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Abstract 

 
This paper presents a technology-independent design and simulation of a modified architecture of 
the Carry-Save Adder. This architecture is shown to produce the result of the addition fast and by 
requiring a minimum number of logic gates. Binary addition is carried out by a series of XOR, 
AND and Shift-left operations. These operations are terminated with a completion signal 
indicating that the result of the addition is obtained. Because the number of shift operations 
carried out varies from 0 to n for n-bit addends, a behavioral model was developed in which all 
the possible addends having 2- to 15-bits were applied. A mathematical model was deducted 
from the data and used to predict the average number of shift required for standard binary 
numbers such as 32, 64 or 128-bits. 4-bit prototypes of this adder were designed and simulated 
in both synchronous and asynchronous modes of operation. 
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1. INTRODUCTION 
Addition is the most important operation in any digital system. All other arithmetic operations, 
such as subtraction, multiplication and division are deeply related to the addition; hence, the 
design of a fast, accurate and low power binary adder translates to a gain in simulation speed 
and an increase in battery life for portable computing systems [1-3]. Many circuits for binary 
arithmetic addition exists, such as the ripple carry adder, the carry skip adder, the carry look-
ahead adder, the carry select adder, Manchester chain adder, prefix adder among others [4-8]. 
The performance of these adders has been evaluated in several publications in terms of speed, 
area and power consumption [4-8]. 
 
Arithmetic transformations using carry-save adders (CSAs) have been exploited recently in [9]. 
Variations of the techniques proposed in [9] have also been reported [10-13]. Carry-save 
transformations across non-addition operators were proposed in [10]. The timing and area trade-
offs of carry-save implementation for multiple addition trees were exploited in [11]. However, all 
these transformation techniques [9-11] optimize combinatorial circuits only. They are obviously 
limited by the register boundaries and cannot be applied to optimize synchronous data-path 
circuits. Arithmetic operations other than addition have been implemented by using CSAs in [12-
14]. 
 
This paper presents a new modification to the carry-save-adder (CSA) for fast addition. An 
algorithm was first developed and checked with several arithmetic additions to verify its 
correctness. Since the number of binary operations needed to compute the addition varies from 0 
to n for n-bit addends, a behavioral model was developed in Matlab in order to check all possible 
binary operations that exist between two n-bit binary numbers.  Finally, 4-bit synchronous and 
asynchronous prototypes were designed and implemented by using Quartus II design Software. 
These prototypes were chosen to be technology-independent at first. They can be re-simulated 
by using any technology process such as 0.18µm, 0.13µm or others. 
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2. CARRY-SAVE ADDERS  
Carry save adder is used to compute sum of three or more n-bit binary numbers. Carry save 
adder is same as a full adder. Figure 1 shows the sum of two 32-bit binary numbers, so 32 full 
adders are used at first stage. Carry save unit consists of 32 full adders, each of which computes 
single sum and carry bit based only on the corresponding bits of the two input numbers  Let X 
and Y are two 32-bit numbers and produces partial sum and carry as S and C as shown in the 
following example: 

Si = Xi xor Yi 
Ci = Xi and Yi 

The final addition is then computed as: 
1. Shifting the carry sequence C left by one place. 
2. Placing a 0 to the front (MSB) of the partial sum sequence S. 
3. Finally, a ripple carry adder is used to add these two together and computing the resulting sum. 

 

 
FIGURE 1: Computation Flow of Carry Save Adder 

3. BEHAVIORAL ANALYSIS OF THE MODIFIED ARCHITECTURE 
Figure 2 shows the algorithm of the proposed parallel adder with a completion signal. 
 

 
FIGURE 2: Adder Algorithm 

Once the two addends are entered into the registers A and B, a XOR operation and an AND 
operation are performed between the two registers. If the result of the AND operation equals zero 
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(this indicates that the addition has completed), then the final outcome of the addition is the result 
of the XOR operation. If the result of the AND operation is different from zero, then it is shifted to 
the left by 1 bit and sent back to the register B, and the result of the XOR operation is sent to the 
register A, and the algorithm is applied again until the completion signal is active (this 
corresponds to the result of AND operation equal to zero). This algorithm was applied to Matlab in 
order to deduce a mathematical model that predicts the average, the maximum, the minimum 
number of shifts needed for operands having any number of bits ‘n’. Table 1 shows the total 
number of shift operations required for addends having 2 bits to 15 bits. 
 
3.1   Simulation 
The performance of the parallel adder was evaluated in terms of number of number of shifts. A 
behavioral model was developed because this adder uses a different number of shifts for different 
addends. This depends on sequence of 0’s and 1’s in the addends that influences on the result of 
the AND operation. 
Actual ALU’s use 8, 16, 32, 64 or 128-bit addends. But in order to study this adder, a behavioral 
simulation was made on 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15-bit addends. Table 1 
shows all the possible combinations for 2 to 15-bit addends distributed in terms of number of shift 
operations. 
 
The number of shift operations varies from 0 to ‘n’, ‘n’ being the number of bits, the results show 
that: 
1.) The total number of additions is: 

 
2.) The maximum number of shift operations is ‘n’, and has the least number of occurrences, and 

can be approximated by  

 

3.) For any n > 2*m, ( n - m) shift operations occur: 

Number of times   (3) 
4.) The highest number of occurrences happens about 30% of the total additions. Table 2 shows 

the number of shifts that happen 30% of the occurrences. 
Figure 3 shows the average number of shift operations vs. the number of bits. 
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# of 
bits  2  3  4  5  6  7  8  9  10  11  12  13  14  15  

0 Shift  5  14  41  122  365  1094  3281  9842  29525  88574  265721  797162  2391485  7174454  

1 Shift  4  14  49  174  623  2234  7991  28462  100891  355970  1250599  4376982  15268355  53108426  

2 
Shifts  1  6  30  136  588  2464  10104  40768  162448  640896  2508128  9750144  37691456  1.45E+08  

3 
Shifts  0  2  12  64  312  1440  6432  28064  120320  508928  2129536  8832512  36366336  1.49E+08  

4 
Shifts  0  0  4  24  128  650  3040  13952  62592  275968  1200384  5165056  22028288  93255680  

5 
Shifts  0  0  0  8  48  256  1280  6144  28544  129536  578048  2545664  11091968  47908864  

6 
Shifts  0  0  0  0  16  96  512  2560  12288  57344  261632  1173504  5195776  22765568  

7 
Shifts  0  0  0  0  0  32  192  1024  5120  24576  114688  524288  2357248  10461184  

8 
Shifts  0  0  0  0  0  0  64  384  2048  10240  49152  229376  1048576  4718592  

9 
Shifts  0  0  0  0  0  0  0  128  768  4096  20480  98304  458752  2097152  

10 
Shifts  0  0  0  0  0  0  0  0  256  1536  8192  40960  196608  917504  

11 
Shifts  0  0  0  0  0  0  0  0  0  512  3072  16384  81920  393216  

12 
Shifts  0  0  0  0  0  0  0  0  0  0  1024  6144  32768  163840  

13 
Shifts  0  0  0  0  0  0  0  0  0  0  0  2048  12288  65536  

14 
Shifts  0  0  0  0  0  0  0  0  0  0  0  0  4096  24576  

15 
Shifts  0  0  0  0  0  0  0  0  0  0  0  0  0  8196  

TABLE 1: Number of shift operations per number of bits 

 
 

Number of bits Number of shifts that happen 
30% of total occurrences 

2 0 

3 to 6 1 
7 to 14 2 

15 to 30 3 
31 to 62 4 

TABLE 2: Number of shifts that happen 30% of total occurrences 

 
FIGURE 3: Average number of shifts vs. Number of bits 
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3.2  Modeling 
The data shown in figure 2 was injected into Matlab’ Curve fitting tool in order to deduct a 
mathematical model that gives the average number of shifts for addends having up to 128 bits. 
The model obtained is shown in (4) 
 

  (4) 
  
With ANS: Average Number of Shifts, and n: Number of bits. The Goodness of fit was as follows: 

• Sum of squares due to errors (SSE): 0.01361 ≈ 0 

• R-square: 0.9984 ≈ 1 

• Adjusted R-square: 0.9982 ≈ 1 
• RMSE: 0.03518 ≈ 0 
These results show that the fit was of a good quality. Figure 4 shows the average number of 
shifts vs. the numbers of bits for addends having up to 128 bits according to the mathematical 
model obtained. 
Table 3 shows the average number of shifts for standard adders having 8, 16, 32, 64 or 128 bits 
 
 

 
 

FIGURE 4: Average number of shifts vs. number of bits according to the mathematical model. 

 
 

n-bit addends ANS 
8 2.1578 

16 3.3021 
32 4.8231 
64 6.8026 

128 9.3789 

TABLE 3: Average number of shifts for standard adders 

4. DESIGN AND IMPLEMENTATION OF THE SYNCHRONOUS PARALLEL 
ADDER WITH A COMPLETION SIGNAL 
 

4.1  Synchronous Shift-left Register Design 
The shift-left operation is critical to the performance of this adder. In order to minimize the 
hardware needed for its implementation, the same register that stores the result of the AND 
operation (D <= A . B) was modified in order to accommodate the shift operation. A 2-to-1 
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multiplexer was added to each D flip-flop. The selection bit of these multiplexers allow either the 
loading of D when Load/Shift = ‘1’ or the shift to the left of D by 1 bit when Load/Shift =’0’. 
These actions happen at the rising edge of the clock since this circuit works in synchronous mode 
of operation. Figure 5 shows the logic circuit for the synchronous shift-left operation. 

 

 
FIGURE 5: Shift-Left Register Logic Circuit 

 
4.2 Shift-left Register Simulation 
The logic circuit of figure 4 was simulated with Quartus II design software. Figure 6 shows the 
output waveforms. For testing purposes, a binary data of D[3..0]=1111 was sent to the register D. 
This value was first loaded into the register (Load/Shift = ‘1’), then it was shifted to the left by 1 bit 
after each rising edge of the clock. Table 4 shows the timing and the bit values of the D registers. 

 
 

FIGURE 6: Output waveforms of the Shift-left register 
 

Timing Action Load/Shift D4&D[3..0] 
t0 Load data 1 (Load) 01111 
t1 Shit-left by 1 bit 0 (Shift) 11110 

t2 Shit-left by 1 bit 0 (Shift) 11100 
t3 Shit-left by 1 bit 0 (Shift) 11000 
t4 Shit-left by 1 bit 0 (Shift) 10000 
t5 Shit-left by 1 bit 0 (Shift) 00000 

TABLE 4: Timing of shift-left logic circuit 

 
4.3   Synchronous Parallel Adder Design 
Figure 6 shows the logic circuit of the proposed synchronous adder. For simulation purposes, the 
circuit was designed for 4-bit addends. The same principle can be easily extended to 32, 64-bit or 
more addends. An extra bit is needed as the carry bit. 
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FIGURE 7: Logic Circuit of the Synchronous Adder 

 
The logic circuit of figure 7 is made of 4 registers: A and B to load the addends, C and D to store 
the results of XOR and AND logic operations. The registers A and B have 2-to-1 multiplexers 
connected at their inputs used to select either the addends A and B or to reload C and D after the 
XOR and AND logic operations. 
This logic circuit stops shifting the register D and reloading the registers A and B when the 
register D is equal to 0. In order to keep the logic circuit of figure 8 simple, it does not show a 
“zero-detector” at the output of register D ( Basically a 5-input NOR gate). 
 
4.4   Synchronous Parallel Adder Simulation 
The logic circuit of figure 7 was simulated with Quartus II design software. D-flip-flips with Enable 
signal were used to make the registers A, B, C and D. For testing purposes, a binary value of 
‘1011’ was loaded into the register A, and ‘0110’ was loaded into the register B. A manual 
execution of the algorithm of figure 1 using these addends shows that three shift operations are 
needed to obtain the result. Table 5 shows the control signals used for the synchronous parallel 
adder. 
Figure 8 shows the input and output wave forms, and table 6 shows the timing and the values of 
the signals. 
 
 

Signal Function 
AB_Enable Enable Signal for A and B registers 
C_Enable Enable Signal for C register 
D_Enable Enable Signal for D register 
Load AB/CD If =’1’ load A and B into registers A and B 

If =’0’ load C=A+B into register A, and load 
D=A.B into register B 

Load/Shift D If=’1’ load A.B into register D if ‘0’ Shift D to 
the left 

TABLE 5: Control signals 
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FIGURE 8: Wave forms of the Synchronous Adder 

 
Timing Action Values 

t1 Load A, Load B A = ’1011’ B = ’0110’ 
t2 C <= A + B, D <= A . B C = ’01101’ D = ’00010’ 

t3 Shift D to the left D = ’00100’ 
t4 Load C into A, Load D into B A = ’01101’ B = ’00100’ 
t5 C <= A + B, D <= A . B C = ’01001’ D = ’00100’ 
t6 Shift D to the left D = ’01000’ 

t7 Load C into A, Load D into B A = ’01001’ B = ’01000’ 
t8 C <= A + B, D <= A . B C = ’00001’ D = ’01000’ 
t9 Shift D to the left D = ’10000’ 

t10 Load C into A, Load D into B A = ’00001’ B = ’10000’ 
t11 C <= A + B, D <= A . B C = ’10001’ D = ’00000’ 

TABLE 6: timing of synchronous adder circuit 

 
Table 6 shows that at t11, the register D has zero, and the register C has the result of the 
addition. Three shift operations were needed to obtain the result of this addition in this example.  

 
5. DESIGN AND IMPLEMENTATION OF ASYNCHRONOUS PARALLEL 
ADDER WITH A COMPLETION SIGNAL 
 

5.1   Asynchronous Shift-left Register Design 
The shift-left operation is critical in the asynchronous mode of operation as well. Figure 9 shows 
the shift-left operation logic circuit in asynchronous mode. Similarly to the synchronous mode, 2-
to-1 multiplexers were used to select either new data into the D register (Load/Shift D = ‘1’) or to 
shift the existing data in the register D (Load/Shift D = ‘0’). In order to remove the clock signal, 
additional registers were added to work in ‘master-slave’ mode. 
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FIGURE 9: Asynchronous Shift Register 

 

5.2   Asynchronous Shift-left Register Simulation 
Figure 9 shows the Quartus II simulation of the asynchronous shift register of figure 8. For testing 
purposes, a value of D=[1111] was first loaded into the register D (t1 in figure 11, Load/Shift = 
‘1’). In order to shift the data by 1 bit to the left, Load/Shift = ‘0’, and send an impulse to the 
register preD (master) ‘1’ →’0’, followed by a second impulse to the register D (slave) ‘0’ →’1’. 
This is illustrated at (t2, t3), (t4, t5), (t6, t7) etc. in figure 10. Table 7 shows the asynchronous shift 
register simulation results and control signals in greater detail. 

 

 
FIGURE 10: Asynchronous Shift Register 

 
 

Timing Action Control Signals D4&D[3..0] 
t0→t1 Load data  Load/Shift D <= ’1’ preD_Enable <= ‘1’→‘0’  

D_Enable <= ‘0’→‘1’  
01111  

t2 →t3  Shit-left by 1 bit  Load/Shift D <= ’0’ preD_Enable <= ‘1’→‘0’  
D_Enable <= ‘0’→‘1’  

11110  

t4 →t5  Shit-left by 1 bit  Load/Shift D <= ’0’ preD_Enable <= ‘1’→‘0’  
D_Enable <= ‘0’→‘1’  

11100  

t6 →t7  Shit-left by 1 bit  Load/Shift D <= ’0’ preD_Enable <= ‘1’→‘0’  
D_Enable <= ‘0’→‘1’  

11000  

t8 →t9  Shit-left by 1 bit  Load/Shift D <= ’0’ preD_Enable <= ‘1’→‘0’  
D_Enable <= ‘0’→‘1’  

10000  

t10 →t11  Shit-left by 1 bit  Load/Shift D <= ’0’ preD_Enable <= ‘1’→‘0’  
D_Enable <= ‘0’→‘1’  

00000  

TABLE 7: Timing of shift-left logic circuit 
 

 
5.3   Asynchronous Parallel Adder Design 
Figure 10 shows the logic circuit for the 4-bit asynchronous adder. This logic circuit is very similar 
to its synchronous version. It contains four registers A, B, C and D. 4-bit addends were used in 
figure 11, plus an extra bit as carry. 
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FIGURE 11: 4-bit Asynchronous Parallel Adder 

5.4   Asynchronous Parallel adder Simulation 

 
 

FIGURE 12: 4-bit Asynchronous Parallel Adder Simulation Results 

 
Figure 12 shows the Quartus II simulation results of the 4-bit asynchronous parallel adder. 
This circuit was simulated with addends A = [1111] and B = [1111].  
First the addends values were loaded into the registers A and B (Load_ABCD = ‘1’ and 
AB_Enable = ‘1’).  
Then the results of C <= (A AND B) and D <= (A XOR B) were loaded into the registers C and D 
(Load/ShiftD <= ‘1’, preD_Enable <= ‘0’→’1’, D_Enable <= ‘1’→’0’ and C_Enable <= ‘1’). 
Since the register D is not equal to zero, its contents are shifted to the left by 1 bit (Load/Shift D 
<= ‘0’ and preD_Enable <= ‘0’→’1’, D_Enable <= ‘1’→’0’).  
The contents of registers C and D are loaded into the registers A and B (Load_ABCD =‘0’ and 
AB_Enable =’1’) and the procedure is repeated again. Table 8 shows the asynchronous 
simulation in greater detail. 
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Timing Action Control Signals Values 

0 → t1  Load A, Load B AB_Enable <= ‘1’, Load_ABCD <= ‘1’ A = ’01111’, B = ’01111’ 
t1 → t2 C <= A + B, D <= A . B Load/Shift D <= ‘1’, C_Enable <= ‘1’  

preD_Enable <= ‘1’→’0’, D_Enable <= ‘0’ →’1’ 
C = ’00000’, D = ’01111’ 

t2 → t3 Shift D to the left Load/Shift D <= ‘0’, preD_Enable <= ‘1’→’0’ 
D_Enable <= ‘0’ →’1’ 

D = ’11110’ 

t3 → t4 Load C into A, Load D 
into B 

Load_ABCD <= ‘0’, AB_Enable <= ‘1’ A = ’00000’, B = ’11110’ 

t4 → t5 C <= A + B, D <= A . B Load/Shift D <= ‘1’, C_Enable <= ‘1’  
preD_Enable <= ‘1’→’0’, D_Enable <= ‘0’ →’1’ 

C = ’11110’, D = ’00000’ 

TABLE 8: Timing of asynchronous adder circuit 

 
The execution of the algorithm stopped at t5, where D=’00000’ and C=’11110’ which represents 
the final result of the binary addition. 
 

6. CONCLUSION 
A modified architecture of parallel binary addition based on a series of logic XOR, AND and Shift 
operations was introduced in this paper. Its behavioral analysis was simulated with Matlab. The 
results show that for 128-bit addends, an average of 9.3789 shift operations is needed. Its 
structural analysis was simulated using Quartus II, were the synchronous and asynchronous 
technology-independent logic circuits were designed and simulated. For n-bit addends, and for 
synchronous mode of operation, (n+1) XOR gates, (n+1) AND gates, 4 x (n+1) D flip-flops and  3 
x (n+1) 2-to-1 multiplexers are needed. For the asynchronous mode of operation, (n+1) XOR 
gates, (n+1) AND gates, 5 x (n+1) D flip-flops and  3 x (n+1) 2-to-1 multiplexers are needed. 
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