
Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 9

A Fast Near Optimal Vertex Cover Algorithm (NOVCA)

Sanjaya Gajurel sxg125@case.edu
Advanced Research Computing
Case Western Reserve University
Cleveland, OH, US

Roger Bielefeld rab5@case.edu
Advanced Research Computing
Case Western Reserve University
Cleveland, OH, US

Abstract

This paper describes an extremely fast polynomial time algorithm, the Near Optimal Vertex Cover
Algorithm (NOVCA) that produces an optimal or near optimal vertex cover for any known
undirected graph G (V, E). NOVCA is based on the idea of (i) including the vertex having
maximum degree in the vertex cover and (ii) rendering the degree of a vertex to zero by including
all its adjacent vertices. The two versions of algorithm, NOVCA-I and NOVCA-II, have been
developed. The results identifying bounds on the size of the minimum vertex cover as well as
polynomial complexity of algorithm are given with experimental verification. Future research
efforts will be directed at tuning the algorithm and providing proof for better approximation ratio
with NOVCA compared to any other available vertex cover algorithms.

Keywords: Vertex Cover Problem, Combinatorial Problem, NP-Complete Problem,
Approximation Algorithm.

1. INTRODUCTION
The Vertex Cover (VC) of a graph G(V,E) with vertex set V and edge set E is a subset of vertices

C of V (C ⊆ V) such that every edge of G has at least one endpoint in C. In 1972 Richard Karp
[1] showed that identification of minimal VC in a graph is an NP-complete problem.

Various algorithmic approaches have been used to tackle NP complete problems. The Vertex
Cover problem, one of the NP complete problems, has been actively studied because of its
important research and application implications. Polynomial-time approximation and heuristic
algorithms for VC have been developed but none of them guarantee optimality. By using the
definition of approximation ratio, VC has an approximation ratio of ρ(n) for any input of size n. The
solution C produced by approximation algorithm is within the factor of ρ(n) of the solution C* of an
optimal algorithm i.e. C*/C ≤ ρ(n). Also, the approximation algorithm has approximation ratio of 2
– ε, where 0 < ε < 1. A 2-approximation [2] algorithm has been trivially obtained and similar
approximation algorithms have been developed [3], [4] with an approximation of (2 – (ln (ln n)/2ln
n)), where n is the number of vertices. Halperin [5] achieved an approximation factor of (2 – (1 –
o(1))(2ln (ln Δ)/ ln Δ)) with maximum degree at most Δ. Karakostas [6] attained an approximation
factor of (2 – θ(1/(log n)1/2))), the best approximation yet, by using the semidefinite programming
relaxation of VC. Evolutionary algorithms (EA) that are randomized search heuristics have also
been used for solving combinatorial optimization problems including VC [7], [8].

Vertex Cover problems have been solved in O (1.2738k + kn) time [9] by using a bounded search
technique where a function of a parameter restricts the search space. Abu-Khazm et al. have
identified crown structure to reduce the size of both n and k [10]. It has been known that when
relevant parameters are fixed, NP-complete problems can be solved in polynomial time. In both
[10] and [11], n is the input size and k is the positive integer parameter. Though not guaranteed to

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 10

find a minimum vertex cover, an approximation of 3/2 for almost every single graph was obtained
in [11]. According to Dinur and Safra [12], it is NP-Hard to get ε < 1.3606.

The paper is organized as follows: the NOVCA algorithm is described in Section 2; Section 3
provides experimental results; Section 4 is the conclusion.

2. NEAR OPTIMAL VERTEX COVER ALGORITHMS (NOVCA)
NOVCA is motivated by the fact that a vertex cover candidates are those that are adjacent to
minimum degree vertex so that its degree will be forcibly rendered to zero without choosing it.
This fact has been reinforced during tie when the vertex with neighbors having maximum degrees
is preferred over other minimum vertices. Without any optimization effort, the complexity of
NOVCA is O(E (V + log2V)); with V = n, the complexity becomes O(n2 (n + log2n)) which is
polynomial. The pseudo-code of NOVCA is presented in Fig. 1. Network Bench Node Degree
algorithm [13] has been applied to determine the degree of each node. Then, the sum of the
degree of adjacent nodes for each node is calculated. Both these values are included as data
structures in a node - deg[v]/adj_deg_sum[v] as showed in Fig. 2. Initially, vertex cover set VC is
empty.

NOVCA-I [14] constructs the vertex cover by repeatedly adding, at each step, all vertices
adjacent to the vertex of minimal degree; in the case of a tie, it selects the one having the
maximum sum of degrees of its neighbors. NOVCA-II, on the other hand, builds vertex cover by
including vertices in descending order of degree; in the case of a tie, it chooses the vertex having
the minimum sum of degrees of its neighbors. The vertices are chosen in increasing order of their
degrees i.e. the adjacent vertices of minimum degree vertex are included in VC first. The magic
function GetMinVertex () breaks a tie in selecting the best candidate vertex in a vertex cover. The
implementation forcibly renders the degree of low degree vertices to zero without choosing them.

Declarations:

V is the set of vertices of G
E is the set of edges of G
deg[V] is an integer array indexed by V for a set
 of vertices V
sum_adj_deg[V] is an integer array indexed by V for
 a set of vertices V
VC is the set of vertices comprising a vertex cover
Qsum_adj_deg is the set of vertices having min deg[V]
 (local variable in GetMinVertex())

Functions:
Degree(v) is the degree of the vertex v є V
Adj(v) gives the set of vertices that are adjacent
 to v є V
GetMinVertex() identifies the next adjacent
 vertices to include in the cover

Heap_MIN(deg) returns the value of min. deg[V]
HEAP_MAX(Qsum_adj_deg) returns the vertex having max
 Qsum_adj_deg

 for each v є V {
 deg[v] = Degree(v)
 }

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 11

 for each v є V {

 sum_adj_deg[v] =Σ v’ε Adj(v)deg[v’]
 }

 E’ = E
 VC = ф

 while (E’≠ ф){
 vc = GetMinVertex(deg, sum_adj_deg)
 VC = VC + { Adj(vc) }
 for each v є Adj(Adj(vc)){ //for NOVCA-I
 //for each v є Adj(vc){ //for NOVCA-II
 E' = E – { (adj(vc), v) }
 deg[v] = deg[v] – 1
 }
 V = V – { Adj(vc) } //for NOVCA-I
 //V = V – { vc } //for NOVCA-II
 for each v є V{
 If (Adj(v) == ф) continue
 sum_adj_deg[v] = Σ v’ε Adj(v)deg[v’]
 }
 } //end while

 /// Magic Function GetMinVertex() Declarations ///

 Vertex GetMinVertex(deg, sum_adj_deg){
 Qsum_adj_deg = ф
 vmin_deg = HEAP_MIN(deg) //for NOVCA-I
 //vmax_deg = HEAP_MAX(deg) //for NOVCA-II
 for each v є V{
 If (deg[v] == vmin_deg) //for NOVCA-I
 //If (deg[v] == vmax_deg) //for NOVCA-II
 Qsum_adj_deg = Qsum_adj_deg + {v}
 }
 return Heap_MAX(Qsum_adj_deg) //for NOVCA-I
 //return Heap_MIN(Qsum_adj_deg) //for NOVCA-II
 }

FIGURE 1: Pseudo-code for NOVCA; E[G]: set of edges of graph G; VC: Vertex Cover Set; Q: Priority

Queue; note that the commented bold statements are for NOVCA-II.

3. EXPERIMENTAL WORK AND RESULTS
Experiments to corroborate the theoretical results have been conducted on the CWRU High
Performance Computing Resource using compute nodes with 3.0 GHz Intel Xeon processors
running Red Hat Enterprise Linux 4 and using the gcc 3.4.6 compiler. Tests are performed in both
serial and parallel environments. Results for all example graphs as described above always
return optimal (minimum) vertex cover. We have selected Complete Graph as a test graph to
determine time complexity of NOVCA for two reasons:

 optimal vertex cover is known; n – 1; where n is the number of vertices
 requires exhaustive search; there is an edge from each vertex to all other vertices

The shell script in Fig. 2 “graph_gen.sh” generates a complete graph of size n entered as input.
This graph is then fed to executable “vc (serial) or vc_openmp (parallel)” (C++ program compiled
with g++ compiler) to get vertex cover for that particular graph. The outputs are showed in Fig. 3.

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 12

#PBS -l walltime=36:00:00
#PBS -l nodes=1:ppn=4:quad
#PBS -N graph1000
#PBS -j oe
cd $PBS_O_WORKDIR
/usr/local/bin/pbsdcp -s vc graph_gen.sh $TMPDIR
cd $TMPDIR
sh graph_gen.sh 1000
cp gen_graph graph1000
time ./vc graph1000 #vc_openmp for parallel
/usr/local/bin/pbsdcp -g '*' $PBS_O_WORKDIR
cd $PBS_O_WORKDIR

FIGURE 2: The graph_gen.sh takes 1000 (number of vertices) as an input that creates a netlist in a file,
graph1000, input to the executable vc; execuatable vc will be vc_openmp and ppn = 4 respectively for

parallel implementation.

The cover consists of the following vertices:
 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
…
…
994 995 996 997 998
There are 999 vertices in the cover.
real 0m7.161s
user 0m7.156s
sys 0m0.004s

FIGURE 3: Output showing the vertices in a vertex cover, number of vertices, and execution time

We have recorded the computation time for different sizes of the graphs for both serial and
parallel implementation to elucidate the polynomial complexity of NOVCA algorithm as depicted in
Fig. 4(a)(b). We used MATLAB’s polyfit(x,y,n) command to verify polynomiality as shown in Fig. 5
and Fig 6(a)(b).

(a)

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 13

(b)

FIGURE 4: Computational Time of NOVCA for different sizes of complete graphs for (a) Serial and (b)

Parallel

x = [1000,2000,3000,4000,5000,6000,7000];
y=[7.124,129.21,437.274,1046.93,2061.037,2882.444,4666.
 976]; % from serial implementation
y=[7.083,65.08,238.669,589.784,971.582,1649.391,2223.02
 0]; % from parallel implementation
p = polyfit(x,y,2)
p = 0.0001 -0.3592 258.4364
x2 = 1000:500:7000;
y2 = polyval(p,x2);
plot(x,y,'o',x2,y2)

FIGURE 5: MATLAB commands used for output data (computation time) from simulation for both serial and

parallel implementation

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 14

(a)

(b)

FIGURE 6: MATLAB plot using polyfit with n=2; (a) Serial and (b) Parallel

NOVCA has approximation ratio smaller than 1.3606 for all available bench mark (Table 1, Table
2[15]; not showed all of the instances) graphs. For some instances like c-fat, Johnson, and
random graphs NOVCA provides optimal cover. Noticeably, the execution time of NOVCA for any
instance is remarkable. NOVCA has been found to perform very well compared to other available
algorithms. For the instances where it provides near optimal solutions, it outperforms other
algorithms in terms of execution time. We have compared NOVCA with COVER [16]. COVER is a
stochastic local search algorithm for k-vertex cover. It constructs the initial candidate solution C
greedily. When the several vertices satisfy the criterion for inclusion in C, COVER selects one of
them randomly with uniform probabilities. The COVER algorithm terminates when either the
vertex cover is found or max number of steps (MAX_ITERATIONS), has been reached. NOVCA,
on the other hand doesn’t have any randomness element and terminates when there are no more
vertices in V. So, it has only one run unlike average execution time calculated using random
seeds in different runs in COVER.

Though COVER is found to obtain better vertex cover in most of the instances of the
benchmarks, NOVCA is very simple and it outperforms COVER in execution time. In case of the
graph instance, MANN_a81, where both NOVCA and COVER return the same value 2225,
NOVCA is 20 times faster. Though NOVCA-I outperforms NOVCA-II in terms of approximation
ratio in almost all instances except keller, p-hat, and sanr, NOVCA-II has better execution time
than NOVCA-I. For the challenge instances of frb100-40 [15], NOVCA-I is off by just 17 vertices
(NOVCA returns 3917 vertices whereas the optimal vertex cover is 3900), but the execution time
is just remarkable; only 2013.667 sec. The challenge is stated as “Based on theoretical analysis
and experimental results of smaller instances, I conjecture that in the next 20 years or more (from
2005), these two benchmarks cannot be solved on a PC (or alike) in a reasonable time (e.g. 1
day) [15].” The graphs for number of vertices returned and the execution times, as showed in Fig.
7 and Fig. 8 respectively, portray that NOVCA, though comparable to COVER in terms of number
of vertices returned, is significantly faster than COVER. We have also carried out comparisons of
NOVCA against two other heuristic Minimum Vertex Cover (MVC) Algorithms, PLS [17] and
EWCC [18], with similar results (not explicitly tabulated here).

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 15

Instances |V| |C*|
NOVCA-I

|C|
NOVCA-I
|C|/|C*|

NOVCA-I
Time (sec)

COVER
|C|avg

COVER
Timeavg (sec)

frb59-26-1 1534 1475 1485 1.007 80.258 1477 18611.3
frb59-26-2 1534 1475 1484 1.006 79.297 1478 18589.5
frb100-40 4000 3900 3917 1.004 2013.667 - -
broc200_1 200 179 181 1.011 0.115 179 768.2
broc800_4 800 774 782 1.010 10.832 775 4051.2
C2000.9 2000 1922 1932 1.005 207.060 1922 21489.7

c-fat200-5 200 142 142 1 0.092 142 1549.1
c-fat500-10 500 374 374 1 2.117 374 4401.2

gen200_p0.9_44 200 156 163 1.045 0.092 156 1543.6
hamming10-2 1024 512 512 1 10.297 512 2412.2
hamming10-4 1024 984 988 1.004 21.505 986 3457.6
johnson16-2-4 120 112 112 1 0.076 112 297.9
johnson32-2-4 496 480 480 1 2.273 480 2351.9

keller4 171 160 164 1.025 0.007 160 985.7
keller5 776 749 761 1.016 9.125 749 2364.9

MANN_a27 378 252 253 1.004 0.493 252 756.3
MANN_a81 3321 2221 2225 1.002 773.963 2225 15672.1
p_hat500-1 500 491 492 1.002 2.683 491 1810.2
p_hat1500-3 1500 1406 1414 1.006 74.991 1406 1298.9

san200_0.7_1 200 170 183 1.077 0.117 170 713.7
san1000 1000 985 991 1.006 22.901 989 4972.8

sanr200_0.7 200 183 185 1.011 0.857 183 788.2
sanr400_0.7 400 379 382 1.008 1.030 380 2112.5
graph50-10 50 35 35 1 0.006 35 124.5
graph100-10 100 70 70 1 0.034 70 205.3
graph200-05 200 150 150 1 0.114 150 854.1
graph250-05 250 200 200 1 0.300 200 988.5
graph500-05 500 290 290 1 1.604 290 22555.2

TABLE 1: Performance Comparison between NOVCA-I and COVER on DIMACS and BHOSLIB

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg:

Average execution time for COVER; no data available for the instance frb100-40 in COVER

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 16

Instances |V| |C*|
NOVCA-II

|C|
NOVCA-II

|C|/|C*|
NOVCA-II
Time (sec)

COVER
|C|avg

COVER
Timeavg (sec)

frb59-26-1 1534 1475 1494 1.014 34.770 1477 18611.3
frb59-26-2 1534 1475 1496 1.014 35.686 1478 18589.5
frb100-40 4000 3900 3944 1.011 885.860 - -
broc200_1 200 179 182 1.017 1.316 179 768.2
broc800_4 800 774 786 1.016 6.162 775 4051.2
C2000.9 2000 1922 1942 1.010 88.604 1922 21489.7

c-fat200-5 200 142 142 1 1.238 142 1549.1
c-fat500-10 500 374 374 1 1.514 374 4401.2

gen200_p0.9_44 200 156 170 1.090 1.514 156 1543.6
hamming10-2 1024 512 512 1 5.584 512 2412.2
hamming10-4 1024 984 992 1.008 10.350 986 3457.6
johnson16-2-4 120 112 112 1 1.248 112 297.9
johnson32-2-4 496 480 480 1 2.245 480 2351.9

keller4 171 160 162 1.013 1.500 160 985.7
keller5 776 749 761 1.016 5.115 749 2364.9

MANN_a27 378 252 261 1.036 1.641 252 756.3
MANN_a81 3321 2221 2241 1.009 297.236 2225 15672.1
p_hat500-1 500 491 492 1.002 2.595 491 1810.2

p_hat1500-3 1500 1406 1412 1.004 34.535 1406 1298.9
san200_0.7_1 200 170 185 1.088 1.535 170 713.7

san1000 1000 985 992 1.007 11.657 989 4972.8
sanr200_0.7 200 183 184 1.005 1.351 183 788.2
sanr400_0.7 400 379 384 1.013 1.947 380 2112.5
graph50-10 50 35 35 1 1.667 35 124.5

graph100-10 100 70 70 1 1.552 70 205.3
graph200-05 200 150 150 1 1.523 150 854.1
graph250-05 250 200 200 1 1.653 200 988.5
graph500-05 500 290 290 1 2.366 290 22555.2

TABLE 2: Performance Comparison between NOVCA-II and COVER on DIMACS and BHOSLIB

benchmarks |V|: number of vertices; |C*|: optimal cover; NOVCA |C|: cover returned by NOVCA; COVER
|C|avg: Cover returned by COVER; NOVCA Time (sec): Execution time for NOVCA; COVER Timeavg:

Average execution time for COVER; no data available for the instance frb100-40 in COVER

FIGURE 7: Number of Vertices returned by NOVCA-I, NOVCA-II, and COVER; no results from COVER for

the instance frb100-40

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 17

FIGURE 8: Execution time for NOVCA-I, NOVCA-II, and COVER; no results from COVER for the instance
frb100-40

4. CONCLUSION AND FUTURE WORK
NOVCA algorithm provides optimal or near optimal vertex cover for known benchmark graphs.
The experimental results depict that the algorithm is extremely fast compared to other available
state-of-the-art MVC algorithms including COVER, PLS, and EWCC.

Future research will be focused in two areas: deriving a mathematical statement regarding the
closeness of the approximation ratio to 1, and investigating approaches to parallelizing the
NOVCA algorithm.

5. ACKNOWLEDGEMENT
I would like to thank Geeta Dahal and Pujan Joshi for suggesting counter examples to early
versions of the algorithm.

REFERENCES
[1] R. Karp. “Reducibility among combinatorial problems”. In R. E. Miller and J. W. Thatcher

(eds.). Complexity of Computer Computations, Plenum Press, NY, pp. 85-103, 1972.

[2] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms. The MIT Press, pp. 1022-
1024, 2001.

[3] R. Bar-Yehuda and S. Even. “A local-ratio theorem for approximating the weighted vertex
cover problem”. North-Holland Mathematics Studies, vol. 109, pp. 27-45, 1985.

[4] B. Monien and E. Speckenmeyer. “Ramsey numbers and an approximation algorithm for
the vertex cover problem”. Acta Informatica, vol. 22, pp. 115-123, 1985.

Sanjaya Gajurel & Roger Bielefeld

International Journal of Experimental Algorithms (IJEA), Volume (3) : Issue (1) : 2012 18

[5] E. Halperin. “Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs”. SIAM J. on Computing, vol. 31, pp. 1608-1623, 2002. Also in Proc. of
11th SODA, pp. 329-337, 2000.

[6] G. Karakostas. “A better approximation ratio for the vertex cover problem”. ICALP, pp.
1043-1050, 2005.

[7] G. Rudolph. “Finite Markov chain results in evolutionary computation”. A tour d’horizon,
Fundamenta Informaticae, vol. 35, pp. 67-89, 1998.

[8] P. Oliveto, J. He, X. Yao. “Evolutionary algorithms and the Vertex Cover problem”. CEC,
pp. 1430-1438, 2007.

[9] J. Chen, I. Kanj and G. Xia. “Simplicity Is Beauty: Improved Upper Bounds for Vertex
Cover”. Technical report TR05-008, School of CTI, DePaul University, 2005.

[10] F. Abu-Khazm, M. Fellows, M. Langston, and W. Suters. “Crown Structures for Vertex
Cover Kernelization”. Theory Comput. Systems, vol. 41, pp. 411-430, 2007.

[11] E. Asgeirsson and C. Stein. “Vertex Cover Approximation on Random Graphs”. WEA
2007, LNCS 4525, pp. 285–296, 2007.

[12] I. Dinur and S. Safra. “The importance of being biased”. STOC’02, pp. 33-42, 2002.

[13] NWB Team. Network Workbench Tool. Indiana University, North Eastern University, and
University of Michigan, http://nwb.slis.indiana.edu/, 2006.

[14] S. Gajurel, R. Bielefeld. “A Simple NOVCA: Near Optimal Vertex Cover Algorithm”.
Procedia Computer Science, vol. 9, pp 747-753, 2012.

[15] K. Xu. “Vertex Cover Benchmark Instances (DIMACS and BHOSLIB)”.
http://www.cs.hbg.psu.edu/benchmarks/vertex_cover.html, 2012.

[16] S. Richter, M. Helmert, and C. Gretton. “A Stochastic Local Search Approach to Vertex
Cover”. In Proceedings of the 30th German Conference of Artificial Intelligence (KI), pp
412-426, 2007.

[17] S. Cai, K. Su and A. Sattar. “Local Search with Edge Weighting and Configuration
Checking Heuristics for Minimum Vertex Cover”. Artif. Intell., vol. 175 pp. 1672-1696,
2011.

[18] W. Pullan. “Phased Local Search for the Maximum Clique Problem”. J. Comb. Optim.,
vol. 12, pp. 303-323, 2006.

