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Pre-Filtering In Robust Model Estimation-A Brief Tour 

 

 
Abstract 

 
Presence of noise has significant effect on the system identification and 
parameter estimation. To have accurate system models cleaner data is required 
which can be obtained if noise is reduced by prefiltering In this paper an attempt 
has been made to survey the literature on the prefiltering methods in system 
identification. 
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1. INTRODUCTION 
The adaptive ARMA system identification is usually realized by the adaptive equation error and 
output error algorithm [1], thus, the system identification will be influenced by additive noise 
caused by various reasons such as disturbance and measurement noise. Measured noise means 
the measured data invariably contains noise attributed to a no. of causes; sensors and 
measurement devices, modeled and unmodelled disturbances or unaccounted and unidentified 
sources. Measurement noise particularly of non – Gaussian type is known to be problematic in 
identification and parameter estimation and relatively small amount may wreak havoc on linear 
estimation schemes. Opportunities for improved system identification exist using data prefiltering 
and noise reducing techniques. In this paper an attempt has been made to study various 
prefiltering techniques in robust model estimation given in literature.  Brief introduction to 
mathematical model used for identification is given in Section2. Data filtering and three methods 
form the literature has been discussed in section3 followed by conclusions in section4. 
 
2. MATHEMATICAL FOUNDATION AND PARAMETER ESTIMATION 
The autoregressive-moving average (ARMA) model uses present and past inputs with past 
outputs to determine the present output. The ARMA process is represented by the difference 
equation  

1)( anY  Many  ...)1( 0)( bMny  1)( bnu  Kbnu  ....)1( )( knu                    
(1) 
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Where 1a Ma,..., and 0b Kb,..., are called the ARMA parameters. Further information regarding 
the development of the ARMA model can be found, e.g., in [2, 3, 4]. The ARMA system 
described by the difference equation (2) can be re-written in the form: 
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  (2) 
Compact (2) by writing it in regression model form where the regressor vector is defined by 

))(),...,(),(),...,1(()( KnunuMnynyn                      
  (3) 
and the vector parameter by 

1( a Ma,..., 0,b 1,b Kb,...., )                               
  (4) 
Given (3), (4) and (5) can be expressed as an inner product 

)(ny T )(n                                                         
 (5)  
Note that the parameter vector in (6) is not dependent on n; therefore, no index is specified for 
  in (4) or (5), nor will one be specified in the remainder of this text. 
The output-error equivalence method is used to calculate the estimated output and update the 
parameter estimates. It is achieved by replacing the parameter vector with its time dependent 
estimate, ̂ as in  

Tny ̂)(ˆ  )(n                                                            (6) 

Here ̂ is defined as the most recent parameter vector estimates 

1ˆ(ˆ a Mâ,..., 0
ˆ,b 1̂,b Kb̂,..., )                                   

 (7) 
 Subsequently the output estimate (7) can be expressed as    
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    (8) 
The parameter estimates are adjusted incrementally to reduce the error between (5) and (6). The 
idea is to update the previous parameter values for ̂  so that the residual error ultimately 
approaches to zero. This is accomplished using a gradient search technique with a simple 
quadratic to calculate the error between the models and system outputs. 
 
3. DATA PRE FILTERING 
Data pre-filtering is systematically employed in linear identification, mostly for anti aliasing 
reasons and to reduce the effect of high frequency disturbances in order to increase the signal to 
noise ratio. It is well known from the linear identification literature [2] that pre filtering may be 
used to improve model accuracy in a specified frequency band e.g. as a result of control 
specification which narrow the frequency region over which accurate models are actually 
needed. In [3] it is pointed out that data prefiltering will introduce bias into the estimates even in 
the noise free case and a detailed analyses of mean level induced bias is performed. The 
addition of filters in the identification strategies reduces the impact of noise on parameter 
estimates.  
 
3.1 Prefiltering using moving average process  
IIR prefilter is used in the application of signal frequency estimation [5]. The process of IIR 
filtering will add extraneous poles to the original signal model and the computational burden is 
much increased since the estimator order has to be much higher than the order of the estimator 
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plus the IIR prefilter. FIR prefiltering methods [6] were proposed to increase the signal to noise 
ratio of original measurement before the singular value decomposition (SVD) based Prony’s 
method was applied to estimate the location of single pose. By FIR prefiltering not only the AR 
but also the MA coefficient functions are estimated [7]. The optimal moving average coefficients 
are extracted from the estimated AR coefficients by solving the normal equation SVD and 
spectral factorization in the frequency domain. Liu and Doraiswami in[8] have emphasized 
moving average FIR prefiltering.   Algorithm given by them is as follow: 
 
3.1.1 Robust estimation of the denominator coefficient 
The discrete time domain signal model is assumed to be  
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Where )(ns is the signal,  ia  is the AR coefficient set and  ib  is the MA coefficient set, 

respectively. )(n  is Kronecker delta function. The measurement model is  
),()()( nvnsny      10  Nn                              

   (10) 
By using LPCA, the AR coefficients  ia  can be obtained from )(ny in the sense of minimum 
least squared error. The derivation of standard form LPCA can be found in [7], [8], [9]. LPCA 
provides high resolution estimates when the signal SNR is high. However its performance 
degrades severely when the SNR is low. 
Let us contact a new signal )(ny which is the summing average of the measurement )(ny with 
data length L , that is 
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Hence, 

)(zy )()()()( zvzFzszF                                                        
(12) 
Where 
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1)( fzF  2f Lfz  ... 1Lz                                                    
(13)     
In the general case clearly, the )(zy and )(zs have the same signal poles location excepting 

)(zy has additional poles due to the measurement noise. Hence, the LPCA can be applied to 
)(ny instead of )(ny . The advantage of translating )(ny into )(ny is that the strong perturvation 

of the noise with high level of variance can be greatly reduced if the noise mean  is small 
(considering the prefiltering be a moving average process) and it is more natural using a linear 
ARMA model to describe )(ny other than the stochastic process )(ny with stronger noise 
pattern. 
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3.1.2 Estimation of numerator Coefficients 
The estimation procedure of numerator coefficients is also divided into two steps. First, the 
numerator coefficients of the smoothed measurement )(ny are obtained through the similar 
procedure describe in section II by minimizing the error between )(ny and the impulse response 

)(nh  generated by the estimated denominator coefficients. Second, the numerator coefficients 
of the original signal )(ns are calculated by using a squared error minimization and spectral 
factorization process in the frequency domain. 
The ARMA model predictor output of )(ny is given by armay 1)(  Zn  )(/)( zazb , where 
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armay )(n  can be expressed by  
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Where )(nh 1 Z  )(/1 za , that is 
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)(n  is the Kronecker delta. 

Eq. 10 is expressed in the matrix form armay bH , where  TMbbbb ....10 , and 
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  (16)             

By minimizing TbHYbj )()(  )( bHY  , where  )1()...1()(  NnynynyY T . The 

optimal numerator estimates are obtained from the solution of normal Eq. TH THbH  Y  
The above procedure forms an ARMA model estimate of the smoothed measurement )(zy , or 

)(zs when the mean of )(nv is zero. However, our objective is to obtain the ARMA model 
parameters of the original signal )(ns . The estimate of )(zs , namely )(ˆ zs is calculated from 
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This operation is numerically unstable since in general )(zF will have unstable roots. Hence the 
estimate of )(zs is obtained from 
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Solution of above formula is obtained by spectral factorization which yields 
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Where  )(zG , denotes the stable part of )(zG . 
 
3.2 Non arithmetic filtering 
Applying filters to input and output signals can enhance parameter estimation but may 
concentrate only on specific frequency bands. Low-, high-, and band-pass filters isolate portions 
of signals providing opportunities for closer approximations. This technique provides parameter 
estimates for specific frequency ranges, sacrificing model optimality over the entire operating 
spectrum. Filters used in this fashion reduce the effects of noise and outliers by obliterating data. 
Filtering techniques are applied to all of the pertinent signals before parameter estimation is 
attempted. However, traditional filters used in this manner have the potential to alter the data 
while attempting to reduce noise and important data can be lost or compromised and introduce 
new problems. 
 
A class of non arithmetic filters has been developed by the authors [4] and applied to signal 
smoothing for improved parameter estimation and system identification. This class of filters has 
been proven successful in reducing induced computational errors such as coefficient 
quantification and round off. Additionally, this class of filters characteristically eliminates 
impulsive and Gaussian distributed noise. 
 
The non arithmetic filtering theory employed [4] requires some basic assumptions. It is assumed 
that data sequences come from a finite totally ordered set (TOS) of values S, and that any 
subset of data sequence values may be ordered. The sampling rate used in measuring the 
signals is unspecified and is not restricted to a uniform rate. There exists a distance function 
(metric) on S which can be user defined. Also, a median-type operator is defined so as to always 
produce an element residing in S, unlike the usual median operator which may use averaging 
[10]. 
The non arithmetic filtering technique demonstrated in [10] evolved as a natural extension of the 
weighted majority with minimum range (WMMR) filter [4]. The WMMR utilizes a technique of 
dividing filtering windows into overlapping sub windows in combination with a weighting scheme. 
The WMMR prefacers’ very well, but its highly computational methodology introduces noise in 
the form of round-off and averaging errors. This consequence led to the development of a 
nonarithmetic filter. A straight-forward demonstration of the application of nonarithmetic filtering 
can be obtained using MATLAB System Identification Toolbox [I1]. 
 
 
 
3.3 Robust H2 and H∞ Filtering 
By using H2 and H∞ filtering problem the controller is designed such that worst case induced 2L  
gain from process noise to estimation error is minimized. Here an upper bound is tried first and 
then bound is minimized using techniques based on Riccati equations or LMIs. For a class of 
uncertain continuous – time systems defined by  
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Where ,)0( 0xx   and ))(( tM   is given by  
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Where ntx )(  

Are the states, )(td    nd  is the process and measurement noise, and )(ty m are the 

measurements. ,,,,,,, 121 RLLDBCA  and H  are known constant matrices with appropriate 

dimensions. The uncertainty matrix  .  is norm bounded, time - varying and with problem – 
specific block – diagonal structure. The set of uncertain matrix values are denoted by  
∆ : diag  

  llqllq II ............ 111   ppii nnqq
i

  ..1: 1 . 
Associated with ∆, define subspaces S and G as 
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Note that if ,1,0  fl then ∆  1:   qp nn
, referred to as unstructured uncertainty, 

denoted u . In this case, S    :I , and every element of G is 0. 
This LFT representation of uncertainty is widely used in robust control theory; for instance, in [12] 
and [13]. In this note, we assume the representation (17) is well – posed over ∆, meaning that 
det   0 HI for all  ∆. Under this assumption, the uncertain part can be isolated from 
known part and the system written as  
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Given nrL    , the objective is to design a linear, full order filter to estimate 

).(:)( tLxtz  The filter structure is constrained to: )(ˆ)(ˆ).()(ˆ)(ˆ txLtztyBtxAtx   , where 

A nn  , B mn  and L nr    are constant matrices. Define estimation error 

)(ˆ)(:)( txtzte  . Let  TTT txtxt )(ˆ)(:)(  denote the states of the augmented system 
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Where 
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 In [14], two problems are considered. The H2 problem (similar to the Kalman filter) has a 
stochastic interpretation. In (17), assume d is zero mean white noise, 
with   nd

T Iltldtd )()()(   , where )(t is the Dirac Delta function. The 2H performance 

objective is : Tlim  T , where T  .)()()/1(sup 0(.) dtteteT TT
   The notation  

(.)sup  denotes the supremum over all piecewise continuous functions  : . The design 

objective is to minimize  (by choice of A , ),  LB subject to (19) and (20). The H∞ problem 

defines the performance measure as  
222(.) /0supsup: ded   . (a worst case 

induced 2L operator norm). The design objective is to minimize  (by choice of ),,  LBA  
subject to (19) and (20). 
In [14] it is assumed that (17) is quadratically stable, namely the existence of a positive-definite 
matrix P such that 0  PAPAT  for all  ∆. Here, 1

1
1 )(: RHILAA 

  . This is a 

typical assumption for all work in this area.   
 
4. CONCLUSION 
Three main prefiltering techniques to reduce the effects of process noise on parameter 
estimation have been presented from the literature. A known – arithmetic filtering technique used 
only input and output data with no a – priori or posteriori system noise information. Where as 
robust H2 and H∞  filters can be used not only for the reduction of the noise but also considers 
unstructured, non bounded uncertainty case, the upper bounce are directly minimized yielding 
less conservative results finally one can pose robust filtering as a more general robust control 
problem, simply used the adhoc iteration methods obtaining adequate results.     
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