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Abstract 

 
Recent blackouts in different countries have illustrated the very importance and 
vital need of more frequent and thorough power system stability. Therefore 
transient stability investigation on power system have became in focus of many 
researchers in the field. We have tried to introduce a new model for transient 
stability prediction of a power system to add a contribution to the subject. For this 
reason we applied so called, Committee Neural Networks (CNNs) methods as 
tools for Transient Stability Assessment (TSA) of power system. We use the 
“Mixture of Experts” (ME) in which, the problem space is divided into several 
subspaces for the experts, and then the outputs of experts are combined by a 
gating network to form the final output. In this paper Mixture of the Experts (ME) 
is used to assess the transient stability of power system after faults occur on 
transmission lines. Simulations were carried out on the IEEE 9-bus and IEEE 14-
bus tests systems considering three phase faults on the systems. The data 
collected from the time domain simulations are then used as inputs to the ME in 
which is used as a classifier to determine whether the power systems are stable 
or unstable. 
 
Keywords: Transient Stability Assessment, Committee Neural Networks, Mixture of the Experts, Time 
domain simulation method. 
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1. INTRODUCTION 

This paper presents a novel method of using a neural network to predict transient stability. The 
security assessment of a power system requires analysis of the dynamic system behavior under 
a prescribed set of events known as contingencies. Conventionally this is done by simulating the 
system nonlinear equations. Since the stability limits cannot be determined from a single 
simulation. More than one simulation is required. The large size of the system adds to the 
complexity [1-3]. This method consists of simulating during and post-fault behaviors of the system 
for a given disturbance, observing its electromechanical angular swings during a few seconds. It 
is usually used to estimate stability status and to provide detailed operation information of the 
faulted systems as a benchmark. However, the simulation method is infeasible for on-line TSA 
mainly due to its time-consuming computation [2]. 
Problem of transient stability prediction has been treated by the flowing methods such as 
application of numerical routines or state space techniques [4,5], decision trees [6] , fuzzy neural 
networks [7,8], Multi Layer Perceptrons (MLPs) neural networks [3,9], radial base function  neural 
networks[10-12], Probabilistic Neural Network (PNN) [13]. In a accordance to [2, 3] we proposed 
use of Committee Neural Networks (CNNs) for TSA.  
By predicting transient stability status of power system, proper control actions can be taken. For 
instance, use can be made of this prediction to initiate important relay operations such as out-of-
step blocking and tripping, or other control actions such as fast-valve control of turbines, dynamic 
braking, superconducting magnetic energy storage system, system switching, modulation of high 
voltage direct current (HVDC) link power flow and load shedding [6,7]. Moreover, by means of 
these predictions, the system planners can identify weak points of their power system (from 
transient stability viewpoint) for future developments [2].  
N. Amjadi et al. in [2] uses non-trainable static combiners CNNs. They proposed a new hybrid 
intelligent system for transient stability of power system. In this method interpreter combine the 
response of neural networks in a voting procedure to determine the transient stability by status of 
the power system. The initiative work [3] we use stacked generalization model that it is trainable 
static combiners in CNNs. In this paper, we return our keen focus to dynamic combiners by the 
employment of mixture of experts. The result is a powerful and reliable method for transient 
stability assessment of power systems. 
The actions of transient stability assessment using ME are explained and the performance of the 
CNNs is more efficient comparing with the stacked generalization model and the MLPs. 
 

2. Mathematical Model of Multi-machine Power System 

These The differential equations to be solved in power system stability analysis using the time 
domain simulation method are the nonlinear ordinary equations with known initial values. Using 
the classical model of machines, the dynamic behavior of an n-generator power system can be 
described by the following equations: 
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A time domain simulation program can solve these equations through step-by-step integration by 
producing time response of all state variables. 

3. Mixture of Experts 

Mixture of experts is the most famous method in the category of dynamic structures of classifier 
combining, in which the input signal is directly involved in actuating the mechanism that integrates 
the outputs of the individual experts into an overall output [16]. 
The combination of experts is said to constitute a committee machine. Basically, it fuses 
knowledge acquired by experts to arrive at an overall decision that is supposedly superior to that 
attainable by any one of them acting alone. Committee machines are universal approximations. 
They may be classified into two major categories: 
 
1. Static structures. In this class of committee machines, the responses of several predictors 
(experts) are combined by means of a mechanism that does not involve the input signal, hence 
the designation "static."This category includes the following methods: 
Ensemble averaging, where the outputs of different predictors are linearly combined to produce 
an overall output. 
Boosting, where a weak learning algorithm is converted into one that achieves arbitrarily high 
accuracy. 
 
2. Dynamic structures. In this second class of committee machines, the input signal is directly 
involved in actuating the mechanism that integrates the outputs of the individual experts into an 
overall output, hence the designation “dynamic”. Here we mention two kinds of dynamic 
structures: 

• Mixture of experts, in which the individual responses of the experts 
are nonlinearly combined by means of a single gating network. 

• Hierarchical mixture of experts, in which the individual responses 
of the experts are nonlinearly combined by means of several  gating networks arranged in a 
hierarchical fashion [14]. 

In this paper we used mixture of experts by a single gating network that shows in fig 1.The first 
model’s network architecture is the well-known “mixture of experts” (ME) network.  
The ME network contains a population of simple linear classifiers (the “experts”) whose outputs 
are mixed by a “gating” network [15]. 
In a revised version of “mixture of experts” model, to improve the performance of the expert 
networks, we use MLPs instead of linear networks or experts in Fig.1. The application of MLPs in 
the structure of expert networks calls for a revision in the learning algorithm. In order to match the 
gating and expert networks, the learning algorithm is corrected by using an estimation of the 
posterior probability of the generation of the desired output by each expert. Using this new 
learning method, the MLP expert networks’ weights are updated on the basis of those estimations 
and this procedure is repeated for the training data set. It should be mentioned that we do not use 
the notation of [15 & 16] to formulize the learning rules of the modified ME, but we follow the one 
which is described of [12], since it’s clear explanation of learning rules makes its extension easier 
for our purpose (the learning algorithm of the mixture structure with linear classifiers as experts is 
described in [16]). 
Each expert is an MLP network with one hidden layer that computes an output 

iO  as a function of 

the input stimuli vector, x, and a set of weights of hidden and output layers and a sigmoid 
activation function. We assume that each expert specializes in a different area of the input space. 
The gating network assigns a weight 

ig  to each of the experts’ outputs, 
iO . The gating network 

determines the 
ig  as a function of the input vector x and a set of parameters such as weights of 
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its hidden and output layers and a sigmoid activation function [16]. The 
ig  can be interpreted as 

estimates of the prior probability that expert 
ig  can generate the desired output y. The gating 

network is composed of two layers: the first layer is an MLP network, and the second layer is a 
soft max nonlinear operator. Thus, the gating network computers

gO , which is the output of the 

MLP layer of the gating network, then applies the soft max function to get: 
 

∑ =

=
N

1j ji

gi

i

)Oexp(

)Oexp(
g

                     i=1,2,3,…,N                   (4) 

 
Where N is the number of expert networks. So the 

ig  is nonnegative and sum to 1. The final 

mixed output of the entire network is: 
 

ii iT gOO ∑=                     i=1,2,3,…,N                       (5) 

  
 
The weights of MLPs are learned using the error back-propagation, BP, algorithm. For each 
expert i and the gating network, the weights are updated according to the following equations: 
 

  T

hiiiiigy O))O1(O)(Oy(hw −−η=∆                                          (6) 

 
 
 

 
FIGURE 1: Mixture of experts is composed of expert networks and a gating network. Each expert is a feed 
forward network and all experts receive the same input and have the same number of outputs. The gating 

network is also feed forward, and typically receives the same input as the expert networks. 
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Where eη  and  gη  are learning rates for the expert and the gating networks, respectively. yw   

and hw are the weights of input to hidden and hidden to output layer, respectively, for experts 

and hgw  and ygw  are the weights of input to hidden and hidden to output layer, respectively, for 

the gating network.  T

hgO  and 
T

hiO  are the transpose of hiO  and hgO , the outputs of the hidden 

layer of expert and gating networks, respectively.  ih  is an estimate of the posterior probability 

that expert i can generate the desired output y: 
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As pointed out by Dailey and Cottrell [15], in the network’s learning process, ‘‘the expert networks 
‘compete’ for each input pattern, while the gate network rewards the winner of each competition 
with stronger error feedback signals. Thus, over time, the gate partitions the input space in 
response to the expert’s performance’’. 
In this paper, we use 3 experts that experts are MLPs which are 10 neurons in hidden layer and 
gating network is a MLP which is 4 neurons in hidden layer. 

Learning rate for gating network is 01.0g =η   and learning rate for experts networks are 

28.0e =η  and numbers of epoch for training are 100 epochs. 

4. Methodology 

For validation and verification of the ME method in transient stability assessment we use the 
IEEE 9-bus and IEEE 14-bus power systems. Before the ME implementation, time domain 
simulations considering several contingencies were carried out for the purpose of gathering the 
training data sets. Simulations were done by using the MATLAB-based PSAT software [20]. 
Time domain simulation method is chosen to assess the transient stability of a power system 
because it is the more accurate method compared to the direct method. In PSAT, power flow is 
used to initialize the states variable before commencing time domain simulation. The differential 
equations to be solved in transient stability analysis are nonlinear ordinary equations with known 
initial values. To solve these equations, the techniques available in PSAT are the Euler and 
trapezoidal rule techniques. In this work, the trapezoidal technique is used considering the fact 
that it is widely used for solving electro-mechanical differential algebraic equations [6].  
The type of contingency considered is the three-phase balanced faults created at various 
locations in the system at any one time. When a three-phase fault occurs at any line in the 
system, a breaker will operate and the respective line will be disconnected at the Fault Clearing 
Time (FCT) which is set by the user. The FCT is set randomly by considering whether the system 
is stable or unstable after a fault is cleared. According to [18], if the relative rotor angles with 
respect to the slack generator remain stable after a fault is cleared, it implies that FCT < CCT and 
the power system is said to be stable but if the relative angles go out of step after a fault is 
cleared, it means FCT>CCT and the system is  unstable[5]. 
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5. Transient Stability Simulation on the Test Systems: 

Figure 2 shows the IEEE 9-bus system in which the data used for this work is obtained from [3, 6, 
and 20]. The system consists of three Type-2 synchronous generators with AVR Type-1, six 
transmission lines, three transformers and five loads.  
By using data IEEE 9-bus system and applied data to PSAT software step time responses in Fig. 
4 are resulted. By observing results stable and unstable cases come be clearly classified. A three 
phase fault is said to occur at time t=1 second on tree phase lines between bus 7 and 5. In Fig. 
4(a), the FCT is set at 1.083 second while in Fig. 4(b) the FCT is set at 1.3 second. Fig. 4(a) 
shows that the stable relative rotor angles of the second and third generators oscillation 
compared to the first relative rotor angles generator.  Figure 4(b) shows that the relative rotor 
angles of the generators that go out of step after a fault is cleared and inconsequence system is 
unstable.  
Figure 3 shows the IEEE 14-bus system in which the data used for further investigation in this 
research work is obtained from [6]. The system consists of five Type-2 synchronous generators 
with AVR Type-1, 20 transmission lines and eleven loads. Figure 5 shows examples of the time 
domain simulation results illustrating stable and unstable cases. 
A three phase fault is assumed to occur at time t=1 second between bus 4 and 2. In Figure 5(a), 
the FCT is set at 1.083 second while in Figure 5(b) the FCT is set at 4 second. 
 
 
 
 
 
 

Name of input features No. of features 

Relative rotor angles 1)(δ i −  2 

Generator  speed )(ωi
 3 

Pgen & Qgen 6 

Pline & Qline 12 

Ptrans & Qtrans 6 

Total number of feature 29 

Table 1: Input feature selected for IEEE 9-bus system 

 
 
 

 
 

FIGURE 2: IEEE 9 bus System 
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Name of input features No. of features 

Relative rotor angles 1)(δ i −  4 

Generator  speed )(ωi
 5 

Pgen & Qgen 10 

Pline & Qline 40 

Ptrans & Qtrans 48 

Total number of feature 107 

Table 2: Input feature selected for IEEE 14-bus system 

6. Data Preprocessing 

The simulation on the system for a fault at each line runs for five seconds at a time step t∆ , set at 

0.05 sec. The fault is set to occur at one second from the beginning of the simulation. Data for 
each contingency is recorded in which one steady state data is taken before the fault occurs and 
21 sampled data taken for one second duration after the fault occurs. 
 

 
FIGURE 3: IEEE 14 bus System 

 
 

There are 25 contingencies simulated on the IEEE 9-bus system and this gives a size of 2125×  

or 525 data collected. The collected data were reduced to 468 after eliminating of data 
redundancy. There are 39 contingencies simulated on the IEEE 14-bus system and this gives a 

size of 2139×  or 819 data collected. Next, the repetitions are due to the faults that occur on the 

same line. For IEEE 9-bus systems, the FCT of the same line are set at four different times, two 
for stable cases and two for unstable cases. 
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                                        (a)                                                                                               (b)           
FIGURE 4: - Relative rotor angle bents of generators for a) stable and b) unstable cases for the IEEE 9-bus 
System 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    (a)                                                                                                (b)           
 
FIGURE 5: Relative rotor angle bents of generators for a) stable and b) unstable cases for the IEEE 14-bus 
system  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               (a)                                                                                        (b)           
 
FIGURE 6: Relative angle speed bents of generators for a) stable and b) unstable cases for the IEEE 14-
bus system 
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Model Number of input features Mean error Misclassification(%) 
MLP 107 53.2 370 ( ) 

ME 107 0 0% 
Table 3: The result of for IEEE 14-bus system 

 
 

Model Number of input features Mean error Misclassification(%) 
MLP 29 0.0253 4 (3.42%) 

CNN 29 0.0085 1(0.85%) 

ME 29 0 0% 
Table 4: The result of for IEEE 9-bus system 

 
 

 
 

Methods Mean error Misclassification(%) 
N.Izzri et al. [13] 1.71 1.71 

R.Ebrahimpour et al. [3] 0.85 0.85 

S.Kirishna et al. [11] 2.29 1.64 

L. S. Moulin et al. [33] 4.8 4.8 

N.Amjadi et al. [2] 0. 28  

A.G. Bahbah et al. [12] 0.025  

The proposed method 0 0 

Table 5: Comparisons of the presented method with the related (%) 
 

7. Input Features Selection in IEEE 9-bus system: 

The selection of input features is an important factor to be considered in the ME implementation. 
The input features selected for this work are relative rotor angles (

1i−δ ),generator angle speed(
iω ), 

generated real and reactive powers (Pgen , Qgen), real and reactive power flows on transmission 
line (Pline ,Qline) and the transformer powers (Ptrans , Qtrans). Overall there are 29 input features to 
the ME for IEEE 9-bus systems shown in table 1. Out of the (468) data collected from 
simulations, a quarter of the data which is (117) data are randomly selected for testing and the   
remaining (351) data are selected for training the neural networks. For IEEE 14-bus system a 
new feature namely voltage buses is consider too. In this case, there are 107 input features to the 
ME shown in table 2. Similarly 150 data out of 800 are randomly selected for testing and 
remaining data used as training. 
ME results using 29 input features for IEEE 9-bus and 107 feature for IEEE 14-bus are given 
respectively in the tables 3&4. 

8. Performance evaluation: 

In the proposed method, three experts and one gating network are used which we consider it as 

MLPs. For MLPs evaluation we used : Learning rate for gating network is 01.0g =η  and learning 

rate for experts networks are 28.0e =η  and the number of iteration reaches 100. After training 

all the neural networks are trained with same input features which are parameters of transient 
stability assessment. 
Performance of the developed ME can be gauged by calculating the error of the actual and 
desired test data. Firstly, error is defined as,  
 

       output) Actual(-output) (DesiredEError, nnn =                                       (11) 

Where, n is the test data number. The desired output is the known output data used for testing 
the neural networks. Meanwhile, the actual output is the output obtained from testing on the 
trained networks.  
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From equation (12), the percentage mean error, ME (%), can be obtained as: 
 

                                                                                                         (12) 
 
Where N is the total number of test data. 
The percentage classification error, CE (%), is given by, 
   

                                                                                                          (13) 
    
We compare assessment methods in table 3&4 where we showed zero mean error and zero 
percent miss classification in ME method for both IEEE 9-bus and IEEE 14-bus systems.  
Table 3&4 show ME testing results using the 29 & 107 input features the total error of 
misclassification and the mean error are both (0%).The MLPs result for transient stability 
assessment according to table 3 with IEEE 14-bus system, the total error of misclassification is 
370 (56.97%and the mean error (53.2%) , too, with IEEE 9-bus, total error of misclassification is 4 
(3.42%) , the mean error (0.0253) and the CNN result for transient stability assessment according 
to table 4 with IEEE 9-bus system the total error of misclassification is 1 (0.85%) and the mean 
error (0.0085). 
Table 5 shows very suitable performance of the proposed method over other reported methods. 
The error rate of the proposed method reached to (0%) , which is a very demand improvement 
compared with other methods.  

9. Conclusion 

We should announce that ME proposed method in transient stability assessment has a very high 
reliability. When we compared with others methods namely MLP and CNN, the proposed ME 
method shows zero mean error and zero percent miss classification for IEEE 9-bus and IEEE 14-
bus power systems, which assures very greats performance. 
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