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Abstract 
 
This paper explores Reliability Based Design Optimization (RBDO) technique for finding optimal 
concrete mixture compositions that are less sensitive to uncertainties involved in concrete mix 
design process. The optimization problem is formulated to determine optimal concrete mix 
parameters, namely, water content (w), fine aggregate content (fa), coarse aggregate content 
(ca) and cement content (c). This is achieved by minimizing the cost of concrete for a given 
compressive strength and target reliability. The compressive strength is considered for 28 days 
and 56 days curing periods. Compressive strength models are developed using Ordinary Least 
Square Regression (OLSR) and Principal Component Regression (PCR) techniques. SPSS 12.0 
and MATLAB 5.3 are used to develop these models. An attempt has also been made to 
demonstrate the effect of prediction models on optimal concrete mix parameters. The RBDO 
problems are solved using Sequential Optimization and Reliability Assessment (SORA) method 
which is implemented using Altair Hyperstudy 10.0. Optimal mixes for a wide range of target 
compressive strengths and different reliability levels are reported. It is seen that optimization 
results based on PCR models are more reliable than the results obtained using OLSR models. 
 
Keywords: Reliability, Concrete, Optimization, Principal Component Regression. 

 
 
1. INTRODUCTION 

Concrete stands as the foremost choice for construction worldwide, owing to its versatility, 
longevity, and cost-effectiveness. Concrete mixture design involves meticulously selecting the 
type and amount of constituents to design a concrete mixture that satisfies precise design criteria 
for a given purpose (DeRousseau et al., 2018). Hence, it becomes crucial to strike a balance 
between competing design demands to maximize the efficient utilization of natural resources. 
 
Optimization plays a key role in determining the optimum concrete mixture composition that 
meets a given set of requirements. Yeh (1999, 2003, 2007, and 2009) attained optimal concrete 
mix proportions meeting specific design requirements at minimum cost. Tensile strength and 
ductility for a given compressive strength of fibre reinforced concrete mixes were simultaneously 
optimized using compromise programming technique by Karihaloo and Kornbak (2001). A design 
method for optimal high performance concrete mixure using Genetic Algorithms (GA) was 
presented by Lim et al. (2004). Őzbay et al. (2006) exercised Taguchi method and GA to 
determine optimal concrete mix proportions maximizing compressive strength. Jayaram et al. 
(2009) proposed elitist GA models for high volume fly ash concrete mix optimization. Lee et al. 
(2009) implemented a methodology based on GA, Artificial Neural Network (ANN), and convex 
hull to obtain concrete mix proportions with minimum cost under a given compressive strength 
requirement. Parichatprecha and Nimityongskul (2009) developed minimum cost models for high 
performance concrete using GA.  A two-step approach to optimize High Strength Concrete (HSC) 
parameters was followed by Baykasoğlu et al. (2009). In first step, regression analysis, neural 
networks and Gene Expression Programming (GEP) were exploited to predict HSC parameters. 
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Afterwards, multi-objective optimization model was solved using GA. Ozbay et al. (2010) 
exercised genetic programming and genetic algorithm to achieve HSC mixes having minimum 
cost while satisfying requirements of workability and strength. Şimşek and Uygunoǧlu (2016) 
applied TOPSIS based Taguchi optimization method to determine optimal mixture proportions of 
polymer blended concrete. A support vector regression and multi-objective firefly algorithm based 
optimization model was proposed by Huang et al. (2020) for mixture design of steel fibre 
reinforced concrete. Sharifi et al. (2020) used improvised Taguchi optimization method to find 
optimum mix design of high strength self-consolidating concrete (HSSCC). Kondapally et 
al.(2023) compared the concrete mix designs obtained manually with optimal designs obtained 
using GA. Chen et al.(2023) combined GA, ANN and Scipy library for hybrid intelligent modeling 
and multi-objective optimization of concrete mix design parameters. Oveido et al. (2024) 
presented optimized concrete mixtures using machine learning (ML) models to predict 
compressive strength, and genetic algorithms to find optimal the mixture cost under quality 
constraints. Li et al. (2024) employed the fusion of response surface method (RSM) and non-
dominated sorting genetic algorithm-II (NSGA-II) for multi-objective optimization of hydraulic 
asphalt concrete mix ratios. However, the formulation of a structural optimization problem used in 
the above studies ignores the scattering of the various design parameters is termed as 
Deterministic Design Optimization (DDO). 
 
It is important to note that concrete mix design is always influenced by its surroundings. 
Variations in material quality, methods of curing, placing of concrete, techniques of mixing and 
transportation, testing procedures, etc. are the sources of randomization. Because of this, the 
concrete's actual compressive strength in a structure will never match the specimen produced in 
controlled laboratory conditions. The gap between the expected and obtained performances is 
even greater when the mix design is deterministically optimized, because DDO usually yields 
optimal designs that are pushed to the boundaries of design constraints, ignoring any possibility 
for uncertainty in manufacturing process, modeling, and design variables. Typically, in DDO, the 
uncertainties are taken into consideration by adding safety factors, as explained by the design 
codes of practice IS 456 (2000). In actuality, these safety factors are unable to ensure steady 
reliability levels for specific design environments because they are standardized for average 
design conditions. Thus, for robust and economical designs, the Reliability Based Design 
Optimization (RBDO) becomes highly effective. The RBDO procedure adjusts safety margins 
while considering for each variable's uncertainty effect during the optimization process. In this 
manner, as compared to deterministic design, where the safety factors are predetermined and 
then subjected to optimization, the safety factors are optimally set within the system in RBDO. 
Consequently, reliability-based concrete mix proportion optimization is significantly more efficient 
in practice than deterministic optimization (Chateauneuf, 2008). 
 
Solving a RBDO problem is computationally very expensive. Several tools are developed by 
researchers to handle RBDO problems (Thanedar and Kodiyalam, 1992; Enevoldsen and 
Sorensen, 1993; Wang and Grandhi, 1995; Luo and Grandhi, 1995; Chen et al., 1997; Royset et 
al., 2001; Aggarwal, 2004; Du and Chen, 2004; Zou and Mahadevan, 2006). The Sequential 
Optimization and Reliability Assessment (SORA) approach was designed by Du and Chen 
(2004). It is a single loop strategy which integrates reliability assessment with deterministic 
optimization in a series of cycles for efficient probabilistic design. In this study, the optimal 
proportions of the concrete mixture are achieved by the application of the SORA method. 
 
The development of prediction models for concrete mix parameters that are sufficiently accurate 
is crucial to the optimization process since the accuracy of the results of the optimization rely on 
the quality of these models. Concrete's cost is a linear function of its constituents, but as 
concrete’s compressive strength is only known through discrete outcomes, it may not be a linear 
function of its constituents. Therefore, the form of the prediction model for compressive strength 
is unknown. However, several researchers use a second order polynomial for compressive 
strength model (Melchers, 2002). In the present study, quadratic models are developed for the 
compressive strength of concrete at different curing ages. 
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Ordinary Least Square Regression (OLSR) technique and its modifications have been used by 
many researchers for modeling compressive strength of concrete (Namyong et al., 2004; Wu et 
al., 2010; Riad et al., 2011; You et al., 2012). One of the major challenges faced by OLSR 
technique is multicollinearity, if the data used for building regression models is not generated by a 
statistically designed experiment. Multicollinearity occurs in case of near-constant linear functions 
of two or more predictors. OLSR technique under the influence of multicollinearity affects the 
three important features of the regression model, namely, magnitude, sign and standard errors or 
variance of the regression coefficients (Ryan, 1996).Thus, the model may give erroneous results 
if used for optimization. 
 
In this study, Principal Component Regression (PCR) technique has been used to handle 
multicollinearity. It produces stable and significant estimates of regression coefficients. PCR 
technique deals with multicollinearity problem by eliminating those dimensions of sample space 
that are causing multicollinearity. This is conceptually similar to dropping an independent variable 
from the model when there is insufficient dispersion in that variable to contribute meaningful 
information on response variable (Rawling et al., 1998). 
 
The objective of the present study is to develop, validate and use statistical prediction models 
(OLSR and PCR) with full-quadratic terms for compressive strength at 28 and 56 days; formulate 
RBDO problems using those models and solve them with the SORA method to obtain cost-
optimal concrete mixes that satisfy reliability targets of 0.90, 0.95 and 0.99 across a range of 
target compressive strengths. 
 
2. DATA USED FOR STUDY 
Kumar (2002) performed experiments under controlled laboratory conditions to generate the 
compressive strength data examined in this study. Water-cementitious material ratio, 
cementitious content, aggregate zones, water content, percentage replacement of cement by fly 
ash, workability and curing ages were the seven parameters considered in the mentioned work. 
The range of values for these parameters is summarized in Table 1. The coarse aggregates, as 
described in Table 1, are classified into three zones: A, B and C. The principal characteristics of 
these aggregates zones are set out in Table 2. The physical properties of fine aggregates used in 
this study are summed up in Table 3 and that of coarse aggregates: CA-I, CA-II and CA-III are 
shown in Table 4. For each concrete mix, forty five 150 mm cubes were cast and tested at 28 
days, 56 days and 91 days of curing time. The compressive strength data for 28 days and 56 
days of treatment and without fly ash has been considered in this study. 
 
 

Water cementitious material ratio 0.42-0.55 

Cementitious content 350-475@25 kg/m3 

Water content 180-230@10 kg/m3 

Percentage replacement of cement by fly ash 0 and 15% 

Workability Medium and High 

Aggregate zones A, B, C 

Curing ages 28,56,91 days 

 
TABLE 1: Variation in parameters. 
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Zone 

Percentage passing 
20 mm sieve and 
retained on 10 mm 
sieve 
(CA –I) 

Percentage 
passing 10 mm 
sieve and 
retained on 4.75 
mm sieve 
(CA –II) 

Percentage 
passing 4.75 mm 
sieve and 
retained on 2.36 
mm sieve 
(CA –III) 

Fineness 
Modulus 

A 67 33 - 6.67 
B 50 50 - 6.50 
C - 50 50 6.50 

 

TABLE 2: Principal characteristics zones of coarse aggregates. 
 
 

S. No. Property Observed values 

1. Unit mass (compact) 1,680 kg/m3 

2. Unit mass (loose) 1,590 kg/m3 

3. Specific gravity ( oven-dry basis) 2.54 

4. Percentage voids (compact) 33.7 percent 

5. Percentage voids (loose) 37.4 percent 

6. Percentage absorption 0.5 percent 

7. Fineness modulus 2.09 
 

TABLE 3: Physical properties of fine aggregates. 
 
 

 
S.No. 

 
Property 

Observed values 
CA - I CA - II CA - III 

1. Unit mass (compact) 1,580 kg/m3 1,480 kg/m3 2,150 kg/m3 
2. Unit mass (loose) 1,380 kg/m3 1,350 kg/m3 1,980 kg/m3 

3. 
Specific gravity 
(a) Saturated surface dry 
(b) Oven-dry 

 
2.61 
2.68 

 
2.63 
2.68 

 
2.58 
2.60 

4. Percentage voids (compact) 41.2 percent 43.7 percent 17.3 percent 
5. Percentage voids (loose) 48.6 percent 48.7 percent 23.85 percent 
6. Percentage absorption 1.8 percent 1.18 percent 1.20 percent 

 
TABLE 4: Physical properties of coarse aggregates. 

 
3. METHODOLOGY 
The study develops and applies statistical and reliability-based optimization techniques for 
concrete mix design. Data used in the study has been described in section 2. 
 
Methodology adopted in this study is as follows:  
 
a) Develop linear regression models for the cost of concrete. 
b) Develop full quadratic prediction models for compressive strength of concrete for 28 days and 

56 days curing period using OLSR and PCR techniques.  
c) Formulation of RBDO problem with the objective of minimizing the cost per cubic meter of 

concrete subject to probabilistic constraints on target compressive strength. 
d) Perform RBDO separately using OLSR and PCR prediction models and compare optimal 

mixes, costs for a given reliability level. 
e) Comparison of RBDO results with DDO results in terms of margin of compressive strength. 
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4. PREDICTION MODELS FOR CONCRETE MIX PARAMETERS 
4.1 Design Variables 
The variables used for prediction are water content ( ), fine aggregate content ( ), coarse 
aggregate content ( ) and cement content ( ). There are three response variables, namely, cost 
of concrete ( ), 28 days compressive strength ( ) and 56 days compressive strength ( ).  
The basic descriptive statistics of the variables used in this study are depicted in Table 5. The 
predictor variable contents are measured in , compressive strength of concrete is 
measured in  and cost of concrete is measured in Indian rupee ( ). Coefficient of 
determination ( ) is used to assess the overall prediction accuracy of the developed models. 
Regression analysis is carried out using SPSS 12.0 and MATLAB 5.3.  

 

Variable 
Minimum 
( ) 

 
Maximum 
( ) 

Mean 
( ) 

Standard 
deviation 
( ) 

 180.00 230.00 202.44 12.69 

 416.93 642.18 535.64 57.29 

 798.48 1252.05 1064.85 133.42 

 350.00 475.00 424.49 37.32 

 31.66 54.49 45.80 5.42 

 37.18 58.65 51.11 5.03 
 

TABLE 5: Descriptive statistics. 

 
4.2 Overview of Principal Component Regression (PCR) Technique 
PCR is a method designed to address multicollinearity issues and enhance the reliability of 
regression coefficient estimates. When multicollinearity is pronounced, it leads to at least one 
eigenvalue of the predictors' correlation matrix nearing zero. This signifies that a subset of the 
sample space has minimal impact on explaining the dispersion within the data. PCR tackles this 
by transforming the initial predictors into a fresh ensemble of orthogonal or uncorrelated variables 
known as Principal Components (PCs). These PCs are derived through linear combinations of 
the original variables after they have been centered and scaled. The principal component matrix 
contains exactly the same information as the original centered and scaled data set. This 
transformation arranges the new orthogonal variables based on their significance in elucidating 
the variance within the sample space. PCR serves as a technique for reducing dimensionality, 
where principal components are gradually discarded until the remaining components account for 
a predetermined proportion of the total variance. Various stopping criteria have been proposed in 
the literature for this elimination process. The Kaiser-Gutman rule, commonly employed, suggests 
retaining principal components associated with eigenvalues greater than 1. Guiot et al. (1982) 
introduced another selection criterion, keeping principal components corresponding to eigenvalue 
products exceeding 1. Alternatively, the scree test involves plotting the number of principal 
components against the eigenvalues of the predictor variables' correlation matrix. As the number 
of components increases, eigenvalues decline, resulting in a curve with an "elbow." An intuitive 
approach is to discard components following the elbow point. 
 
Jollife (2002) argued that rejecting PCs with small eigenvalues might lead to the elimination of 
some of the PCs having high correlation with the dependent variable. Therefore, it is essential to 
simultaneously achieve two objectives: deleting PCs with small variances while retaining those 
that serve as effective predictors of the dependent variables. After selection of PCs, regression 
model is constructed using the OLSR technique, enabling estimation of the response variable. 
Subsequently, the set of regression coefficients obtained is transformed back into a new set of 
coefficients corresponding to the original correlated set of variables. 
 
4.3 Model for Cost of Concrete 
In this study, the water content is assumed to have no associated cost, while the cost of concrete 
is represented as a linear function of fine aggregate content, coarse aggregate content, and 
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cement content. Initially, the dataset from Kumar (2002) is scrutinized to ascertain the presence 
of multicollinearity among the predictor variables. The analysis reveals eigenvalues of 1.383, 
1.013, and 0.604 for the correlation matrix of the predictors, none of which approach zero. These 
findings reveal that multicollinearity among the predictor variables is not sufficiently strong to 
adversely impact the linear ordinary least squares regression models for the cost of concrete. 

 
Parameter  

 0.629 

 0.333 

 4.892 

 236.461 

 0.997 
 

TABLE 6: OLSR models for cost of concrete. 

 
Accordingly, linear OLSR models are constructed to predict the cost of concrete. The regression 
coefficients for the concrete cost variable are presented in Table 6. Notably, the coefficient of 
determination ( ) approaches unity for the cost model, indicating a near-perfect fit of the model 
to the data. 
 
4.4 Models for Compressive Strength of Concrete 
Full quadratic prediction models for concrete compressive strength for curing periods of 28 days 
and 56 days are developed using both OLSR and PCR techniques. 
 
OLSR coefficients corresponding to various parameters for compressive strength at various 
curing periods are documented in Table 7. It can be noted from Table 7 that value of  is greater 
than or equal to 0.950 in both cases indicating that OLSR models fit the given data very well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 7: OLSR models for compressive strength of concrete. 

 
Table 8 displays the eigenvalues of the correlation matrix of predictor variables along with the 
percentage of variance explained by each PC. Analysis of the table reveals that the eigenvalues 
of the 5th to 14th PCs are nearly zero, indicating a significant presence of multicollinearity. 

Parameter   

 -3.409483 -8.394017 

 0.577980 1.376687 

 -0.100047 -0.226823 

 1.053982 2.019124 

 0.006410 0.062986 

 -0.001368 0.001193 

 0.000039 0.000053 

 -0.001014 0.000462 

 0.004913 -0.018626 

 -0.002528 0.000440 

 0.001411 -0.018352 

 0.000569 0.000012 

 -0.001726 0.002542 

 0.000565 0.000067 

 57.911390 216.915630 

 0.973490 0.949940 
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Furthermore, the first three PCs collectively account for 99.487% of the variance in the sample 
space, while the dispersion in the remaining eleven PC dimensions is limited. 

    

Component Eigen value 
% of Variance 
explained 

1 6.897134 49.265407 
2 4.802748 34.305240 
3 2.228281 15.916181 
4 0.056556 0.403989 
5 0.007233 0.051671 
6 0.003756 0.026828 
7 0.002365 0.016893 
8 0.000968 0.006917 
9 0.000571 0.004080 
10 0.000327 0.002335 
11 0.000052 0.000372 
12 0.000011 0.000075 
13 0.000001 0.000010 
14 0.000000 0.000001 

 
TABLE 8: Eigen Analysis. 

 
The inflation of variances in the coefficients of OLSR model for all independent variables is 
observed due to near-singularities. According to the Kaiser-Gutman rule, the first three PCs, 
which collectively explain more than 95% of the variance in the sample space, should be 
selected. Guiot’s method advocates for the use of the first four PCs, a suggestion supported by 
the scree plot depicted in Figure 1. Consequently, the first four PCs are chosen for the 
development of the concrete compressive strength model. 

 

 
 

FIGURE 1: Scree plot. 

 
Moreover, it is ensured that the excluded PCs do not possess any predictive significance for 
concrete mix parameters. To verify this, the compressive strength at various ages is regressed 
against each dropped PC, yielding   values ranging from 0.002 to 0.051. These low  values 
confirm that the excluded PCs do not impact the predictive capacity of the models. Subsequently, 
least square regression is employed to formulate regression models for estimating compressive 
strength using the selected PCs as predictors. Eventually, the regression equations with selected 
PCs as parameters are transformed back to determine the regression coefficients of the original 
variables. The outcomes of PCR are summarized in Table 9. The  values for PCR models are 
lower compared to their Ordinary Least Squares Regression (OLSR) counterparts for all 
response variables. This reduction in   amounts to 2.37% and 5.33% for the 28-day and 56-day 
compressive strength models, respectively. Such a decline was anticipated, as the stability of 
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regression coefficients is enhanced at the expense of the model's predictive ability in Principal 
Component Regression technique. 
 

Parameter 

-0.124246 -0.101777

0.000585 -0.000530

-0.002207 -0.001770

0.059438 0.052720

-0.000349 -0.000286

-0.000001 -0.000002
-0.000002 -0.000002

0.000069 0.000061

-0.000045 -0.000039

-0.000027 -0.000022
0.000045 0.000045

0.000001 -0.000001

0.000035 0.000030

0.000028 0.000025
37.984695 41.254346
0.950410 0.899350

 

TABLE 9: PCR models for compressive strength of concrete. 

 
5. RELIABILITY BASED DESIGN OPTIMIZATION OF CONCRETE MIX 
PARAMETERS 
5.1  Description of the Problem 
RBDO problems involve the consideration of three distinct types of variables: deterministic design 
variables, random design variables, and random design parameters. These variables are 
incorporated into the objective function of the RBDO problem, comprising both deterministic and 
random design variables. The formulation of the RBDO problem is structured as follows: 
 

 
 

where is the objective function,  is the vector of deterministic design variables,  is the vector 
of random design variables, P is the vector of random design parameters.  and  are the 
design variables where  is the mean of the random design variables X. (d, X, P) 

 are reliability constraint functions,   are desired probabilities of 
constraints satisfaction. Here,  are deterministic constraint functions. 
Last two constraints in (1) are the boundary constraints. 

 
Traditionally, the RBDO problem has been addressed using double loop methods as outlined by 
Enevoldsen and Sorensen (1993), Wang and Grandhi (1995), and Luo and Grandhi (1995). In 
this approach, the loop of reliability analysis is embedded within the loop of optimization. 
However, this method proves to be slow and inefficient as multiple reliability analyses are 
required to evaluate each probabilistic constraint in every iteration of optimization. To address this 
inefficiency, various approaches have been proposed in the literature, including those by 
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Thanedar and Kodiyalam (1992), Chen et al. (1997), Royset et al. (2001), Aggarwal (2004), Du 
and Chen (2004), and Zou and Mahadevan (2006). One notable approach is the Sequential 
Optimization and Reliability Assessment (SORA) method developed by Du and Chen (2004), 
which aims to streamline the RBDO process by decoupling the double loop into a deterministic 
optimization problem followed by an inverse reliability assessment problem.  
 
The SORA method operates by shifting the boundaries of violated constraints (those with low 
reliability) towards the feasible direction based on reliability information obtained in previous 
cycles. This involves employing a percentile formulation of probabilistic constraints, utilizing an 
efficient and robust inverse Most Probable Point (MPP) search algorithm, and executing 
sequential cycles of optimization and reliability assessment. These measures collectively render 
SORA a less computationally intensive method for solving RBDO problems. 

 
5.2  Formulation of RBDO Models for Concrete Mix Parameters 
The RBDO problem for the study carried out in this paper is formulated as: 
 

 
 
where  are, respectively, the mean values of water content, fine aggregate content, 
coarse aggregate content and cement content. In the present study, all the four design variables 
are considered as random design variables. There are no deterministic variables and random 
parameters.  is the compressive strength function for a given curing age and  is 
target value for compressive strength for that particular curing age and  is the target reliability 
level. Water-cement content ratio  is kept between 0.42 and 0.55. This constraint is taken as 
deterministic constraint. , , , , respectively, are lower bounds for water, fine aggregate, 
coarse aggregate and cement content. , , , , respectively are upper bounds for water, 
fine aggregate, coarse aggregate and cement content. The lower and upper bounds for the 
design variables are taken from Table 5. 
 
5.3  RBDO Results and Discussion 
The RBDO models developed are solved using the SORA method, which is implemented through 
Altair Hyperstudy 10.0. Both OLSR and PCR models are utilized in RBDO models to illustrate the 
impact of prediction models on RBDO outcomes. The study also examines the influence of 
reliability levels on optimization results. To this end, the RBDO problem formulated in the 
previous section is tackled for three target reliability levels: 0.90, 0.95, and 0.99. Optimal 
proportions for concrete mixtures are determined across a wide range of target compressive 
strength values, and these optimal mix proportions are detailed in Tables 10-11.  

 
The process of identifying optimal concrete mix proportions involves setting the minimum target 
compressive strength at 27MPa and incrementing it in 3 MPa intervals. Results are reported up to 
the maximum target compressive strength for which the SORA optimizer converged at a given 
reliability level. Additionally, the compressive strength predicted by the respective regression 
model at the reliably optimal design is provided for each case. Furthermore, the safety margin 
employed by the RBDO process to ensure the target reliability is computed for each optimal mix. 
The range of safety margins considered by the RBDO process across various reliability levels 
and curing periods is presented in Table 12. 
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From Table 10, it is observed that PCR models perform better than OLSR models for RBDO 
problems solved for the 28 days compressive strength. The salient observations leading to the 
aforementioned conclusion are as follows:  
 

• The RBDO model based on OLSR model converged for a very narrow range of target 
compressive strength (27 -33 ) for  = 0.90. Convergence is obtained only for 
one value of target compressive strength, i.e., 27  for  = 0.95 and no optimal 
solution is obtained for  = 0.99.  Whereas, for the RBDO problem based on PCR model, 
optimal mixture compositions are obtained for  target 28 days compressive strength lying 
between 27  and 46  with reliability level of 0.90. Maximum attained compressive 
strengths for reliability levels of 0.95 and 0.99 are 43  and 37 , respectively.  

• The comparison of optimal costs depicts that optimal costs are much higher in case of 
OLSR based models. 
Compressive strength predicted by OLSR model at optimal design in each case is much 
above the upper bound for 28 days compressive strength given in Table 5. But, 
compressive strength predicted by PCR model lies between the bounds given in Table 5 
in every case. 

• Safety margin assumed by RBDO process is very high in case of OLSR based models for 
a given target strength and reliability, whereas, moderate safety margins are taken up by 
PCR based RBDO model for each reliability level (Table 12). 

 
The salient observations relating to the RBDO problem for 56 days compressive strength           
(Table 11(a)-(b)) follow a similar trend and are presented below: 
 
• OLSR model based RBDO problem converged for exceptionally wide range of target 56 

days compressive strength indicating the non-reliability of the model used. Optimal 
solutions are obtained for target  lying between 27  and 70  for  = 0.90.  

• Maximum attained target compressive strengths for reliability level of 0.95 and 0.99 are 
66 and 54 , respectively. Thus, the results obtained using OLSR models give an 
idea that as if there is no relationship between 28 days compressive strength and 56 days 
compressive strength. However, RBDO problem based on PCR model converged for a 
moderate range of target  lying between 27  and 47  with  = 0.90. 
Maximum attained compressive strengths for reliability levels of 0.95 and 0.99 are 45 

 and 40 , respectively. 
• Predicted values of  by OLSR model go as high as 176.11 . The predicted 

values obtained are much beyond the range of experimentally generated data used for 
analysis. However, Predicted  by PCR model lie between the bounds given for  
in Table 5. 

• In almost every corresponding case, optimal costs for OLSR based models are less than 
the optimal costs for PCR based models. 

• Same optimal mixture compositions are obtained for both OLSR and PCR based RBDO 
problem with target  of 27  and  = 0.90 and 0.95. But, there is a sharp 
difference between predicted  by the two regression models. Predicted  by 
OLSR model is 57.69 while that by PCR model is 39.53 . 

• It is expected that as reliability level increases for a particular value of target compressive 
strength, optimal cost should rise. But, it can be seen from this table that optimal costs for 
target  of 48 , 51 , 54 , 63  and 66  do not consistently increase 
with the increase in reliability level in OLSR model based RBDO solution. 

• The safety margins taken by OLSR based RBDO process are very high in comparison to 
the safety margins taken by PCR based RBDO process (Table 12). 
 

In deterministic design procedures, a safety margin is established prior to the optimization 
process. According to IS 10262 (2009), for a specified target compressive strength , the 
concrete mix should be proportioned to achieve an average strength of at least , 
ensuring that no more than 5% of the results fall below . Here,  represents the assumed 
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standard deviation of the compressive strength data. The standard deviations assumed for 
different grades of concrete are outlined in Table 13 of IS 10262 (2009). 
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Upon examination of Table 13, it is evident that for the cases under study, the value of  ranges 
between 4.0 and 5.0. Consequently, the safety margin should fall within the range of 6.60  to 
8.25 . However, Table 12 illustrates that the safety margins adopted by the PCR based 
RBDO process are notably higher than these aforementioned safety margins. 
 
It is also noted from both the Tables 10-11 that the parameters that vary predominantly in optimal 
solutions as target compressive strength and reliability level changes, are water-cement content 
ratio and cement content. Graphs are plotted to investigate the relationship between target 
compressive strength and the above mentioned parameters for different reliability levels (Figs. 2-
3). 
 

Grade of concrete 
Assumed 

 

standard deviation 
( ) 

M10 
3.5 

M15 
  

M20 
4.0 

M25 
  

M30 

5.0 

M35 
M40 
M45 
M50 
M55 

 
TABLE 13: Assumed standard deviation. 

 
The effect of reliability level and target compressive strength on each parameter is discussed 
below: 
 

 
 

FIGURE 2(a): Variation of OLSR based optimal 
water-cement content ratio with target compressive 

strength for different reliability levels. 

 

FIGURE 2(b): Variation of OLSR based optimal 
cement content with target compressive strength 

for different reliability levels. 
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FIGURE 3(a): Variation of PCR based optimal water-
cement content ratio with target compressive strength 

for different reliability levels. 

FIGURE 3(b): Variation of PCR based optimal 
cement content with target compressive strength for 

different reliability levels. 
 
• Water-cement ratio (Figs. 2(a)- 3(a)) 
It can be observed from Fig. 2(a) that for OLSR based optimal results,  ratio decreases as 28 
days compressive strength increases when  = 0.90. But, for 56 days curing period,  ratio is 
equal to its upper bound, i.e., 0.55 in most of the cases and for each reliability level. As per 
established facts, for increase in compressive strength,  ratio must decrease, and this trend is 
not found to be followed for results obtained using OLSR models. From a similar analysis carried 
out using PCR models, it is observed from Fig. 3(a) that as target compressive strength and 
reliability level increases,  ratio decreases in PCR based RBDO results.  ratio decreases 
quadratically as compressive strength increases for each reliability level. Value of coefficient of 
determination  is greater than 0.970 for each curve. It is seen that all the curves lie below the 
ACI curve and above the IS curve except for 28 days compressive strength curve with  = 0.99. 
The part of this curve for low compressive strength values lies below the IS curve. 
 
• Cement content (Figs. 2(b)-3(b)) 
The results of variation of cement content with target compressive strength are shown in Figs. 
2(b)- 3(b). It can be observed from Fig. 2(b) that for OLSR model based optimization results for 
56 days curing period, graph lines cross each other. However, for target compressive strength up 
to 45 , higher the reliability level, higher is the required cement content for a given target 
compressive strength. But, there are portions in the graph showing that lesser cement content is 
required to satisfy higher reliability level for a given target 56 days compressive strength. 
 
The graph shown in Fig. 3(b) is based on PCR based RBDO results.  For both curing periods, 
cement content increases as reliability level increases for a given target compressive strength. 
Also, Cement content increases in quadratic manner with target compressive strength for each 
reliability level. Coefficient of determination  is greater than 0.950 for each quadratic curve 
except for 56 days curve for R = 0.90. Value of   is 0.933 for this curve. 
 
6. CONCLUSION 
This paper presents optimal designs of concrete mix having minimum cost and satisfying specific 
performance with given target reliability. RBDO models are formulated using prediction models 
based on OLSR and PCR techniques. RBDO is implemented using SORA method. It is seen that 
RBDO results are extensively affected by the compressive strength modeling techniques. 
Following conclusions are drawn:  
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• The PCR based RBDO models avoid extrapolation of predicted compressive strength, but in 
most of the cases OLSR models extrapolated to give unexpected values of predicted 
compressive strength when used for RBDO. 

• The PCR based models yield mix proportions that are both cost-effective and within realistic 
bounds of material usage, preventing overdesign that often occurs in deterministic or poorly 
conditioned regression models. 

• The results indicate that cement content and water–cement ratio are key control parameters. 
Adjusting these in line with reliability targets can help practitioners fine-tune mix designs for 
desired performance levels. 

 
The outcomes provide strong evidence supporting the integration of reliability-based design 
optimization into concrete mix proportioning standards. This approach can move current practice 
beyond deterministic safety factors to quantifiable and verifiable reliability targets. In conclusion, 
the study establishes that PCR-based RBDO offers a practical, data-driven path for achieving 
consistent, verifiable, and cost-effective reliability in concrete mix design, paving the way for its 
application in modern performance-based design frameworks. 
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