of problems and to compare the results with earlier
studies.

3. Various Processes for Supervised Learning

Supervised learning processes can vary from simple processing to very complex processing.
Different techniques and algorithms are used to extract knowledge from data. These algorithms
involve certain criteria to extract knowledge. Different techniques and algorithms are suitable for
different types of problems. There is no unique technique/algorithm to solve all types of problem.
Supervised learning involves training set to train algorithm for the creation of a model and then
this model is applied on test set to generate and compare results. Different supervised learning
processes are as follows:

3.1 Simple Supervised Learning: In its simplest form input data is applied to classification
algorithm to generate a model, model is applied test data and result is generated. Such
experimentation suffers with over fitting and under fitting of model and results may not fulfill the
reliability criteria. So there is a need for preprocessing and post-processing of data.

Figure 2: Simple Supervised Learning Process.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 24

3.2 Preprocessing of the data: A data set collected is not directly suitable for induction
(knowledge acquisition), it comprises in most cases noise, missing values, inconsistent data, data
set is too large, and so on. Therefore, we need to minimize the noise in data, choose a strategy
for handling missing (unknown) attribute values, use any suitable method for selecting and
ordering attributes (features) according to their informativity (so-called attribute mining),
discretize/fuzzify numerical (continuous) attributes, validating part of training data to be used for
creating model and eventually process continuous classes.

3.2.1 Attribute Transformation: Input data may be nominal or numerical. Few classification
algorithms like ID3 and Naïve Bayes operate only on discrete data, whereas regression based
algorithms operate only on numerical data. So there may a requirement of transformation of data
from one form to another to match the data with algorithmic requirements.

3.2.1.1 Categorical Attribute Transformation: Nominal or categorical data may be transformed
into binary or scale values as follows:

(a) Categorical to Binary: Problems having more than two categories of class attribute are
converted into Binary class problems. We have converted our datasets into binary class treating
first half of class categories as negative class and last half as positive class.

(b) Dual Scaling: Dual scaling (Nishisato [22]) is a multivariate method for assigning scale
values to the rows and columns of a table of data, with certain optimal properties.

3.2.1.2 Continuous Attribute Transformation: Continuous or real number based attributes
may be transformed into discrete attributes as follows:

(a) Class-based discretization: Class-Attribute relationship is used to define discretization

of any attribute, each attribute is discretized independently. Such discretization is useful for small
number of attributes, but becomes complex for large number of attribute.

(b) Fixed-bin discretization: All the attributes to be discretized are considered collectively
and a fixed number of bins are used for discretizing all attributes. We have used fixed bin
discretization, so that the future researchers can utilize the results of this paper for their
comparative analysis and it also helps in maintaining consistency of experimentation.

Figure 3: Discretized Supervised Learning Process.

(c) Principle component analysis: Principal component analysis is a useful tool for
categorization of data, it separates the dominating features in the data set.

3.2.2 Data Sampling

(a) Progressive sampling: Progressive Sampling (PS) (Provost et al. [27]) incrementally
constructs a training set from a larger dataset without decreasing the classification performance
and without altering the initial format of the examples
(b) Random sampling: Samples are selected randomly for experimentation. Such a
sampling makes the experimentation results to be unreliable as different sampling algorithms may
select samples differently and results may vary significantly.

(c) Stratified sampling: Stratified sampling is based on re-sampling the original datasets in
different ways: under-sampling the majority class or over-sampling the minority class.

3.2.3 Validation:

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 25

(a) Fixed Split Validation: Simplest form of experimentation is to divide dataset into two
fixed length datasets of training set and test set to perform experiment directly. This kind of
experimentation is meant for simple testing of algorithms. Biggest problem with fixed split is over
fitting of training data e.g. tree based techniques may have too many branches that may reflect
anomalies and result in poor accuracy of unseen samples. To overcome the limitations of fixed
split two approaches used are prepruning and post pruning. Prepruning is performed through
cross-validation, whereas many calibration methods have been proposed for post pruning.
Following sections include the discussion about these methods.

(b) Cross Validation: To evaluate the robustness of the classifier, the normal methodology
is to perform cross validation on the classifier. Ten fold cross validation has been proved to be
statistically good enough in evaluating the performance of the classifier (Witten et al. [33]). For
present study datasets are divided into training and test sets. Then training set is equally divided
into 10 different subsets for ten fold cross validation. Nine out of ten of the training subsets are
used to train the learner and the tenth subset is used as the test set. The procedure is repeated
ten times, with a different subset being used as the test set. In this way cross validation is
performed to calibrate the models and select the best parameters and then models are applied on
the large Final test set.

Figure 4: Cross-Validated Supervised Learning Process.

3.3 Post processing of the derived knowledge: The pieces of knowledge extracted in the
previous step could be further processed. One option is to simplify the extracted knowledge. Also,
we can evaluate the extracted knowledge, visualize it, or merely document it for the end user.
They are various techniques to do that. Next, we may interpret the knowledge and incorporate it
into an existing system, and check for potential conflicts with previously induced knowledge.

3.3.1 Calibration: Many learning algorithms do not predict probabilities. For example the
outputs of an SVM are normalized distances to the decision boundary, whereas naive bayes
models are known to predict poorly calibrated probabilities, because of the unrealistic
independence assumption.

A number of methods have been proposed for mapping predictions to posterior probabilities. Platt
Scaling (Platt [24]) is used for transforming SVM predictions to posterior probabilities by passing
them through a sigmoid. Platt scaling also works well for boosted trees and boosted stumps
(Niculescu et al.[21]). A sigmoid is also not the correct transformation for all learning algorithms.

Second method used for calibration is Logistic regression. Logit Boost algorithm is used for
performing additive logistic regression. This algorithm performs classification using a regression
scheme as the base learner, and can handle multi-class problems (Friedman et al. [11]) and it
can also do efficient internal cross-validation to determine appropriate number of iterations.

Other method generally used for calibration is Isotonic Regression (Zadrozny et al. [35,36];
Robertson et al. [29]). It is used to calibrate predictions from SVMs, naive bayes, boosted naive
bayes, and decision trees. Isotonic Regression is more general method, but its only restriction is
that the mapping function used is isotonic (monotonically increasing). A standard algorithm for
Isotonic Regression that finds a piecewise constant solution in linear time, is the pair-adjacent
violators (PAV) algorithm (Ayer et al. [2]).

Figure 5: Post-Processed Supervised Learning Process.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 26

3.3.2 Thresholding: The minimum acceptable value which, in the user's judgment, is
necessary to satisfy the need. If threshold values are not achieved, program performance is
seriously degraded, the program may be too costly, or the program may no longer be timely.

3.3.2.1 Class Probability Estimators (CPE) Thresholding: For a decision maker to act
optimally it is necessary to estimate the probability of success. Because training information is
costly, we would like to reduce the cost of inducing an estimation model that will render decisions
of a given quality. One approach to reducing the cost of learning accurate CPEs is via traditional
active learning methods, which are designed to improve the model’s average performance over
the instance space. if the probability of a successful outcome exceeds the threshold.

3.3.2.2 Regression Thresholding: Threshold regression refers to first-hitting-time models with
regression structures that accommodate covariate data. The parameters of the process,
threshold state and time scale may depend on the covariates.

3.4 Stacking: Stacking combines the output of a number of classifiers. Stacked
Generalization, also known as Stacking in the literature, is a method that combines multiple
classifiers by learning the way that their output correlates with the true class on an independent
set of instances. At a first step, N classifiers Ci, i = 1..N are induced from each of N data sets Di, i
= 1..N. Then, for every instance ej , j = 1..L of an evaluation set E, independent of the Di data
sets, the output of the classifiers Ci(ej) along with the true class of the instance class(ej) is used
to form an instance mj , j = 1..L of a new data set M, which will then serve as the meta-level
training set. Each instance will be of the form: C1(ej), C2(ej), . . . , CN(ej), class(ej). Finally, a
global classifier GC is induced directly from M. If a new instance appears for classification, the
output of all local models is first calculated and then propagated to the global model, which
outputs the final result. Any algorithm suitable for classification problems can be used for learning
the Ci and GC classifiers. Independence of the actual algorithm used for learning Ci, is actually
one of the advantages of Stacking, as not every algorithm might be available for each data set
and not the same algorithm performs best for every data set. We have applied stacking of
isotonic regression with other classification algorithms.

Figure 6: Stacked Supervised Learning Process.

3.5 Complex Processing: Different preprocessing, Post-processing and stacking of different
algorithms may be combined to extract knowledge from databases. Such complex criteria may
involve parallel processing of different algorithms as well. No encouraging results have been
generated through such processing.

4. Description of Techniques and Algorithms used for study

Different techniques included for study with their specific algorithms are as follows:

4.1 Classification Techniques and Algorithms: A variety of classification algorithms were
used for study. These techniques/algorithms are broadly described as follows:

4.1.1 Decision Trees: Tree-shaped structures that represent sets of decisions. These
decisions generate rules for the classification of a dataset. Decision trees represent a series of
IF…THEN type rules which are linked together and can be used to predict properties for
observations based upon the values of various features. These are able to produce human-
readable descriptions of trends in the underlying relationships of a dataset and can be used for
classification and prediction tasks. The algorithms used for experimentation were Decision Stump
and REPTree etc. Different parameters were set as follows: maximum tree depth was allowed to
be infinite, minimum number of instance per leaf were set to 2, Confidence threshold was set to
0.25 and numbers of trees were allowed to be infinite.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 27

4.1.2 Support Vector Machine: These are methods for creating functions from a set of
labeled training data. These functions can be a classification function (the output is binary: is the
input in a category) or the function can be a general regression function. For classification, SVMs
operate by finding a hyper-surface in the space of possible inputs. This hyper-surface will attempt
to split the positive examples from the negative examples. The split will be chosen to have the
largest distance from the hyper-surface to the nearest of the positive and negative examples.
Intuitively, this makes the classification correct for testing data that is near, but not identical to the
training data. We have included LibSVM algorithm for study. Different parameters were set as
follows: Different types of kernel functions were tried like linear, polynomial, radial basis function
etc., Degree of kernel function set to 3 and Tolerance parameter set to 0.001.

4.1.3 Genetic Algorithms: Optimization techniques that use process such as genetic
combination, mutation, and natural selection in a design based on the concepts of evolution.
Genetic algorithms should be used, when no other option is left. We have not included any
genetic algorithm, but learning processes are always based on genetic processing, so indirect
contribution of genetic processing can not be neglected.

4.1.4 Neural Networks: Inspired by the structure of the brain, a neural network consists of a
set of highly interconnected entities, called nodes or units. Each unit is designed to mimic its
biological counterpart, the neuron. Each accepts a weighted set of inputs and responds with an
output. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired
by the way biological nervous systems, such as the brain, process information. The key element
of this paradigm is the novel structure of the information processing system. It is composed of a
large number of highly interconnected processing elements (neurons) working in unison to solve
specific problems. ANNs, like people, learn by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning process. We
have included Multi Layer Perceptron algorithm for study. Different parameters were set as
follows: Learning rate of back propagation set to be 0.3, Momentum rate 0.2 etc.

4.1.5 K-nearest neighbor: Among the various methods of supervised statistical pattern
recognition, the Nearest Neighbor rule achieves consistently high performance, without a priori
assumptions about the distributions from which training examples are drawn. It involves a training
set of both positive and negative cases. A new sample is classified by calculating the distance to
the nearest training case; sign of that point then determines the classification of the sample. The
IBk classifier included in present study extends this idea by taking the k nearest points and
assigning the sign of the majority. It is common to select k small and odd to break ties (typically 1,
3 or 5). Larger k values help reduce the effects of noisy points within the training data set, and the
choice of k is often performed through cross-validation. Different parameters were set as follows:
Different values for k were tried ranging 1 to 10.

4.1.6 Rule Induction: The extraction of useful if-then rules from data based on statistical
significance. We have included Decision Table and ZeroR algorithms for study. Different
parameters were set as follows: Confidence threshold set to 0.25.

4.2 Boosting/Bagging: These methods create a set or ensemble of classifiers from a given
dataset. Each classifier is generated with a different training set obtained from the original using
re-sampling techniques. The final output is obtained by voting.
Boosting: The idea of Boosting is to combine simple rules to form an ensemble such that the
performance of the single ensemble member is improved i.e. Boosted. AdaBoostM1 algorithm
was used for boosting trees (Yoav et al. [34]). Different parameters were set as follows: Number
of iterations allowed was 10 and 100 percentage of weight mass being used.
 Bagging (Bootstrap Aggregating): It produces replications of the training set by sampling with
replacement. Each replacement of the training set has the same size as the original set, but some
examples can appear more than once while other don’t appear at all. A classifier is generated
from each replication. All classifiers are used to classify each sample from the test set using a
vote scheme (Breiman [6]). We have applied Bagging and Boosting on Decision Stump and
REPTree algorithms. Experimental results of both Boosting and Bagging are really enthusiastic.
Different parameters were set as follows: Size of each bag being set to 100 and number of
iterations allowed were 10.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 28

5. Methodology

5.1 Datasets: Present study compares supervised learning algorithms on ten binary
classification problems. ADULT, COV_TYPE, LETTER, PEN_DIGITS, SHUTTLE, SATELLITE
and TIC2000 are the problems from UCI repositories (Blake et al. [5]). COV_TYPE has been
converted to a binary problem by treating the largest four classes as positives and the rest three
as negatives. LETTER is converted by replacing alphabets A-M as negatives and N-Z as
positives. PEN_DIGITS is converted by replacing top five digits (5 to 9) into positive class
whereas lower five into negative class (0 to 5). SATELLITE and SHUTTLE are the problems from
STATLOG. SHUTTLE has been converted to a binary problem by treating largest two classes as
positives and rest three classes as negatives. SATELLITE conversion is treated by converting
largest three classes (i. e. 4, 5, 7) as positives (class 6 was absent), whereas smallest three
classes as negatives (i.e. 1, 2, 3). ACC_CELE and ACC_DROSO are biological sequence
datasets (Sonnenburg et al.[31]). DS1_100 is outcome of biological and chemistry experiments
(Komarek et al. [17]). Table 1 includes the description about the datasets.

Size of Datasets

Problem
Number of
 Attributes Train Set Test Set Total

ADULT 14 9768 39074 48842

COV_TYPE 54 10000 40000 50000

ACC_CELE 141 10000 40000 50000

ACC_DROSO 141 10000 40000 50000

DS1_100 100 10000 16734 26734

LETTER 16 10000 10000 20000

PEN_DIGITS 16 5000 5992 10992

SATELLITE 36 3000 3435 6435

SHUTTLE 9 10000 40000 50000

TIC2000 85 5000 4822 9822

 Table 1: Description of Problems

5.2 Experimentation: Experimentation is the most important part of any empirical study. We
have included all the ways of experimentation developed so far for supervised learning. In this
study Pre-processing through Fixed split validation and Cross validation have been performed,
whereas three calibration methods viz. Platt scaling, Logit Boost and Additive Regression have
been used for experimentation and Isotonic Regression has been applied through Stacking of
algorithms. Discretization has been applied for ID3 and Naïve Bayes algorithms.

5.3 Metrics for evaluation: Learning techniques and algorithms are used in a variety of
domains. Different performance metrics are considered appropriate for different domains, e. g.
Precision/Recall measures are preferred metrics for information retrieval, ROC curves/area is
preferred metric for the problems related to medical domain, Lift is preferred for marketing tasks
etc. Each metric is dedicated to some specific nature of algorithm evaluation. No individual metric
may be used for all domains. So, there is a need to test different learning algorithms based on a
large set of metrics. Metrics used for testing algorithms are broadly categorized as follows (Same
metric may belong to more than one broader category depending on their nature belonging to
multiple categories):

5.3.1 Confusion Matrix Based Metrics: Outcome of all classification tasks produces four
types of output i.e. two from each instance is mapped to one element of the set { Positive,
Negative} from actual positive and negative class labels, whereas other two labels {Positive,
Negative} from the class predictions produced by a model. Different statistics like Accuracy,
Precision, Recall, Fallout, F-measure, Margin etc. are directly derived from the confusion matrix
(Provost et al. [26,27]), whereas Lift, AUC are derived from it.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 29

Actual Class

Positive Negative

Positive

True
Positives

False

Positives

Predicted
Class

Negative

False
Negatives

True
Negatives

 Table 2: A contingency table for a binary class problem

5.3.2 Threshold metrics: The threshold metrics are accuracy, F-score and Lift (Giudici, [12]).
A fixed threshold 0.5 is used for Accuracy and F-Score. For lift, percent p of cases is predicted as
positive and the rest as negative, for present study p is selected to be 25%. Predictions may have
a significant distance from these thresholds.

5.3.3 Rank Metrics: The rank metrics used are Area Under the ROC curve (i. e. AUC)
(Provost et al. [26]), Average Precision and Recall.

5.3.4 Errors: Different types of errors have been involved in this study. Absolute Error,
Relative Error, Root Mean Squared Error, Squared Error and Fallout etc. have been calculated
for all the algorithms and problems involved for present study. Classification error has been
omitted from the table because it can be calculated from the accuracy measure by subtracting
accuracy from one.

5.3.5 Probability Metrics: Probability metrics, Root mean squared error and Mean crossed-
entropy, interpret the predicted value of each case as a conditional probability of that case being
in the positive class.

5.3.6 Other Metrics: Other metrics like kappa and correlation are calculated. The kappa
coefficient measures pair wise agreement among a set of coders making category judgments,
correcting for expected chance agreement (Berry [4]), whereas correlation calculates the degree
of relationship between attributes.

6. Experimental Results

This section includes the experimental results of present study. Experimental results are divided
into two categories viz. Major study and Minor study.

6.1 Major Study: Major study includes twenty two algorithms and experiments are performed
over fixed split, cross validation and platt scaling. For Fixed Split validation original dataset is
divided into train set and test set, then experiments are performed. For Cross Validation dataset
is again divided into Train set and test set, Train set is further divided into ten fold datasets,
Experiments are performed over one fold with the help of others and dataset with minimum
squared error is selected for testing the performance over test set. For Platt Scaling, Cross
validated model is passed through a sigmoid and probabilities based predictions are performed.

6.1.1 Performance by Problem: Table 3 includes accuracy of twenty two algorithms involved
for study and are ranked in descending order based on their average performances. Random
Forest algorithms have topped the chart, whereas J48, PART, Multi Layer Perceptron, IBk,
REPTree and ADTree algorithms are close to the top positions. Fixed Split has performed better
than Cross Validated and Platt Scaling preprocessing and post processing algorithms. As Cross
validation restricts the over fitting of algorithms, so the performance over cross validation and
platt scaling is the corrected performance of the algorithms. Even for Cross validated and Platt
scaling results random forest algorithms perform far better than other algorithms. Bagging
(Bootstrap Aggregating) has performed better than alone algorithm and with boosting. Fro
ADTree Boosting seems to perform better than others and has enhanced the performance
rapidly. ZeroR has performed very badly and has secured lowest positions as compared to
others.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 30

6.1.2 Performance by metrics: Table 4 includes averages of fifteen metrics involved in study
and are positioned in descending order according to average accuracy. For few metrics output
was generated to be NaN (Not a Number), for such metrics averages are calculated over
remaining values, excluding the count of such values. These values are pointed with an asterisk
(*) and if all the values (for all ten problems) are NaN, such values are represented by NaN*.

6.2 Minor Study: Minor study includes five algorithms and experiments are performed over
other calibration methods like Additive Regression, Logistic Regression and Isotonic Regression.
Limitation for regression based methods is that these require fully numeric values, so all the
datasets are converted into numeric values except for the Logit Boost algorithm (i. e. Logistic
Regression). On Additive regression ten fold cross validation has been applied and study is
performed through meta classifiers. Logit Boost involves internal cross validation, so fixed split
experimentation is performed. For Isotonic regression, stacking is done in conjunction with other
algorithms and ten fold cross validation is performed.

6.2.1 Performance by Problem: Table 5 includes accuracy of five algorithms for all ten
datasets that are involved for study and are ranked in descending order, based on their average
accuracy. Five algorithms used for study are IBk, Decision Stump, Decsion Table, LibSVM and
ZeroR across six dimensions i. e. Fixed Split, Cross Validation, Platt Scaling, Additive
Regression, Logit Boost and Isotonic Regression. Results indicate the better performances
through Logit Boost calibration, followed by Additive Regression. Isotonic Regression has
degraded the performances of the algorithms. IBk and Decision Table has topped the chart with
calibration and individually. Additive Regression has enhanced the performance of ZeroR
algorithm and has uplifted its performance significantly.

6.2.2 Performance by metrics: Table 6 includes averages of fifteen metrics involved in study
and are positioned in descending order according to average accuracy. For few metrics output
was generated to be NaN (Not a Number) and Infinity, for such metrics averages were calculated
over remaining values, excluding the count of such values. These values are pointed with an
asterisk (*) for NaN, a plus sign (+) for Infinity and if all the values (for all ten problems) are NaN
or Infinity, such values are represented by NaN* or Inf+.

6.3 Graphical Comparison: A graphical comparison involving ROC and Precision/Recall
graphs of algorithms is prepared for Cross Validated experiments on Adult dataset.

6.3.1 ROC Curves: An ROC graph is a technique for visualizing, organizing and selecting
classifiers based on their performance. ROC graphs are two-dimensional graphs in which True
Positive rate is plotted on the Y axis and False Positive rate is plotted on the X axis. An ROC
graph is compared on the basis of behavior of the curve in graph. A curve sharply rising towards
Y axis is considered to be better than the diagonal or a curve sharply bending towards X axis.
Clearly, in figure 7 better performing algorithms like random forests, boosted decision stumps etc.
have their curves rising towards Y-axis marking better performance for them, SMO Decision
Stump etc. are rising diagonally indicate average performance.

6.3.2 Precision/Recall Curves: Precision is the ratio of True Positives to the Sum of True
Positives and False Positives, Recall is the ratio of True Positives to the Sum of True Positives
and False Positives. A Precision/Recall curve bending towards origin is considered to be worst
performances, whereas a curve rising away from origin towards 1 for X and Y axis collectively, is
considered to be better performances. Clearly, algorithms like Random Forests, ADTrees etc. are
rising away from origin indicate better performances, whereas diagonal curves for algorithms like
SMO, ID3 etc. indicate average performances. These graphs are indicating the scenario of Adult
problem in figure 8, curves can dramatically change for other problems depending upon their
results.

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 31

Algorithm
Validation/
Calibration Adult CovType Celegans Droso DS1_100 Letter PenDigits Satellite Shuttle Tic2000 Average

Random-Forest-Bagging Fixed Split 0.8436 0.9804 0.9421 0.9832 0.9796 0.9632 0.9938 0.9485 0.9998 0.9287 0.9563

Random-Forest-Boosting Fixed Split 0.8343 0.9788 0.9452 0.9832 0.9799 0.9671 0.9902 0.9517 0.9997 0.9243 0.9554

Random-Forest Fixed Split 0.8328 0.9774 0.9446 0.9832 0.9788 0.9519 0.9903 0.9412 0.9997 0.9247 0.9525

J48 Fixed Split 0.8533 0.9789 0.9589 0.9832 0.9751 0.9183 0.9718 0.9191 0.9992 0.9384 0.9496

PART Fixed Split 0.8452 0.9758 0.9579 0.9760 0.9785 0.9192 0.9813 0.9301 0.9997 0.9081 0.9472

MultiLayerPerceptron Fixed Split 0.8064 0.9755 0.9775 0.9856 0.9786 0.8906 0.9887 0.9360 0.9986 0.9231 0.9460

IB-k Fixed Split 0.7889 0.9789 0.9304 0.9765 0.9727 0.9715 0.9968 0.9426 0.9991 0.9007 0.9458

REPTree Fixed Split 0.8409 0.9741 0.9579 0.9830 0.9775 0.8901 0.9631 0.9185 0.9982 0.9405 0.9444

ADTree-Boosting Fixed Split 0.8509 0.9691 0.9617 0.9810 0.9776 0.8415 0.9786 0.9275 0.9998 0.9399 0.9428

Random-Forest-Bagging Platt 0.8463 0.9823 0.9420 0.9839 0.9776 0.9597 0.9830 0.8210 0.9994 0.9305 0.9426

Random-Forest-Bagging Cross Val 0.8463 0.9822 0.9420 0.9839 0.9774 0.9594 0.9823 0.8221 0.9995 0.9305 0.9426

Random-Forest-Boosting Cross Val 0.8209 0.9836 0.9447 0.9839 0.9754 0.9613 0.9791 0.8282 0.9994 0.9270 0.9403

Random-Forest Cross Val 0.8449 0.9803 0.9431 0.9839 0.9774 0.9452 0.9783 0.8169 0.9996 0.9274 0.9397

Random-Forest Platt 0.8446 0.9809 0.9437 0.9839 0.9797 0.9468 0.9821 0.8070 0.9995 0.9195 0.9388

Random-Forest-Boosting Platt 0.8209 0.9835 0.9447 0.9839 0.9789 0.9613 0.9815 0.8282 0.9994 0.8946 0.9377

MultiLayerPerceptron Cross Val 0.8170 0.9760 0.9775 0.9856 0.9740 0.8847 0.9825 0.8489 0.9981 0.9324 0.9377

J48 Cross Val 0.8525 0.9807 0.9583 0.9839 0.9724 0.9141 0.9548 0.7991 0.9989 0.9382 0.9353

J48 Platt 0.8525 0.9807 0.9582 0.9839 0.9724 0.9141 0.9548 0.7991 0.9989 0.9382 0.9353

Decision-Table Fixed Split 0.8516 0.9777 0.9421 0.9832 0.9773 0.8487 0.9196 0.9019 0.9989 0.9405 0.9341

PART Cross Val 0.8187 0.9742 0.9571 0.9787 0.9765 0.9113 0.9678 0.8378 0.9991 0.9123 0.9333

PART Platt 0.8184 0.9742 0.9571 0.9787 0.9765 0.9113 0.9678 0.8378 0.9991 0.9123 0.9333

IB-k Cross Val 0.7851 0.9761 0.9306 0.9761 0.9656 0.9706 0.9890 0.8256 0.9990 0.9058 0.9324

ADTree-Boosting Cross Val 0.8550 0.9801 0.9637 0.9821 0.9752 0.8314 0.9676 0.8236 0.9994 0.9384 0.9316

REPTree Cross Val 0.8371 0.9767 0.9569 0.9826 0.9721 0.8869 0.9556 0.8084 0.9990 0.9390 0.9314

REPTree Platt 0.8361 0.9767 0.9569 0.9826 0.9721 0.8860 0.9556 0.8084 0.9990 0.9390 0.9312

MultiLayerPerceptron Platt 0.8166 0.9760 0.9655 0.9220 0.9796 0.8847 0.9825 0.8489 0.9980 0.9367 0.9311

ADTree-Bagging Fixed Split 0.8515 0.9678 0.9634 0.9832 0.9789 0.7568 0.9307 0.9319 0.9996 0.9405 0.9304

IB-k Platt 0.7851 0.9761 0.9161 0.9691 0.9651 0.9703 0.9890 0.8242 0.9990 0.8946 0.9289

ADTree Fixed Split 0.8517 0.9678 0.9581 0.9832 0.9788 0.7404 0.8900 0.8961 0.9997 0.9405 0.9206

ADTree-Bagging Cross Val 0.8538 0.9856 0.9637 0.9842 0.9742 0.7680 0.8979 0.8215 0.9996 0.9390 0.9187

ADTree-Bagging Platt 0.8526 0.9848 0.9546 0.9839 0.9754 0.7614 0.8975 0.8358 0.9985 0.9390 0.9184

ADTree-Boosting Platt 0.8535 0.9801 0.9235 0.9063 0.9490 0.8324 0.9658 0.8306 0.9994 0.9384 0.9179

Decision-Table Cross Val 0.8515 0.9379 0.9420 0.9839 0.9795 0.8318 0.9087 0.8041 0.9982 0.9386 0.9176

Decision-Table Platt 0.8518 0.9382 0.9420 0.9839 0.9795 0.8275 0.9062 0.8073 0.9982 0.9386 0.9173

SimpleLogistic Fixed Split 0.8503 0.9733 0.9772 0.9853 0.9808 0.7321 0.8418 0.9258 0.9585 0.9405 0.9166

SMO Fixed Split 0.8470 0.9725 0.9682 0.9800 0.9805 0.7358 0.8460 0.9269 0.9564 0.9405 0.9154

ADTree Cross Val 0.8522 0.9848 0.9601 0.9836 0.9702 0.7568 0.8773 0.8026 0.9996 0.9392 0.9126

ADTree Platt 0.8507 0.9848 0.9601 0.9839 0.9713 0.7416 0.8730 0.8082 0.9985 0.9390 0.9111

Decision-Stump-Boosting Fixed Split 0.8420 0.9556 0.9567 0.9832 0.9713 0.6992 0.8518 0.9004 0.9980 0.9405 0.9098

SimpleLogistic Cross Val 0.8491 0.9819 0.9745 0.9850 0.9824 0.7237 0.8289 0.8370 0.9594 0.9388 0.9061

ID3 Fixed Split 0.7967 0.9741 0.9411 0.9712 0.9637 0.8343 0.7937 0.8719 0.9990 0.9054 0.9051

BayesNetGenerator Platt 0.8534 0.9789 0.9459 0.9464 0.9796 0.7705 0.8211 0.7907 0.9937 0.9370 0.9017

Decision-Stump-Boosting Cross Val 0.8421 0.9781 0.9578 0.9831 0.9582 0.6962 0.8408 0.8122 0.9973 0.9390 0.9005

BayesNetGenerator Cross Val 0.8515 0.9811 0.9781 0.9772 0.9786 0.7605 0.8233 0.7907 0.9931 0.8675 0.9002

BayesNetGenerator Fixed Split 0.8308 0.9385 0.9782 0.9780 0.9765 0.7703 0.8296 0.8725 0.9918 0.8345 0.9001

SMO Platt 0.8038 0.9334 0.9686 0.9814 0.9830 0.7299 0.8306 0.8565 0.9469 0.9390 0.8973

Decision-Stump-Boosting Platt 0.8417 0.9781 0.9372 0.9704 0.9581 0.6962 0.8358 0.8148 0.9984 0.9390 0.8970

SimpleLogistic Platt 0.8269 0.9792 0.9379 0.9577 0.9775 0.7243 0.8263 0.8151 0.9182 0.9380 0.8901

SMO Cross Val 0.8038 0.9334 0.9686 0.9814 0.9830 0.7299 0.8306 0.8565 0.8565 0.9390 0.8883

Decision-Stump-Bagging Fixed Split 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7176 0.8789 0.9266 0.9405 0.8713

Decision-Stump Fixed Split 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7101 0.8789 0.9266 0.9405 0.8705

Naïve-Bayes-Simple Fixed Split 0.8332 0.9382 0.9783 0.9775 0.9430 0.7157 0.7762 0.8771 0.8956 0.7553 0.8690

Decision-Stump Cross Val 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660

Decision-Stump Platt 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660

Decision-Stump-Bagging Platt 0.7596 0.9524 0.9420 0.9839 0.9572 0.6678 0.7063 0.8230 0.9279 0.9390 0.8659

Decision-Stump-Bagging Cross Val 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8105 0.9279 0.9390 0.8647

Naïve-Bayes-Simple Cross Val 0.8273 0.9811 0.9782 0.9767 0.9540 0.7040 0.7547 0.8160 0.8974 0.7553 0.8645

ID3 Platt 0.7864 0.9770 0.9439 0.9659 0.9475 0.6435 0.8059 0.8082 0.8279 0.9231 0.8629

Naïve-Bayes-Simple Platt 0.8273 0.9788 0.9451 0.9449 0.9713 0.7040 0.7552 0.8160 0.8974 0.7721 0.8612

LibSVM Fixed Split 0.7609 0.9671 0.9421 0.9832 0.9815 0.9713 0.5045 0.5525 0.9482 0.9399 0.8551

ID3 Cross Val 0.7866 0.9774 0.9439 0.9659 0.9476 0.5029 0.8059 0.8082 0.8279 0.9204 0.8487

LibSVM Platt 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.9427 0.9390 0.8373

LibSVM Cross Val 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.3584 0.9390 0.7788

ZeroR Fixed Split 0.7608 0.8286 0.9421 0.9832 0.9699 0.5013 0.5045 0.5525 0.7887 0.9405 0.7772

ZeroR Cross Val 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828

ZeroR Platt 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828

Table 3: Accuracy of all algorithms over ten problems and their mean performances in descending order

Algorithm Val/Cali Abs_Err Rel_Err RMSE Sqr_Err Corr. Pre_Avg AUC Margin Kappa Preci. Recall LIFT Fallout F_Mea. Acc.

Random-Forest-Bagging FixedSplit 0.078 0.078 0.166 0.034 0.738* 0.202 0.934 0.033 0.583 0.836* 0.578 6.655* 0.016 0.758* 0.956

Random-Forest-Boosting FixedSplit 0.047 0.047 0.183 0.043 0.682* 0.202 0.896 0.020 0.595 0.843* 0.587 7.589* 0.016 0.689* 0.955

Random-Forest FixedSplit 0.076 0.076 0.174 0.038 0.667* 0.200 0.892 0.000 0.581 0.834* 0.574 7.506* 0.018 0.676* 0.952

J48 FixedSplit 0.069 0.069 0.192 0.044 0.688* 0.206 0.824 0.001 0.616 0.768* 0.623 5.964* 0.026 0.721* 0.950

PART FixedSplit 0.062 0.062 0.194 0.046 0.655 0.212 0.851 0.000 0.652 0.730 0.661 7.239 0.029 0.688 0.947

MultiLayerPerceptron FixedSplit 0.057 0.057 0.187 0.046 0.686 0.197 0.927 0.000 0.676 0.784 0.675 9.462 0.022 0.709 0.946

IB-k FixedSplit 0.056 0.056 0.199 0.054 0.613 0.219 0.819 0.000 0.612 0.658 0.641 5.350 0.033 0.647 0.946

REPTree FixedSplit 0.080 0.080 0.197 0.046 0.685* 0.203 0.878 0.006 0.603 0.820* 0.608 9.243* 0.028 0.711* 0.944

ADTree-Boosting FixedSplit 0.077 0.077 0.186 0.043 0.645 0.217 0.931 0.002 0.643 0.712 0.667 7.755 0.041 0.760* 0.943

Random-Forest-Bagging Platt 0.095 0.095 0.191 0.046 0.684* 0.190 0.922 0.021 0.533 0.804* 0.550 7.732* 0.034 0.708* 0.943

Random-Forest-Bagging Cross Val 0.094 0.094 0.188 0.045 0.683* 0.190 0.922 0.018 0.532 0.804* 0.548 7.722* 0.033 0.706* 0.943

Random-Forest-Boosting Cross Val 0.063 0.063 0.209 0.058 0.613* 0.182 0.879 0.000 0.519 0.831* 0.527 8.732* 0.029 0.613* 0.940

Random-Forest Cross Val 0.091 0.091 0.194 0.048 0.617* 0.189 0.874 0.000 0.535 0.797* 0.551 8.157* 0.035 0.635* 0.940

Random-Forest Platt 0.091 0.091 0.194 0.048 0.569 0.198 0.874 0.000 0.550 0.702 0.573 7.147 0.042 0.655* 0.939

Random-Forest-Boosting Platt 0.069 0.069 0.211 0.060 0.633* 0.188 0.879 0.001 0.545 0.812* 0.558 8.148* 0.033 0.646* 0.938

MultiLayerPerceptron Cross Val 0.067 0.067 0.205 0.055 0.655 0.193 0.921 0.000 0.651 0.713 0.688 9.310 0.039 0.692 0.938

J48 Cross Val 0.082 0.082 0.215 0.058 0.653* 0.199 0.809 0.002 0.583 0.733* 0.623 6.507* 0.046 0.697* 0.935

J48 Platt 0.082 0.082 0.215 0.058 0.653* 0.199 0.809 0.002 0.583 0.732* 0.624 6.496* 0.046 0.697* 0.935

Decision-Table FixedSplit 0.091 0.091 0.215 0.056 0.760* 0.199 0.784 0.013 0.524 0.892* 0.541 6.731* 0.038 0.810* 0.934

PART Cross Val 0.074 0.074 0.219 0.061 0.611 0.184 0.819 0.000 0.600 0.713 0.615 7.903 0.034 0.642 0.933

PART Platt 0.074 0.074 0.219 0.061 0.611 0.184 0.819 0.000 0.600 0.713 0.615 7.900 0.034 0.642 0.933

IB-k Cross Val 0.070 0.070 0.225 0.068 0.575 0.212 0.804 0.000 0.572 0.612 0.632 5.612 0.052 0.617 0.932

ADTree-Boosting Cross Val 0.088 0.088 0.205 0.054 0.608 0.197 0.915 0.003 0.600 0.717 0.627 8.891 0.049 0.648 0.932

REPTree Cross Val 0.090 0.090 0.214 0.057 0.658* 0.201 0.866 0.006 0.587 0.729* 0.631 8.442* 0.051 0.705* 0.931

REPTree Platt 0.090 0.090 0.214 0.057 0.659* 0.202 0.866 0.006 0.588 0.728* 0.633 8.434* 0.052 0.706* 0.931

MultiLayerPerceptron Platt 0.099 0.099 0.219 0.057 0.640 0.201 0.921 0.001 0.624 0.670 0.736 6.983 0.046 0.666 0.931

ADTree-Bagging FixedSplit 0.155 0.155 0.216 0.058 0.735* 0.212 0.928 0.043 0.578 0.868* 0.604 7.704* 0.054 0.789* 0.930

IB-k Platt 0.091 0.091 0.229 0.068 0.580 0.217 0.805 0.015 0.577 0.604 0.651 5.415 0.056 0.625 0.929

ADTree FixedSplit 0.160 0.160 0.226 0.063 0.703* 0.197 0.909 0.033 0.554 0.854* 0.574 7.540* 0.047 0.766* 0.921

ADTree-Bagging Cross Val 0.164 0.164 0.233 0.067 0.629* 0.212 0.915 0.027 0.549 0.769* 0.611 10.975* 0.078 0.681* 0.919

ADTree-Bagging Platt 0.171 0.171 0.238 0.067 0.636* 0.212 0.915 0.041 0.551 0.768* 0.624 10.670* 0.078 0.683* 0.918

ADTree-Boosting Platt 0.138 0.138 0.232 0.063 0.591 0.216 0.915 0.019 0.572 0.625 0.720 5.406 0.066 0.625 0.918

Decision-Table Cross Val 0.109 0.109 0.243 0.071 0.616* 0.193 0.786 0.008 0.480 0.739* 0.542 6.739* 0.057 0.669* 0.918

Decision-Table Platt 0.109 0.109 0.243 0.071 0.616* 0.197 0.786 0.008 0.480 0.736* 0.546 6.733* 0.061 0.670* 0.917

SimpleLogistic FixedSplit 0.163 0.163 0.251 0.080 0.682* 0.203 0.894 0.051 0.605 0.828* 0.627 11.102* 0.056 0.745* 0.917

SMO FixedSplit 0.085 0.085 0.265 0.085 0.674* 0.203 0.791 0.000 0.601 0.794* 0.639 9.390* 0.057 0.740* 0.915

ADTree Cross Val 0.166 0.166 0.240 0.070 0.555 0.207 0.898 0.016 0.541 0.716 0.604 9.097 0.077 0.610 0.913

ADTree Platt 0.179 0.179 0.247 0.073 0.704* 0.218 0.898 0.036 0.486 0.791* 0.571 5.199* 0.092 0.794* 0.911

Decision-Stump-Boosting FixedSplit 0.134 0.134 0.230 0.065 0.627* 0.182 0.891 0.015 0.484 0.858* 0.507 7.824* 0.042 0.683* 0.910

SimpleLogistic Cross Val 0.133 0.133 0.237 0.068 0.583 0.194 0.904 0.002 0.572 0.741 0.615 10.959 0.072 0.646 0.906

ID3 FixedSplit 0.148 0.148 0.342 0.147 0.527 0.188 0.758 0.000 0.522 0.636 0.557 4.928 0.044 0.590 0.905

BayesNetGenerator Platt 0.154 0.154 0.255 0.078 0.587 0.208 0.911 0.009 0.561 0.686 0.691 8.212 0.082 0.635 0.902

Decision-Stump-Boosting Cross Val 0.142 0.142 0.245 0.075 0.578* 0.180 0.884 0.010 0.511 0.702* 0.561 8.087* 0.062 0.647* 0.900

BayesNetGenerator Cross Val 0.113 0.113 0.249 0.080 0.621 0.215 0.911 0.000 0.615 0.690 0.715 8.804 0.087 0.693 0.900

BayesNetGenerator FixedSplit 0.112 0.112 0.251 0.076 0.630 0.239 0.919 0.000 0.625 0.685 0.740 7.883 0.087 0.702 0.900

SMO Platt 0.108 0.108 0.293 0.102 0.609* 0.184 0.767 0.006 0.535 0.736* 0.603 9.765* 0.069 0.674* 0.897

Decision-Stump-Boosting Platt 0.182 0.182 0.263 0.079 0.587* 0.190 0.884 0.030 0.519 0.655* 0.623 6.355* 0.069 0.658* 0.897

SimpleLogistic Platt 0.188 0.188 0.266 0.079 0.546 0.192 0.904 0.020 0.523 0.655 0.644 7.325 0.079 0.602 0.890

SMO Cross Val 0.112 0.112 0.308 0.112 0.594* 0.207 0.763 0.000 0.521 0.717* 0.610 9.509* 0.083 0.668* 0.888

Decision-Stump-Bagging FixedSplit 0.188 0.188 0.282 0.091 0.522* 0.179 0.810 0.074 0.309 0.756* 0.402 2.503* 0.073 0.771* 0.871

Decision-Stump FixedSplit 0.187 0.187 0.285 0.094 0.623* 0.175 0.774 0.082 0.308 0.759* 0.397 2.508* 0.070 0.767* 0.871

Naïve-Bayes-Simple FixedSplit 0.143 0.143 0.303 0.105 0.557 0.238 0.900 0.000 0.545 0.629 0.702 6.546 0.108 0.640 0.869

Decision-Stump Cross Val 0.211 0.211 0.305 0.106 0.516* 0.161 0.742 0.073 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.866

Decision-Stump Platt 0.225 0.225 0.308 0.107 0.516* 0.161 0.742 0.099 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.866

Decision-Stump-Bagging Platt 0.225 0.225 0.307 0.106 0.516* 0.161 0.756 0.098 0.300 0.696* 0.376 5.240* 0.078 0.633* 0.866

Decision-Stump-Bagging Cross Val 0.212 0.212 0.304 0.105 0.514* 0.164 0.756 0.075 0.298 0.692* 0.379 5.268* 0.081 0.632* 0.865

Naïve-Bayes-Simple Cross Val 0.145 0.145 0.303 0.110 0.540 0.219 0.890 0.000 0.527 0.631 0.674 7.458 0.114 0.626 0.864

ID3 Platt 0.137 0.137 0.342 0.137 0.398 0.123 0.683 0.000 0.372 0.593 0.404 4.895 0.038 0.450 0.863

Naïve-Bayes-Simple Platt 0.183 0.183 0.305 0.106 0.482 0.218 0.890 0.008 0.456 0.657 0.641 8.310 0.113 0.555 0.861

LibSVM FixedSplit 0.145 0.145 0.319 0.145 0.474* 0.084 0.652 0.000 0.325 0.761* 0.308 8.570* 0.004 0.557* 0.855

ID3 Cross Val 0.337 0.337 0.518 0.337 0.401* 0.104 0.669 0.000 0.343 0.559* 0.370 5.225* 0.034 0.447* 0.849

LibSVM Platt 0.163 0.163 0.328 0.163 0.661* 0.175 0.654 0.000 0.326 0.770* 0.413 8.217* 0.104 0.646* 0.837

LibSVM Cross Val 0.221 0.221 0.384 0.221 0.620* 0.259 0.618 0.000 0.246 0.663* 0.440 7.596* 0.204 0.593* 0.779

ZeroR FixedSplit 0.279 0.279 0.348 0.139 NaN* 0.100 0.500 0.221 0.000 0.501* 0.100 1* 0.100 0.668* 0.777

ZeroR Cross Val 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.683

ZeroR Platt 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.683

 Table 4: Average performances for each learning algorithm by metric (average over ten problems)

Algorithm Val./Cal. Adult CovType Celegans Droso DS1_100 Letter PenDigits Satellite Shuttle Tic2000 Average

IB-k FixedSplit 0.7889 0.9789 0.9304 0.9765 0.9727 0.9715 0.9968 0.9426 0.9991 0.9007 0.9458

Decision Table LogitBoost 0.8449 0.9797 0.9670 0.9837 0.9762 0.9156 0.9594 0.8032 0.9798 0.9349 0.9344

Decision-Table FixedSplit 0.8516 0.9777 0.9421 0.9832 0.9773 0.8487 0.9196 0.9019 0.9989 0.9405 0.9341

Ibk LogitBoost 0.7833 0.9765 0.9304 0.9765 0.9672 0.9717 0.9898 0.8294 0.9992 0.9054 0.9330

Ibk AddReg 0.7834 0.9673 0.9383 0.9813 0.9690 0.9710 0.9908 0.8250 0.9992 0.9036 0.9329

IB-k CrossVal 0.7851 0.9761 0.9306 0.9761 0.9656 0.9706 0.9890 0.8256 0.9990 0.9058 0.9324

IB-k PlattScaling 0.7851 0.9761 0.9161 0.9691 0.9651 0.9703 0.9890 0.8242 0.9990 0.8946 0.9289

Decision-Table CrossVal 0.8515 0.9379 0.9420 0.9839 0.9795 0.8318 0.9087 0.8041 0.9982 0.9386 0.9176

Decision-Table PlattScaling 0.8518 0.9382 0.9420 0.9839 0.9795 0.8275 0.9062 0.8073 0.9982 0.9386 0.9173

Decision Stump LogitBoost 0.8519 0.9784 0.9567 0.9841 0.9700 0.7383 0.8650 0.8125 0.9984 0.9390 0.9094

Decision-Stump FixedSplit 0.7608 0.9220 0.9421 0.9832 0.9699 0.6712 0.7101 0.8789 0.9266 0.9405 0.8705

Decision-Stump CrossVal 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660

Decision-Stump PlattScaling 0.7596 0.9524 0.9420 0.9839 0.9581 0.6678 0.7063 0.8230 0.9279 0.9390 0.8660

Decision Table AddReg 0.7802 0.9437 0.9487 0.9839 0.9704 0.6745 0.7934 0.6885 0.9276 0.9382 0.8649

LibSVM FixedSplit 0.7609 0.9671 0.9421 0.9832 0.9815 0.9713 0.5045 0.5525 0.9482 0.9399 0.8551

LibSVM PlattScaling 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.9427 0.9390 0.8373

LibSVM LogitBoost 0.7595 0.9743 0.9432 0.9832 0.9813 0.9772 0.5117 0.3584 0.9490 0.9224 0.8360

Decision Stump AddReg 0.7888 0.9249 0.9420 0.9839 0.9713 0.5215 0.6225 0.8277 0.7885 0.9390 0.8310

LibSVM AddReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

ZeroR AddReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

Decision Stump IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

Decision Table IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

Ibk IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

LibSVM IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

ZeroR IsoReg 0.7596 0.9235 0.9420 0.9839 0.9713 0.5029 0.5113 0.6416 0.7885 0.9390 0.7964

LibSVM CrossVal 0.7597 0.9809 0.9420 0.9839 0.9831 0.9717 0.5113 0.3584 0.3584 0.9390 0.7788

ZeroR FixedSplit 0.7608 0.8286 0.9421 0.9832 0.9699 0.5013 0.5045 0.5525 0.7887 0.9405 0.7772

ZeroR CrossVal 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828

ZeroR PlattScaling 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828

ZeroR LogitBoost 0.7596 0.0765 0.9420 0.9839 0.9713 0.4971 0.5113 0.3584 0.7885 0.9390 0.6828
Table 5: Accuracy of selected algorithms across Fixed Split, Cross Validation and all four types of Calibration methods over ten problems and their mean performances in descending order

Algorithm Val/Cal. Abs_Err Rel_Err RMSE Sqr_Err Corr. Pre_Avg AUC Margin Kappa Preci. Recall LIFT Fallout F_Mea. Acc.

IB-k FixedSplit 0.056 0.056 0.199 0.054 0.613 0.219 0.819 0.000 0.612 0.658 0.641 5.350 0.033 0.647 0.9458

Decision Table LogitBoost 0.089 0.089 0.205 0.050 0.622 0.208 0.917 0.002 0.604 0.755 0.621 9.641 0.047 0.649 0.9344

Decision-Table FixedSplit 0.091 0.091 0.215 0.056 0.760* 0.199 0.784 0.013 0.524 0.892* 0.541 6.731* 0.038 0.810* 0.9341

Ibk LogitBoost 0.068 0.068 0.223 0.067 0.577 0.211 0.800 0.000 0.574 0.615 0.631 5.682 0.051 0.619 0.9330

Ibk AddReg 0.068 Inf + 0.220 0.066 0.570 0.211 0.000 1.000 0.552 0.564 0.624 5.108 0.069 0.565 0.9329

IB-k CrossVal 0.070 0.070 0.225 0.068 0.575 0.212 0.804 0.000 0.572 0.612 0.632 5.612 0.052 0.617 0.9324

IB-k PlattScaling 0.091 0.091 0.229 0.068 0.580 0.217 0.805 0.015 0.577 0.604 0.651 5.415 0.056 0.625 0.9289

Decision-Table CrossVal 0.109 0.109 0.243 0.071 0.616* 0.193 0.786 0.008 0.480 0.739* 0.542 6.739* 0.057 0.669* 0.9176

Decision-Table PlattScaling 0.109 0.109 0.243 0.071 0.616* 0.197 0.786 0.008 0.480 0.736* 0.546 6.733* 0.061 0.670* 0.9173

Decision Stump LogitBoost 0.138 0.138 0.238 0.071 0.534 0.187 0.893 0.005 0.516 0.730 0.562 10.203 0.062 0.583 0.9094

Decision-Stump FixedSplit 0.187 0.187 0.285 0.094 0.623* 0.175 0.774 0.082 0.308 0.759* 0.397 2.508* 0.070 0.767* 0.8705

Decision-Stump CrossVal 0.211 0.211 0.305 0.106 0.516* 0.161 0.742 0.073 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.8660

Decision-Stump PlattScaling 0.225 0.225 0.308 0.107 0.516* 0.161 0.742 0.099 0.300 0.697* 0.376 5.283* 0.078 0.633* 0.8660

Decision Table AddReg 0.122 Inf + 0.238 0.067 0.600 0.215 0.000 1.000 0.274 0.204 1.000 1.000 1.000 0.304 0.8649

LibSVM FixedSplit 0.145 0.145 0.319 0.145 0.474* 0.084 0.652 0.000 0.325 0.761* 0.308 8.570* 0.004 0.557* 0.8551

LibSVM PlattScaling 0.163 0.163 0.328 0.163 0.661* 0.175 0.654 0.000 0.326 0.770* 0.413 8.217* 0.104 0.646* 0.8373

LibSVM LogitBoost 0.166 0.166 0.311 0.142 0.439* 0.179 0.695 0.024 0.336 0.698* 0.426 7.067* 0.107 0.445* 0.8360

Decision Stump AddReg 0.167 Inf + 0.260 0.079 0.542 0.223 0.000 1.000 0.108 0.204 1.000 1.000 1.000 0.304 0.8310

LibSVM AddReg 0.485 Inf + 0.526 0.341 1.38E-07* 0.078 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

ZeroR AddReg 0.485 Inf + 0.526 0.341 1.38E-07* 0.078 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

Decision Stump IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

Decision Table IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

Ibk IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

LibSVM IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

ZeroR IsoReg 0.263 Inf + 0.366 0.157 1.02E-07* 0.271 0.000 1.000 0.000 0.204 1.000 1.000 1.000 0.304 0.7964

LibSVM CrossVal 0.221 0.221 0.384 0.221 0.620* 0.259 0.618 0.000 0.246 0.663* 0.440 7.596* 0.204 0.593* 0.7788

ZeroR FixedSplit 0.279 0.279 0.348 0.139 NaN* 0.100 0.500 0.221 0.000 0.501* 0.100 1* 0.100 0.668* 0.7772

ZeroR CrossVal 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828

ZeroR PlattScaling 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828

ZeroR LogitBoost 0.307 0.307 0.366 0.157 NaN* 0.300 0.500 0.250 0.000 0.311* 0.300 1* 0.300 0.445* 0.6828
Table 6: Average performances for selected learning algorithm by metric across Fixed Split, Cross Validation and all four types of Calibration methods (average over ten problems)

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 34

 AdaBoostM1 ADTree AdaBoostM1 Decision Stump AdaBoostM1 Random Forest Bagging ADTree Bagging Decision Stump

Bagging Random Forest Bayes Net Generator Decision Stump Decision Table IBk

 ID3 J48 Multi Layer Perceptron Naïve Bayes Simple PART

 REPTree Random Forest ADTree Simple Logistic SMO

Figure 7: ROC graphs of twenty algorithms for Adult problem (X Axis-False Positive Rate, Y-Axis True Positive Rate).

AdaBoostM1 Random Forest AdaBoostM1 ADTree AdaBoostM1 Decision Stump Bagging ADTree Bagging Decision Stump

 Bagging Random Forest Bayes Net Generator Decision Stump Decision Table IBk

ID3 J48 Multi Layer Perceptron Naïve Bayes Simple PART

ADTree REPTree Random Forest Simple Logistic SMO

Figure 8: Precision/Recall graphs of twenty algorithms for Adult problem (X Axis-Recall, Y Axis-Precision).

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 35

7. Comparison of results

Results of supervised learning techniques depend upon many things like type of dataset, number of
instances in dataset, algorithm used for testing, process used for producing output etc. Data mining is a
study of knowledge discovery in large datasets. First of all we present the comparison of different
datasets based on average accuracy through different processes followed by the performance of different
algorithm based on their average accuracy over three processes of major study. Figure 9 includes
average performance of different problems from major study. Droso problem has performed best with an
average accuracy of 97.78%, whereas Letter problem has performed worst with average performance
with 80.57% average accuracy.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

A
du

lt

C
ovT

yp
e

C
ele

ga
ns

D
ro

so

D
S
1_

10
0

Le
tte

r

Pen
D
ig
its

S
at

el
lit
e

Shu
ttl
e

Tic
200

0

Avg. Accuracy

Figure 9: Average performance of different processes for different problems

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
dd

R
eg

C
ro

ss
V
al

F
ix
ed

S
pl
it

Is
oR

eg

Lo
gi
tB

oo
st

P
la
ttS

ca
lin

g

Average

Performance

Figure 10: Average of average performances from five algorithms over all ten datasets included in minor study.

Figure 10 includes the average performance of all the processes from the average of five algorithms over all ten
datasets included in minor study. Fixed split is highest performer, but its performance is over fitted, whereas post
pruning through isotonic regression is least performer with 79.64% performance. Cross Validation and other three
post pruning methods have pruned the models more appropriately. Among these four LogitBoost has performed
best, whereas cross validation has performed least. Reason behind low performance of cross validation is exclusion
of one tenth of training dataset while processing final model.

Other dimension of comparison includes two comprehensive studies that have been performed yet. First
one is Statlog (King et al. [15]) and other is recent one (Caruana et al. [7]). One of the major differences
between earlier two studies and current study, is about the selection of datasets i. e. earlier studies were
mostly based on small datasets, whereas present study includes most of the datasets that are bigger in
size and simple rule of probability states that increasing number of instances produces more accurate
results and minimizes the chances of deviation. When Statlog study was conducted, algorithms like

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 36

Random Forest etc. were not being developed and data mining was in its initial phase of development.
During last two decades data mining field has become mature enough. Statlog study presented the
results for individual datasets. We compiled and processed the data for comparison and found that
piecewise linear classifier DIPOL92 to be performing best for their tests, whereas Decision Tree was
ranked second followed by the Back Propagation and kNN (k Nearest Neighbor) etc. Clearly, the absence
of better algorithms like Random Forest at that time kept the high quality performances far away from
current standards. Today, we have far better results than the results presented in Statlog.

Other recently conducted study (Caruana et al. [7]) presented the results that Boosted decision tree with
platt scaling algorithm is the best performer, whereas Random Forest with platt scaling is the second best
performer. Bagging and Boosting was not applied upon Random Forest. Experiments were performed
through cross validation, Platt Scaling and Isotonic Regression. Top performers were Boosted Decision
Tree, Random Forest, Bagged decision tree, SVM (Support Vector Machine), ANN (Artificial Neural
Network) etc. Results of our study have marked Bagged Random Forest to be the best performer
followed by J48, PART, Multi Layer Perceptron and IBk etc.

Finally results of present study are compared with the best known results ever claimed for problems
included in study. For adult dataset best possible result is claimed for FSS Naïve Bayes in the description
of datasets of UCI repositories (Blake et al. [5]) having 85.95% accuracy, where 32561 instances were
used for training and 16281 instances for testing. Present study has used 9768 instances for training and
39074 instances for testing and best result is 85.50% for ADTree-Boosting algorithm with cross validation,
which confirms our claim that training with twenty percent training instances for large datasets achieve
significant maturity in results. For other problems as well results are up to the mark with best possible
results ever being obtained.

8. Conclusion and Future Directions

Data mining has marked substantial progress in last two decades. Learning methods such as boosting,
random forests, bagging and IBk etc. have achieved excellent performance that would have been difficult
to obtain just fifteen years ago. Calibration with either Platt's method, Logit Boost, Additive Regression or
Isotonic Regression is remarkably effective at obtaining excellent performance on the probability metrics
from learning algorithms that performed well on the ordering metrics. Calibration dramatically improves
the performance of Random Forests, ADTree, Decision stumps and Naive Bayes etc. and provides a
noticeable improvement for random forests. With excellent performance over all fifteen metrics, calibrated
Random Forest trees were the best learning algorithms overall. ADTree, IBk, J48 and MultiLayer
Perceotron were quite close to it. Algorithm ZeroR has registered worst performance, but has registered a
little improvement through Additive Regression based calibration. As the environmental factors like type
of problems, size of dataset etc. may affect the performance of the algorithm, even better algorithms
sometimes may result in bad results. Even after having a significant margin between best and worst
performances, there exist chances for improvement. Authors will continue to work for the improvement of
the processing environment of badly performing algorithms and for the improvement of the best
algorithms as well as for the development of new algorithms for the field.

9. References

1. Atlas L., Connor J., and Park D. “A performance comparison of trained multi-layer perceptrons and

trained classification trees”. In Systems, man and cybernetics: proceedings of the 1989 IEEE
international conference, pages 915–920, Cambridge, Ma. Hyatt Regency, 1991

2. Ayer M., Brunk H., Ewing G., Reid W. & Silverman E. “An empirical distribution function for sampling
with incomplete information”. Annals of Mathematical Statistics, 5, 641-647, 1955

3. Bauer E. and Kohavi R. “An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants”. Machine Learning, 36, 1999

4. Berry C. C. “The kappa statistic”. Journal of the American Medical Association, Linguistics (COLING-
90), volume 2, pages 251-256, 1992

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 37

5. Blake C. and Merz C., UCI repository of machine learning databases, 1998

6. Breiman L., Friedman J. H., Olshen R. A. and Stone C. J. “Classification and Regression Trees”.

Wadsworth and Brooks, Monterey, CA., 1984

7. Caruana Rich and Niculescu-Mizil Alexandru. “An Empirical Comparison of Supervised Learning
Algorithms”. Proceedings of the 23 rd International Conference on Machine Learning, Pittsburgh, PA,
2006

8. Cooper G. F., Aliferis C. F., Ambrosino R., Aronis J., Buchanan B. G., Caruana R., Fine M. J.,
Glymour C., Gordon G., Hanusa B. H., Janosky J. E., Meek C., Mitchell T., Richardson T. and Spirtes
P. “An evaluation of machine learning methods for predicting pneumonia mortality”. Artificial
Intelligence in Medicine, 9, 1997

9. Fahrmeir, L., Haussler, W., and Tutz, G. “Diskriminanz analyse”. In Fahrmeir, L. and Hamerle, A.,
editors, Multivariate statistische Verfahren. Verlag de Gruyter, Berlin, 1984

10. Fayyad U., Piatetsky-Shapiro G. and P. Smyth. “The KDD process for extracting useful knowledge
from volumes of data”. CACM 39 (11), pp. 27-34, 1996

11. Friedman J., Hastie T. and Tibshirani R. “Additive Logistic Regression: a Statistical View of Boosting”.
Stanford University,1998

12. Giudici P. “Applied data mining”. John Wiley and Sons. New York, 2003

13. Gorman R. P. and Sejnowski T. J. “Analysis of hidden units in a layered network trained to classify
sonar targets”. Neural networks, 1 (Part 1):75–89, 1988

14. Hofmann H. J. “Die anwendung des cart-verfahrens zur statistischen bonitatsanalyse von
konsumentenkrediten”. Zeitschrift fur Betriebswirtschaft, 60:941–962, 1990

15. King R., Feng C. and Shutherland A. “Statlog: comparison of classi_cation algorithms on large real
world problems”. Applied Artificial Intelligence, 9, 1995

16. Kirkwood C., Andrews B. and Mowforth P. “Automatic detection of gait events: a case study using
inductive learning techniques”. Journal of biomedical engineering, 11(23):511–516, 1989

17. Komarek P., Gray A., Liu T. and Moore A. “High Dimensional Probabilistic Classification for Drug
Discovery”, Biostatics, COMPSTAT, 2004

18. LeCun Y., Jackel L. D., Bottou L., Brunot A., Cortes C., Denker J. S., Drucker H., Guyon I., Muller U.
A., Sackinger E., Simard P. and Vapnik V. “Comparison of learning algorithms for handwritten digit
recognition”. International Conference on Artificial Neural Networks (pp. 53{60).Paris, 1995

19. Lim T. S., Loh W.-Y. and Shih Y. S. “A comparison of prediction accuracy, complexity, and training
time of thirty-three old and new classification algorithms”. Machine Learning, 40, 203-228, 2000

20. Mitchell T., Buchanan B., DeJon G., Dietterich T., Rosenbloom P. and Waibel A. "Machine Learning".
Annual Review of Computer Science, vol. 4, pp. 417-433, 1990

21. Niculescu-Mizil A. and Caruana R. “Predicting good probabilities with supervised learning”. Proc.
22nd International Conference on Machine Learning (ICML'05), 2005

22. Nishisato S. “Analysis of Categorical Data: Dual Scaling and its Applications”. University of Toronto
Press, Toronto, 1980

23. Perlich C., Provost F. and Simono J. S. “Tree induction vs. logistic regression: a learning-curve
analysis”. J. Mach. Learn. Res., 4, 211-255, 2003

Sanjeev Manchanda, Mayank Dave and S. B. Singh

International Journal of Engineering, Volume (1) : Issue (1) 38

24. Platt J. “Probabilistic outputs for support vector machines and comparison to regularized likelihood

methods”. Adv. in Large Margin Classifiers, 1999

25. Provost F. and Domingos P. “Tree induction for probability-based rankings”. Machine Learning, 2003

26. Provost Foster J. and Kohavi Ron, “On Applied Research in Machine Learning”. Machine Learning 30
(2-3): 127-132, 1998

27. Provost F., Jensen D. and Oates T. “Efficient progressive sampling”. Fifth ACM SIGKDD,
International Conference on Knowledge Discovery and Data Mining. San Diego, USA. 1999

28. Ripley B. “Statistical aspects of neural networks”. Chaos and Networks - Statistical and Probabilistic
Aspects. Chapman and Hall, 1993

29. Robertson T., Wright F. and Dykstra R. “Order restricted statistical inference”. John Wiley and Sons,
New York, 1988

30. Shadmehr R. and D’Argenio Z. “A comparison of a neural network based estimator and two statistical
estimators in a sparse and noisy environment”. In IJCNN-90: proceedings of the international joint
conference on neural networks, pages 289–292, Ann Arbor, MI. IEEE Neural Networks Council, 1990

31. Sonnenburg S, Rätsch G. and Schäfer C. “Learning interpretable SVMs for biological sequence
classification”. Research in Computational Molecular Biology, Springer Verlag, pages 389-407, 2005

32. Spikovska L. and Reid M. B., “An empirical comparison of id3 and honns for distortion invariant object
recognition”. In TAI-90: tools for artificial intelligence: proceedings of the 2nd international IEEE
conference, Los Alamitos, CA. IEEE Computer Society Press, 1990

33. Witten I. H. and Frank E. “Data Mining: Practical machine learning tools and techniques with java
implementations”. Morgan Kaufmann, 2000

34. Yoav Freund, Robert E. Schapire. “Experiments with a new boosting algorithm”. Thirteenth
International Conference on Machine Learning, San Francisco, 148-156, 1996

35. Zadrozny B. and Elkan C. “Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers”. ICML, 2001

36. Zadrozny B. and Elkan C. “Transforming classifier scores into accurate multi-class probability
estimates”. KDD, 2002

