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Abstract 

 
A neural network may be considered as an adaptive system that progressively self-organizes in 
order to approximate the solution, making the problem solver free from the need to accurately 
and unambiguously specify the steps towards the solution. Moreover, Evolutionary computation 
can be integrated with artificial Neural Network to increase the performance at various levels; in 
result such neural network is called Evolutionary ANN. In this paper very important issue of neural 
network namely adjustment of connection weights for learning presented by Genetic algorithm 
over feed forward architecture. To see the performance of developed solution comparison has 
given with respect to well established method of learning called gradient decent method. A 
benchmark problem of classification, XOR, has taken to justify the experiment. Presented method 
is not only having very probability to achieve the global minima but also having very fast 
convergence. 
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1. INTRODUCTION 

An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired by the 
way biological nervous systems, such as the brain, process information. The key element of this 
paradigm is the novel structure of the information processing system. It is composed of a large 
number of highly interconnected processing elements (neurons) working in unison to solve 
specific problems. ANNs, like people, learn by example. An ANN is configured for a specific 
application, such as pattern recognition or data classification, through a learning process. 
Learning in biological systems involves adjustments to the synaptic connections that exist 
between the neurons. This is true of ANNs as well. Neural networks, with their remarkable ability 
to derive meaning from complicated or imprecise data, can be used to extract patterns and detect 
trends that are too complex to be noticed by either humans or other computer techniques. A 
trained neural network can be thought of as an "expert" in the category of information it has been 
given to analyze. This expert can then be used to provide projections given new situations of 
interest and answer "what if “questions.  ANN can be viewed as weighted directed graphs in 
which artificial neurons are nodes and directed edges (with weights) are connections between 
neurons outputs and neuron inputs. Based on the connection pattern (architecture), ANN can be 

grouped into two categories: (a) Feed Forward Networks allow signals to travel one-way only, 
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from input to output. There is no feedback (loops) i.e. the output of any layer does not affect that 
same layer as shown in Fig.(1) (b)Recurrent Networks can have signals traveling in both 
directions by introducing loops in the network 
 

 
                               FIGURE 1: Feedforward architecture 

 
Learning in artificial neural systems may be thought of as a special case of machine learning. 
Learning involves changes to the content and organization of a system’s knowledge, enabling it 
to improve it’s performance on a particular task or set of tasks. The key feature of neural 
networks is that they learn the input/output relationship through training. There are two types of 
training/learning used in neural networks, with different types of networks using different types of 
training. These are Supervised and Unsupervised training, of which supervised is the most 
common for feed forward architecture training modes. Supervised Learning which incorporates an 
external teacher, so that each output unit is told what its desired response to input signals ought 
to be. During the learning process global information may be required. Paradigms of supervised 
learning include error-correction learning. An important issue concerning supervised learning is 
the problem of error convergence, i.e. the minimization of error between the desired and 
computed unit values. The aim is to determine a set of weights, which minimizes the error. One 
well-known method, which is common to many learning paradigms, is the gradient decent based 
learning. 
 
The idea behind learning in Neural Network is that, the output depends only in the activation, 
which in turn depends on the values of the inputs and their respective weights. The initial weights 
are not trained with respect to the inputs, which can result in error. Now, the goal of the training 
process is to obtain a desired output when certain inputs are given. Since the error is the 
difference between the actual and the desired output, the error depends on the weights, and we 
need to adjust the weights in order to minimize the error. 
 

2.  GRADIENT DESCENT LEARNING  
Gradient descent is a first order optimization algorithm. To find a local minimum of a function 
using gradient descent, one takes steps proportional to the negative of the gradient (or of the 
approximate gradient) of the function at the current point. If instead one takes steps proportional 
to the positive of the gradient, one approaches a local maximum of that function; the procedure is 
then known as gradient ascent. Gradient descent is also known as steepest descent, or the 
method of steepest descent. A gradient descent based optimization algorithm such as back-
propagation (BP) [6] can then be used to adjust connection weights in the ANN iteratively in order 
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to minimize the error. The Gradient descent back-propagation algorithm [7] is a gradient descent 
method minimizing the mean square error between the actual and target output of multilayer 
perceptrons. The Back-propagation [8], [9] networks tend to be slower to train than other types of 
networks and sometimes require thousands of epochs. When a reduced number of neurons are 
used the Error Back-propagation algorithm cannot converge to the required training error. The 
most common mistake is in order to speed up the training process and to reduce the training 
errors, the neural networks with larger number of neurons than required. Such networks would 
perform very poorly for new patterns nor used for  training[10]. Gradient descent is relatively slow 
close to the minimum. BP has drawbacks due to its use of gradient descent [11, [12]. It often gets 
trapped in a local minimum of the error function and is incapable of finding a global minimum if 
the error function is multimodal and/or non differentiable. A detailed review of BP and other 
learning algorithms can be found in [13], [14], and [15]. 
 

3.   EVOLUTIONARY ARTIFICIAL NEURAL NETWORK 
Evolutionary artificial neural networks (EANN’s) refer to a special class of artificial neural 
networks (ANN’s) in which evolution is another fundamental form of adaptation in addition to 
learning [2] – [5]. Evolutionary algorithms (EA’s) are used to perform various tasks, such as 
connection weight training, architecture design, learning rule adaptation, input feature selection, 
connection weight initialization, rule extraction from ANN’s, etc. One distinct feature of EANN’s is 
their adaptability to a dynamic environment. The two forms of adaptation, i.e., evolution and 
learning in EANN’s, make their adaptation to a dynamic environment much more effective and 
efficient. Evolution has been introduced into ANN’s at roughly three different levels: connection 
weights, architectures, and learning rules. The evolution of connection weights introduces an 
adaptive and global approach to training, especially in the reinforcement learning and recurrent 
network learning paradigm where gradient-based training algorithms often experience great 
difficulties. The evolution of architectures enables ANN’s to adapt their topologies to different 
tasks without human intervention and thus provides an approach to automatic ANN design as 
both ANN connection weights and structures can be evolved. 
 

4. EVOLUTION OF CONNECTION WEIGHTS 
Weight training in ANN’s is usually formulated as minimization of an error function, such as the 
mean square error between target and actual outputs averaged over all examples, by iteratively 
adjusting connection weights. Most training algorithms, such as BP. and conjugate gradient 
algorithms are based on gradient descent. There have been some successful applications of BP 
in various areas .One way to overcome gradient-descent-based training algorithms’ shortcomings 
is to adopt EANN’s, i.e., to formulate the training process as the evolution of connection weights 
in the environment determined by the architecture and the learning task.  EA’s can then be used 
effectively in the evolution to find a near-optimal set of connection weights globally without 
computing gradient information. The fitness of an ANN can be defined according to different 
needs. Two important factors which often appear in the fitness (or error) function are the error 
between target and actual outputs and the complexity of the ANN. Unlike the case in gradient-
descent-based training algorithms, the fitness (or error) function does not have to be differentiable 
or even continuous since EA’s do not depend on gradient information. Because EA’s can treat 
large, complex, nondifferentiable, and multimodal spaces, which are the typical case in the real 
world, considerable research and application has been conducted on the evolution of connection 
weights .The aim is to find a near-optimal set of connection weights globally for an ANN with a 
fixed architecture using EA’s. Comparisons between the evolutionary approach and conventional 
training algorithms, such as BP, will be made over XOR classification problem. 
 
4.1   Evolution of Connection Weights Using GA 
 
% initialization of population 
1. sz = total weights in architecture; 
2. For  i = 1: popsize; 
3.     pop(i)=sz number of random number; 
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4.   End 
 
% offspring population creation 
5.   For j=1: popsize/2; 
6.     pickup two parents randomly through uniform distribution; 
7.     cp=cross over position defined by randomly pickup any active node position; 
8.    To create offspring, exchange all incoming weights to selected nodes cp between parents;              
9.            For  each offspring; 
10.,                 place of mutation, mp = randomly selected active node; 
11.                      For all incoming weights w to selected node mp; 
12.                                  w=w+N (0, 1); 
13.                          End 
14.               End 

15.  End 
 
16. Offspring population, off_pop available; 
17. npop= [pop; off_pop]; 
 
% Define fitness of each solution, 
18. For i=1:2*popsize; 
19.      wt=npop(i); 
20.      apply wt to ANN architecture to get error value; 
21.      define fitness as fit(i)=1/error; 
22.   End 
 
% Tournament selection  
23. For  r =1:2*popsize; 
24.   pick P number of Challengers randomly, where P = 10% of popsize; 
25.   arrange the tournament w.r.t fitness between rth solution and selected P challengers.; 
26.   define score of tournament for rth solution 
27. End 
28.   Arrange score of all solution in ascending order; 
29.   sp=pick up the best half score position ; 
30. select next generation solution as solution corresponding to position sp; 
 
31. repeat the process from step 5 until terminating criteria does not satisfy 
32. final solution=solution with maximum fitness in last generation. 
 

5.  EXPERIMENTAL SETUP 
A fully interconnected feed forward architecture of size [2-2-1] / [2 3 1] designed .transfer function 
in the active node is taken as unimodel sigmoid function. Initial random weights are upgraded by 
gradient decent and genetic algorithm respectively. Various learning rates have applied to 
capture performance possibilities from gradient decent. To increase the learning and efficiency 
‘bias’ in architecture and ‘momentum’ in learning have also included when learning given by 
gradient decent. Population size in GA taken as 20 and 10 independent trails have given to get 
the generalize behavior. Condition of terminating criteria is taken as fixed iteration and it is equal 
to 500 for GA. Because GA works with a population at time where as gradient decent takes only 
one solution in each iteration hence to nullify the effect , more number of iterations have given to 
gradient decent learning and it is taken as 20*500; 

 

5.1 Performance Shown by Gradient Decent Learning 
With the defined size of architecture, bias has applied with +1 input for hidden layer and output 
layer. Various learning rate taken from 0.1 to 0.9 with the increment of 0.1 along with momentum 
constant as 0.1.in the Fig(2) performance has shown for architecture size [2 2 1] where as in 
Fig(3) with size [2 3 1].Mean square error obtained after 10,000 iterations has shown in Table 1 
and in Table 2. 
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                          FIGURE 2: MSE performance with various learning rate . 

 

                                   FIGURE 3: MSE performance with various learning rate  

 

 

 

 

 

 

                  

                                TABLE 1: performance shown by gradient decent 
 

 

 

 

 

 

 

 

 

 

Learning rate     MSE([2 2 1])  MSE([2 3 1]) 
0.1 1.7352 e-001 3.2613 e-003     
0.2 1.2920 e-001 6.3886 e-002    
0.3 1.3042 e-001 4.4409 e-004     
0.4 1.2546 e-001 3.7232 e-004     
0.5 6.2927 e-001 2.6024 e-004     
0.6 6.2825 e-001 2.3994 e-004     
0.7 6.2915 e-001 2.0970 e-004     
0.8 6.2868 e-001 1.3542 e-004     
0.9 6.2822 e-001 1.2437 e-004     
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5.2 Performance Shown by GA Based Learning 

 

                        FIGURE 4: MSE performance by GA for different trails in [2 2 1] 

 

                          FIGURE 5: MSE performance by GA for different trails in [2 3 1] 

 

 

Trail No.    MSE([2 2 1])  MSE([2 3 1]) 
1 8.8709 e-055 3.6112 e-028 
2 2.5941 e-022 4.6357 e-031 
3 1.2500 e-001 7.5042 e-032 
4 1.2500 e-001 4.2375 e-037 
5 3.2335 e-044 6.0432 e-049 
6 2.5765 e-041 1.1681 e-035 
7 9.6010 e-022 9.3357 e-032 
8 3.5481 e-047 4.4852 e-030 
9 3.9527 e-050 1.1725 e-033 
10 6.3708 e-023 2.5171 e-036 

 

                                TABLE 2: performance shown by GA for different trails 

 

Results shown in Table1 indicate the difficulties associated with gradient decent based learning 
rule. Performance is very poor with the architecture size [2 2 1] for all learning rates. In fact 
learning failed for this case. This is   indication of stuckness in local minima. For architecture [2 3 
2] there is an improvement in reduction of mean square error, and  with higher value of learning 
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rate equal to 0.9, best performance has obtained. Convergence characteristics for both cases 
have shown in Fig (1) and in Fig (2). convergence characteristics performance of developed form 
of GA for weight adjustment shown in Fig(4) and in Fig(5).in both cases it is very clear that very 
fast convergence with high reliability can be achieve by GA (except for trail number 3 and 4)as 
shown in Table 2. 
 

6. CONCLUSION 
Determination of optimal weights in ANN in the phase of learning has obtained by using the 
concept of genetic algorithm. Because of direct form realization in defining the solution of weights 
there is no extra means required to represent the solution in population. Proposed method of 
weights adjustment has compared with the gradient decent based learning and it has shown 
proposed method outperform at every level for XOR classification problem. Even with lesser 
number of hidden nodes where gradient decent method is completely fail for learning, proposed 
method has shown very respectable performance in terms of convergence as well as accuracy 
also. Defined solution of learning has generalized characteristics from application point of view 
and having simplicity in implementation. 
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