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Abstract 
 

The essence of the plethora of sorting algorithms available is to have varieties that suit different 
characteristics of data to be sorted. In addition, the real goal is to have a sorting algorithm that is 
both efficient and easy to implement. Towards achieving this goal, Shellsort improved on Insertion 
sort, and various sequences have been proposed to further improve the performance of Shellsort. 
The best of all the improvements on Shellsort in the worst case is the Modified Diminishing 
Increment Sorting (MDIS). This article presents Circlesort, a variant of MDIS. The results of the 
implementation and experimentation of the algorithm with MDIS and some notable sorting 
algorithms showed that it performed better than the established algorithms considered in the best 
case and worst case scenarios, but second to MDIS. The results of the performance comparison 
of the algorithms considered also show their strengths and weaknesses in different scenarios. 
This will guide prospective users as to the choice to be made depending on the nature of the list 
to be sorted.  
 

Keywords: Circlesort, Modified Diminishing Increment Sorting, Shellsort, Quicksort, Introsort, 

Heapsort.  

 
 
1. INTRODUCTION 
In a bid to break the quadratic running time of sorting algorithms then, Shellsort was invented by 
Donald Shell [1]. The sorting algorithm divides the whole list of elements to be sorted into smaller 
subsequences and applies Insertion Sort on each of the sublists. Even though any sequence c1, 
c2, c3, …, cn could be used in as much as the last is 1, the sequences proposed Donald are [n/2], 
[n/4], [n/8], …[1, 2, 3], where n is the number of elements in the list. Towards improving the 
performance of Shellsort, many increments and approaches have been proposed: Hibbard’s 
sequence, Papernov and Stasevich’ sequence [2, 4], sequences (2k – (-1)k/3 and (3k -1)/2, 
Fibonacci numbers, the Incerpi-Sedgewick sequences, Prat-tlike sequences, N. Tokuda’s 
increment [2] and the MDIS [5]. Among all these approaches, the MDIS is the most efficient in the 
worst case scenario [5]. This approach has also been used to enhance the performance of Bubble 
Sort [6], Quicksort [7] and Introsort [8]. Further still, it has been employed in a “collision detection 
algorithm to detect collision and self-collision, between complex models undergoing rigid motion 
and deformation to reduce the time complexity of collision detection performed” [9].  
 
This article presents Circlesort, which is a variant of the Modified Diminishing Increment Sorting. 
The algorithm was implemented and the results of its performance in different scenarios 
compared with Heapsort, Shellsort (using Shell’s sequence), Quicksort, Modified Diminishing 
Increment Sort and Introsort are presented. Furthermore, even though the performance of the 
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Modified Diminishing Increment Sorting was compared with Shellsort employing Sedgewick’s 
sequence and Tokuda’s sequence in the worst case scenario, its performance was not compared 
with major sorting algorithms like Introsort, Heapsort and Quicksort in any scenario. In the light of 
this, this article also reports the performance comparison of these algorithms experimentally with 
the Modified Diminishing Increment Sorting vis-à-vis sorted data, unsorted data, inverted data and 
partially sorted data. This provides an insight into its behaviour in these scenarios. 

 
2.  OTHER RELATED WORKS 
In [10], Plaxton et al. proved better lower bounds for Shellsort: (nlog

2
n/(loglog n)

2
). The bounds 

particularly applied to increment sequences that are non-monotonic in nature, Shellsort algorithms 
that are adaptive and some variants of Shellsort like Shaker Sort. Jiang et al. [11] proved that the 
running time for Shellsort in the average case is Ω(pn

1+1/p
). Goodrich in [12] presented a 

randomized Shellsort which is unsuspecting of the nature of the data and that runs in O(nlogn). 
This algorithm uses the increments 

n
/2, 

n
/4, 

n
/8 …1. In [13], a report of the upper bounds, lower 

bounds, average cases, among others of the following variants of Shellsort is presented: Pratt, 
Papernov-Stasevich, Sedgewick, Incerpi-Sedgewick, Poonen, Knuth, etc both theoretically and 
empirically. Dobosiewicz [14] proposed the use of bubble sort instead of insertion sort, and 
carrying out comparison and swapping from left to right of elements that are h-distance apart 
where h stands for the increment. However, no proof was made of any result on performance  

 
3. MODIFIED DIMINISHING INCREMENT SORTING (MDIS) 
According to Oyelami [5], this approach consists of two stages. The first involves comparing the 
first and last element on the list to be sorted and swap accordingly if the last element is less than 
the first when the task is to sort in ascending order of magnitude. Next, the second to the last 
element and the second element are compared and necessary action taken until the last two 
middle elements are compared and necessary action taken (when the list contains an even 
number of elements) or when it remains only one element in the middle (when the list contains 
odd number of elements). After this, the second stage applies Insertion Sort to the partially-sorted 
list to complete the sorting process. 

 
4. CIRCLESORT 
The basis of Circlesort is the first stage of the Modified Diminishing Increment Sorting algorithm. 
Instead of applying it once, the list is split into two and both halves are subjected to the same 
algorithm once more. This recursion continues until the list consists of only one single element 
(see Figure 1). If no swaps are made during a complete cycle, the list is sorted. 
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FIGURE 1: Circlesort when the list size is even. 

 
A single cycle has a time complexity of O(nlog n). However, one cycle is rarely enough to sort a 
list completely. On average, log n iterations are required, so the time complexity for a complete 

sort is )log O( 2nn . The name of the algorithm was inspired by the concentric circles in the 

diagram, which clearly illustrates the subsequent comparisons within each iteration of a cycle.  
Figure 2 below shows how the algorithm behaves when the list size is odd. The list is split into 
two, with the overlapping element in gray. Dotted lines indicate the pointers that are used to 
assemble these lists - one from the original list and one that is obtained by switching the 
elements. It can clearly be seen that they always end up in even arrays, because the centre 
element is overlapping. 
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FIGURE 2: Circlesort when the list size is odd. 

 
A C implementation is presented in Listing 1. The outer loop calculates the indexes of the first and 
last elements and passes them as parameters to the inner loop. The inner loop compares the 
elements at those indexes and swaps them if required. The number of swaps is maintained by 
variable s. The indexes are adjusted until they cross each other in the middle of the list. The list is 
split into two by combining the original start index with the adjusted end index and the adjusted 
begin index with the original end index. Then, both pairs of indexes are again passed to the inner 
loop. The number of swaps performed during the recursions are added to variable s. 
 
This algorithm works for lists of any size. However, lists with a size of a power of two allow 
parallization. The algorithm is very simple and can easily be memorized. It consists of only two 
loops and two branches, which is only marginally more complex than other well known simple 
sorting algorithms like Bubble Sort, Simple Sort and Selection Sort. However, its worst case 
performance is much better. 

 
/* Circlesort inner loop */ 
int CircleSort (int* a, int* b) 
{ 
  int* sta = a; 
  int* end = b; 
  int s = 0;  
 
  if (sta == end) return (0); 
 
  while (sta < end) { 
    if (Compare (sta, end)) { 
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         Swap (sta, end); 
         s++; 
       } 
    sta++; end--; 
  } 
 
  s += CircleSort (a, end); 
  s += CircleSort (sta, b); 
  return (s); 
} 
 
main () { 
  /* array declaration and initialization */ 
  int n; 
  int myarray [n]; 
 
  /* Circlesort outer loop */ 
  while (CircleSort (myarray, myarray + n - 1)); 
} 
 

LISTING 1: C implementation of Circlesort. 

 
5. PERFORMANCE OF CIRCLESORT 
Two approaches are usually used to measure the performance of an algorithm [15]: experimental 
approach and analytical approach. The experimental approach involves carrying out an 
experiment to determine the amount of the running time and space used by the algorithm 
implemented in a program while the analytical approach involves identifying the factors the 
memory space and the running time depend on and calculating their respective contributions. The 
experimental approach was adopted in this study. The algorithm was tested using a sorted array 
(best case situation), an unsorted array, a partially sorted array (average case) and an inverted 
array (worst case situation) and the results compared with Heapsort, Shellsort, Quicksort, 
Modified Diminishing Increment Sorting (MDIS) and Introsort. The results are presented in tables 
1 to 4. 
 
5.1 Results 
In the experimentation of the algorithm, the sets used were obtained by randomizing an 
incrementing sequence of numbers, without any duplicates. Table 1 shows the results for a sorted 
array, Table 2 for an unsorted array randomized by applying a Knut shuffle to the sorted array, 
Table 3 for the partially sorted array and Table 4 for an inverted array. 
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List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

MDIS 149 0 149 MDIS 1,499 0 1,499 MDIS 14,999 0 14,999 MDIS 149,999 0 
149,999 

 
Circle 

372 0 372 
 
Circle 

5,052 0 5,052 
 
Circle 

71,712 0 71,712 
 
Circle 

877,968 0 
877,968 

 Shell 503 0 503  Shell 8,006 0 8,006  Shell 120,005 0 120,005  Shell 1,500,006 0 
1,500,006 

 
Quick 

480 345 825 
 
Quick 

7,987 4,960 12,947 
 
Quick 

113,631 66,421 180,052 
 
Quick 

1,468,946 846,100 
2,315,046 

 Intro 574 371 945  Intro 11,107 6,452 17,559  Intro 170,968 104,236 275,204  Intro 2,386,569 1,307,525 
3,694,094 

 Heap 1,081 640 1721  Heap 17,583 9,708 27,291  Heap 244,460 131,956 376,416  Heap 3,112,517 1,650,854 
4,763,371 

 
TABLE 1: Sorted Array. 

 
 
The set was randomized by applying a Knut shuffle to the sorted set.  
 

List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

Intro 581 399 980 Quick 10,815 6,585 17,400 Quick 156,257 92,747 249,004 Quick 1,933,288 1,061,619 
2,994,907 

Quick 656 496 1,152 Intro 12,342 7,097 19,439 Intro 180,411 96,470 276,881 Intro 2,585,629 1,468,727 
4,054,356 

Shell 840 392 1,232 Shell 15,141 7,662 22,803 Heap 235,279 124,114 359,393 Heap 3,019,553 1,574,977 
4,594,530 

Heap 1,025 588 1,613 Heap 16,868 9,096 25,964 Shell 254,343 139,442 393,785 Shell 4,248,005 2,798,437 
7,046,442 

Circle 2,604 426 3,030 Circle 50,520 9,218 59,738 Circle 1,075,680 187,088 1,262,768 Circle 16,681,392 3,436,571 
20,117,963 

MDIS 1,717 1,596 3,313 MDIS 168,568 167,330 335,898 MDIS 16,906,048 16,893,598 33,799,646 MDIS 1,664,412,460 1,664,287,655 
3,328,700,115 

 
TABLE 2: Unsorted Array. 

 

 
 
 
 
 
 
The partially sorted set was obtained by sorting half the number of elements of the unsorted set. 
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List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

Intro 619 449 1,068 Quick 10,351 7,283 17,634 Intro 185,500 98,954 284,454 Intro 2,346,922 1,252,699 
3,599,621 

Quick 622 504 1,126 Intro 12,911 8,151 21,062 Heap 235,004 124,374 359,378 Quick 2,521,562 1,620,917 
4,142,479 

Shell 820 359 1,179 Shell 14,416 6,800 21,216 Shell 255,156 138,892 394,048 Heap 3,022,831 1,578,856 
4,601,687 

Heap 1,035 593 1,628 Heap 16,851 9,114 25,965 Quick 403,833 370,434 774,267 Shell 3,867,803 2,405,362 
6,273,165 

MDIS 1,385 1,247 2,632 Circle 50,520 8,074 58,594 Circle 1,003,968 166,534 1,170,502 Circle 15,803,424 3,110,166 
18,913,590 

Circle 2,604 389 2,993 MDIS 126,926 125,568 252,494 MDIS 12,482,789 12,469,036 24,951,825 MDIS 1,253,256,005 1,253,118,536 
2,506,374,541 

 
TABLE 3: Partially Sorted Array. 

 
List 
Size 

100 1,000 10,000 100,000 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

  Compares Swaps 
Total 
Operations 

MDIS 149 50 199 MDIS 1,499 500 1,999 MDIS 14,999 5,000 19,999 MDIS 149,999 50,000 
199,999 

Circle 744 50 794 Circle 10,104 500 10,604 Circle 143,424 5,000 148,424 Circle 1,755,936 50,000 
1,805,936 

Quick 514 399 913 Quick 8,406 5,506 13,912 Quick 117,534 72,675 190,209 Quick 1,513,481 899,854 
2,413,335 

Shell 668 260 928 Shell 11,716 4,700 16,416 Shell 172,578 62,560 235,138 Shell 2,244,585 844,560 
3,089,145 

Intro 590 394 984 Intro 11,924 7,063 18,987 Intro 183,507 95,393 278,900 Intro 2,375,618 1,217,738 
3,593,356 

Heap 944 516 1460 Heap 15,965 8,316 24,281 Heap 226,682 116,696 343,378 Heap 2,926,640 1,497,434 
4,424,074 

 
TABLE 4: Inverted Array.
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6. DISCUSSION 
The behaviour of the algorithm has been extensively studied and the following observations were 
made: 
 
 

 
 

FIGURE 3: Distribution of 100 Elements After One Cycle. 

 
After one cycle, the largest and the smallest element have been placed in their proper positions. 
Reducing the set accordingly does not lead to any significant optimalization, since the number of 
cycles is logarithmically bound. As a matter of fact, the number of swaps and comparisions 
required was actually increased;  after even one cycle, the set is already partially sorted and 
takes on a ”saw-tooth” like shape, as is shown in Figure 3.  
 
The number of swaps drops significantly around half the number of cycles required to sort the set. 
If the set contains a significant number of duplicates, the set is almost completely sorted at that 
point (see Figure 4). If there are no duplicates in the set, the number of swaps per cycle stabilizes 
around this point and starts dropping quickly again in the last few cycles (see Figure 5).  
 
In the last few cycles it seems that swaps are more concentrated in the centre of the subsets. 
This observed behaviour could not yet be turned into an optimization of the algorithm.  
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FIGURE 4: Number of swaps per cycle in sets with duplicates. 

 
 
 

 
 

FIGURE 5: Number of swaps per cycle in sets without duplicates. 

 
This would suggest that at least in certain situations, the Circlesort algorithm could benefit from 
further improvements, like finishing the sort using a different, more suited algorithm which can 
take advantage of the partially sorted state of the set. This, of course, would completely eradicate 
the elegant simplicity of the algorithm.  
 
How economical the algorithm can be implemented

1
 was investigated by comparing the number 

of bytecodes it generates in 4tH, an implementation of the Forth language (see Table 5). It is 
clear that Circlesort is the smallest of all of the investigated algorithms and only slightly larger 
than Insertion Sort, but significantly larger than Simple Sort. 
 
 
 
 

                                                 
1
 In case of multiple implementations or variants, the smallest was selected. 
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Algorithm Size (bytecode) 

Simple Sort 30 

Insertion Sort 44 

Circlesort 61 

Shellsort 78 

Heapsort 87 

MDIS 87 

Quicksort 90 

 
TABLE 5: Number of bytecodes per algorithm. 

 
When comparing the results, the number of swaps Circlesort required is comparable to other 
sorting algorithms - as long as the set is relatively small. The number of comparisons, however, is 
significantly higher and even rises when the size of the set increases. On the one hand, although 
the results suggest that the algorithm benefits from a partially sorted set, the effect is considered 
too small to justify the conclusion that Circlesort can be considered to be an ”adaptive” algorithm. 
On the other hand, the effect of a low number of different keys compared to the number of 
elements is too dramatic to ignore. In this case, Circlesort performs significantly better. 
 
Due to the characteristics of the algorithm, Circlesort performs much better on an inverted set. 
However, if one element is displaced, this advantage diminishes significantly. This effect is largely 
due to the number of comparisons it must make. The number of swaps required is the same as 
that of the best performing algorithm in this situation - MDIS. Circlesort is the second fastest 
algorithm when a set is completely sorted and when it is inverted, being outperformed only by 
MDIS. There seems to be no situation where the behaviour of Circlesort becomes pathological, 
since it does not require a pivot or special distribution of values in the set. Since Circlesort 
compares elements separated by large gaps, there is no indication that Circlesort suffers from 
slow moving elements (”turtles”). 
 
From the results presented in the tables below, it can clearly be seen that for all the sizes of the 
set to be sorted for an already sorted list, the performance is as follows from the best to the worst 
in efficiency: MDIS, Circlesort, Shellsort, Quicksort, Introsort and Heapsort.  
 
For an unsorted list got by randomizing the sorted set using Knut Shuffle, the performance is as 
follows in order of efficiency: for a set containing 100 elements: Introsort, Quicksort, Shellsort, 
heapsort, Ciclesort and MDIS. For a set of size 1000: Heapsort, MDIS, Shellsort, Quicksort, 
introsort and Ciclesort. For a set of 10,000 elements: Heapsort, MDIS, Quicksort, Shellsort, 
Introsort and Circlesort. For a set of 100,000 elements: Heapsort, MDIS, Quicksort, Shellsort, 
Introsort and Circlesort. 
 
From these results presented above, it is clear that Introsort and Quicksort are the most efficient 
for randomized list of size 100 while both Circlesort and MDIS are the worst. Heapsort and 
Shellsort have average efficiency. However, as the size of of the list increases, Heapsort 
becomes the best followed by MDIS. Quicksort and Shellsort perform averagely while Circlesort 
and Introsort become the most inefficient. 
 
For a all sizes of a partially sorted list, Introsort and Quicksort are the most efficient in that order 
while MDIS and Cirlcesort are the most inefficient. Shellsort and Heapsort perform averagely. 
 
In the case of an inverted list, for all sizes of the list, the performance is as follows from the best 
to the worst: MDIS, Ciclesort, Quicksort, Shellsort, Introsort and Heapsort. 

 
7. CONCLUSION 
Circlesort has proven that the underlying principle of MDIS can be turned into a full-fledged 
sorting algorithm, which is not only simple and elegant, but also outperforms some other known 
sorting algorithms in some instances. The fact that it can be easily turned into a parallized version 
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for sets with a size of a power of two and that the behaviour of the algorithm suggests that further 
optimizations are feasible, justifies in our opinion further study and research.  
 
Since “There is no known ‘best’ way to sort; there are many best methods, depending on what is 
to be sorted, on what machine and for what purpose” [2], Circlesort adds to the list of simple-to-
implement sorting algorithms for those concerned about simplicity. The algorithm is therefore 
recommended for sorting in the best case and worst case scenarios because of its efficiency in 
these situations. Further research will be carried as per the following: 
 
i. Would a single bout of quicksort (non-recursive) boost the algorithm? 
ii. Would the algorithm benefit from a selection sort when the sets are becoming 

small enough? 
iii. There is a point where only a small percentage of the elements are unsorted. This point is 

reached much faster when there are duplicates. Still, it takes several iterations to move in 
these at the proper place. How far are these elements at that point from the required 
position? 

iv. Are there pure form (non-hybrid) derivates that perform better?  
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