
Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 95

The Use of Java Swing’s Components to Develop a Widget

Dewi Agushinta R. dewiar@staff.gunadarma.ac.id
Computer Science and Information Technology Faculty
Gunadarma University
Pondok Cina, Depok 16424,
West Java, Indonesia

Avinanta Tarigan avinanta@staff.gunadarma.ac.id
Industrial Technology Faculty
Gunadarma University
Pondok Cina, Depok 16424,
West Java, Indonesia

Egy Wisnu Moyo eguy@student.gunadarma.ac.id
Informatics Department
Gunadarma University
Pondok Cina, Depok 16424,
West Java, Indonesia

Fitria Handayani Siburian dearest_v3chan@student.gunadarma.ac.id
Informatics Department
Gunadarma University
Pondok Cina, Depok 16424,
West Java, Indonesia

Sigit Widiyanto ddxq_cuayang@student.gunadarma.ac.id
Informatics Department
Gunadarma University
Pondok Cina, Depok 16424,
West Java, Indonesia

Abstract

Widget is kind of application that provides a single service such as a map, news
feed, simple clock, and battery-life indicators. It is developed to facilitate user
interface (UI) design. A user interface function may be implemented using
different widgets developed on different UI platforms. This article presents a
comprehensive review on Java Swing as a platform to develop widgets. It is a
platform that is generally used in various applications, such as in desktop, web
browser, and mobile phone. Furthermore, we also describe UI elements of Java
Swing’s components used to establish widgets. At the end, this article discusses
comparison between Java Swing and several commonly used UI platforms.

Keywords: Desktop, Java Swing, Web Browser, Widget

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 96

1. INTRODUCTION

Since 2003, a new kind of application has been significant proliferation onto both the desktops of
computers and web-enabled portable devices like mobile phones [1]. This kind of application is
generally referred to by developers as a widget engine. A piece of software that is able to run
other smaller applications known as widgets or gadgets [2].

One of the biggest challenges of widget development is writing multiple sets of computer codes
so that a widget will be compatible with multiple operating systems and types of devices.
Companies considering new mobile widgets should evaluate and then deploy applications
according to the following criteria: business model, distribution model, server-side application
framework and the run-time environment.

Many widgets have been developed to facilitate user interface design. The user interface (UI) of
an application provides an interactive environment for a user to better communicate with the
system [3]. A user interface (UI) function may be implemented using different widgets with the
same function. Most designers do not develop UI components in house because many widgets
engines are available on the market. Widgets can be described as a type of single-purpose
application, which rather than operate in a completely stand alone fashion instead is deployed
within a framework that handles basic functions and services.

Swing is a GUI application programming interface that is included in the Java development kit
[4]. Swing is built on top of Abstract Window Toolkit (AWT). So, many AWT features are found in
Swing. In particular, Swing uses AWT's event handling model and layout managers. In other
side Swing adds new components, event types, and layout managers. Moreover, Swing includes
replacements for most AWT components. The name of a replacement component begins with a
'J' followed by the name of the corresponding AWT component.

Swing is a part of GUI technologies so-called Java Foundation Classes (JFC). JFC provides
classes that support devices for the physically and mentally, that customize the appearance and
behavior of GUI components. Thus, Swing provides enhanced 2D graphics support, and that
provide drag and drop support.

Since Java is an object-oriented language, understanding a component's inheritance hierarchy
and the corresponding interfaces that it implements are important to understand where the
component gets its functionality. Some of JComponent elements include support for borders,
component sizing, component painting, mouse over tool tip text, actions (which is a combination
of a GUI component and an action event listener), binding keystrokes to actions, and double
buffering (which prevents a component from flickering when it is continuously painted as in
animation).

This article presents fundamental concepts of a widget application that is able to produce a
customized product based on the circumstances and standards. We present a review on Java
platform Swing compared with other platform as a widget developer. We will introduced the Java
literature in section 2. We will explain about widget types and how to deploy it. Section 3 presents
Java Swings as a widget. Discussion about comparation of Java Swing and several platform
presents in section 4. Last section of this article is conclusion and future work.

2. LITERATURE

Java is very particular about the order in which actual parameter values are included in
constructions and method invocations. All users have to make sure they place the parameters in
the required order whenever they write a construction involving multiple actual parameters. Java
provides extensive mechanisms to enable a programmer to tell it how the components of a
program’s interface should arranged.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 97

Most current computer programs interact with their users through mechanisms like buttons,
menus, and scroll bars [5]. These mechanisms are called Graphical User Interface Components,
or GUI components. The actual details of how GUI components should behave in a Java program
are described as part of the Swing library.

The Swing component set is part of the Java Foundation Classes (JFC). The JFC is a collection
of Java classes which are used to develop software based on GUI [6]. JFC also has classes that
are used to add the functions and the ability to create a variety interaction of Java programming
languange. JFC contains a number of GUI components (buttons, textfields, scrollpanes, etc.) that
are intended to be direct replacements of the corresponding AWT GUI components. Once users
understand the basic form of a construction, it is easy to learn how to construct GUI components
of other types. All users need to know is the name assigned by Swing to the type of component
you want to create and the actual parameters to use to specify the details of the components.
This information is provided in the documentation for the Swing libraries that is available online.

Many widgets have been developed to facilitate user interface design. The Swing gives the
programmer a more powerful interface to the widgets. Employing a technology called the
Model/View/Controller (MVR) architecture, the Swing has given users the ability to control how
widgets look, how it respond to input, and, for some more complex widgets, how data is
represented. MVC is a design pattern often used in building user interface (UI) [7].

A UI function may be implemented using different widgets with the same function. A UI
Component is specialized into three categories: StaticDisplay, ActionInvoker and
InteractionControl [8]. The StaticDisplay category is relevant at those UI components providing
visual information, such as labels. The ActionInvoker category is relevant at those UI components
receiving user triggers, such as a button. The InteractionControl category is relevant at those UI
components receiving user options concerning navigation through the UI, such as a menu. The
graphical components that make up the user interface not only deliver information to the user, but
also are the sources of the user-generated events that provide input. When the user performs an
action such as pressing a button, the component in which the action takes place generates an
event [9]. An event listener is an object that responds to or handles a particular kind of event. The
event listener registers with the component generates an applicable event. The listener responds
by performing some appropriate action.

Desktop Widgets
The desktop widget is a type of widget that has interactive virtual tools providing single-purpose
services such as showing the user the latest news, the current weather, the time, a calendar, a
dictionary, a map program, a calculator, desktop notes, photo viewers, or even a language
translator, among other things. The desktop widget is commonly just called widgets [10]. Figure 1
shows an example of desktop widget.

FIGURE 1: Desktop widget example.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 98

Examples of widget engines include dashboard widgets of Apple Macintosh, Microsoft gadgets in
Windows Vista and in the Windows Live system, Plasmoids (widgets in Plasma the workspace for
the KDE desktop environment), Porlets in Google Desktop, Yahoo! Widgets, gdesklets,
adesklets, and Screenlets in Linux and also Opera widgets on all platforms (desktop, mobile TVs,
gamming consoles) using the Opera browser’s rendering engine.

Web Widgets
Web browsers can also be used as widget engine infrastructures. While widgets on desktop have
attracted the most attention initially, there has also been a parallel development of widgets for
web. It means that small chunk of web functionality that has facility to be embedded in other web
applications. For example, adding an instant messaging tool to a web log to enable live
interaction with visitors. Figure 2 illustrates example of web widget.

FIGURE 2: Web widget example.

Web widgets are entirely server-side entities that are integrated into other web pages [11]. When
the server generates a page, it insters the widget code, typically implemented in Flash or
JavaScript, into the web page being created based on the user’s preferences. By manipulating
these preferences, the users can place mini web applications into their personalized web page.

In most cases web widgets can be developed by users of a framework. Since the introduction of
web widgets, thousands of them have been created for a wide variety of tasks. Some examples
are used to display the weather, to show news headlines and to play games. Often framework
offer users a catalog where they can download predefined web widgets [12].

Web widgets have unleashed some commercial interest, due their perceived potential as a
marketing channel, mainly because they provide interactively through social networks. The first
known web widget, Trivia Blitz, was introduced in 1997. It was a game applet offered by
Uproar.com (the leading online game company from 2000-2001) that appeared on over 35,000
websites ranging from Geocities personal pages to CNN and Tower Records.

Collaboration Widgets
Desktop widget and their supporting engines have been developed in response to the need from
users’ discrete chunks of functionality in a simple and fun way. It is exclusively from a single-user
viewpoint. A number of collaboration widgets to be developed are Gabbly chat tools and
3Bubbles.

More Widgets
Blidgets are desktop widgets that connect the user to a blog.

Widget draft standard is used to standardize some aspects of widgets. The Opera browser is the
first widget engine to adopt this draft W3C standard.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 99

Mobile Widgets are like desktop widgets, but for a mobile phone. Applications for a single specific
purpose and with low functional complexity are appropriate to be developed as mobile widgets
[13]. Mobile widgets can maximize screen space use and may be especially useful in placing live
data-rich applications on the device idle-screen/ home-screen/”phone-top”. While widgets are a
convenience in online world, they can be looked at as near-essential in mobile world. The reason
is because mobile device is small and interface is often challenging. Their user interface can be
kept simple, which allows easy and intuitive interaction though the limited input capabilities of
mobile devices.

TV set widgets is also available for TV’s. Yahoo! Widget Engine is announced as a component of
the next generation TV sets.

Deploying A Widget
The widget can be described as a Graphical User Interface (GUI), which can interact with user,
so the developer has to attend on designing. It has been described the initial findings on using a
lightweight approach to addition of small applications (‘widgets’) to the palette of options
available for Learning Designing environments. There are two models architecture. Firstly, the
model uses a local framework for the instantiation of tools within a managed environment.
Second, the model use of wider framework to incorporate tools distributed that usually is used on
web based development.

In other development, qualities of Model View Controller (MVC) have to base on widgets
standardization. The MVC is a modern user interface framework for Smalltalk [14]. The MVC
Triad can produce an “Observer” based framework that is easy to use and more flexible than
currently available in other Smalltalk.

Widget can be implemented on many kinds application, such as mobile application. Users can
create a personal widget by themselves without programming. When deploy the widget, we have
to respect on standardizing of widget development. It is described arguing the continued
proliferation of a class of software application known as widgets onto desktop computers and
mobile phones has resulted in incompatibilities across most widget and related software.

There are various kinds of widget which are related software provided in software development.
One of them is Standard Widget Toolkit (SWT), which provided by Java [15]. SWT is the software
component that delivers native widget functionality for the Eclipse platform in an operating system
independent manner. The other part is standard for Google web application called Google Web
Toolkit (GWT) [16]. The standard GWT distribution comes with a wide range of widgets for use in
our application. GWT have implemented a strong hierarchy of Java classes in order to provide an
element of consistency across widgets where that consistency naturally exists.

Control Flow of a GUI Program
Figure 3 is the control flow of a GUI program. The start and end steps are basically the same as
the ones for a text-based menu program. After a GUI component (widget) is created, it is
positioned on screen by a layout manager. Examples of GUI components include buttons,
menus, and windows. Before we explain the next step in the flow chart, we need to provide
information on events.

An event is, for a lack of a better word, "something" that can happen to a GUI component. An
event may or may not result in a change in the component's appearance or state. For example,
usually, a mouse click on a button changes the appearance of the button so that it looks
depressed. However, usually, when the mouse pointer is moved over a button, the button does
not change its appearance. Nevertheless, this is still considered an event. The reason is that the
appearance change is not caused by the event. It is caused by the thing that responds to the
event.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 100

FIGURE 3: GUI Program Flow Control
(http://www.cs.ubc.ca/~ramesh/cpsc304/tutorial/JDBC/Swing/jdbc_swing.html).

Each event has its own set of triggers that result in the firing (creation) of the event. Generally,
user input act as the triggers. For example, when a mouse button is clicked while the mouse
pointer is over a button, a mouse event is triggered. This results in the button firing a mouse
event. The event handling tutorial at Sun has a list of the types of events that each Swing
component can fire. Anything that can fire an event is an event source. Not all event sources are
GUI components, but most are.

An event that is fired will be "uneventful" if there is nothing to respond to it. The things that
respond to events are event listeners (knows as event handlers or callbacks). Generally, you
need to register an event listener with an event source so that event source can inform the
listener about any events. This is the third step in the flow chart. Some GUI components have
pre-registered event listeners that handle standard events like example of a mouse click changing
the appearance of a button.

In the next step, program simply waits for events. When an event occurs, registered event
listeners are notified, so that they can process the event. If the user decided to quit, an event
listener should terminate program. Otherwise the event listener that corresponds to the selected
command will be invoked. After the listener performs its task, the program waits for another
event.

Model-View-Controller Architecture
The model encapsulates an object's data. The view represents the appearance of object. It
renders data in model. When the model's data changes the model notifies the view, so that the
view can update itself. The controller represents behavior of the object. When the user interacts
with view, the input is transferred from the view to the controller. The controller then updates the
model's data appropriately based on semantics of the user input. The purpose of a model-view-
controller architecture is to decouple an object's data, appearance and behavior. To change the
interface ("look and feel") of an object, we only have to change the view and controller. Figure 4
shows how the model-view-controller architecture applies to Swing components.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 101

FIGURE 4: MVC Architecture.

3. JAVA SWINGS AS A WIDGET

3.1 Basic Controls

JButton
JButton is one of the ordinary buttons. We can make a JButton be the default button as figure 5.
At most one button in a top-level container can be default button. The default button typically has
a highlighted appearance and acts clicked whenever the top-level container has the keyboard
focus and the user presses Return or Enter key. The exact implementation of default button
feature depends on the look and feel. For example, the default button changes to whichever
button has the focus, so that pressing Enter clicks the focused button. When no button has the
focus, the button originally specified as the default button becomes the default button again.

FIGURE 5: Button component.

JCheckBox
JCheckBox class provides support for check box buttons. We can also put check boxes in
menus, using the JCheckBoxMenuItem class. Because JCheckBox and JCheckBoxMenuItem
inherit from AbstractButton, Swing check boxes have all the usual button characteristics. For
example, we can specify images to be used in check boxes.

Check boxes are similar to radio buttons but their selection model is different, by convention. Any
number of check boxes in a group can be selected, such as none, some, or all, illustrated in
figure 6. A group of radio buttons, on the other hand, can have only one button selected. A check
box generates one item event and one action event per click. Usually, we listen only for item
events, since they let we determine whether the click selected or deselected the check box.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 102

FIGURE 6: CheckBox component.

JComboBox
A JComboBox, which lets user choose one of several choices, can have two very different forms.
The default form is uneditable combo box, which features a button and a drop-down list of values.
Second form, called editable combo box, features a text field with a small button abutting it. The
user can type a value in the text field or click the button to display a drop-down list.

Combo boxes require little screen space, and their editable (text field) form is useful for letting
user quickly choose a value without limiting user to displayed values. Other components that can
display one-of-many choices are groups of radio buttons and lists. Groups of radio buttons are
generally the easiest for users to understand, but combo boxes can be more appropriate when
space is limited or more than a few choices are available. Lists are not terribly attractive, but they
are more appropriate than combo boxes when the number of items is large, over 20, or when
selecting multiple items might be valid. Editable and uneditable combo boxes are so different. An
uneditable combo box in figure 7(a) contains an array of strings, but we could just as easily use
icons instead. To put anything else into a combo box or to customize how the items in a combo
box look, we need to write a custom rendered. An editable combo box illustrated in figure 7(b)
would also need a custom editor. A combo box uses a combo box model to contain and manage
the items in its menu. When we initialize a combo box with an array or a vector, the combo box
creates a default model object for we. As with other Swing components, we can customize a
combo box in part by implementing a custom model which is an object that implements the
ComboBoxModel interface.

(a) An Uneditable (b) An Editable

FIGURE 7: ComboBox component.

An editable combo box fires an action event when user chooses an item from the menu and when
the user types Enter. Note that the menu remains unchanged when user enters a value into
combo box. If we want, we can easily write an action listener that adds a new item to combo
box's menu each time the user types in a unique value.

JList
A JList presents user with a group of items, displayed in one or more columns, to choose from as
in figure 8. Lists can have many items, so they are often put in scroll panes. In addition to lists,
the following Swing components present multiple selectable items to the user, such as combo

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 103

boxes, menus, tables, and groups of check boxes or radio buttons. Because list is in single-
selection mode, this code can use getSelectedIndex to get index of the just-selected item. JList
provides other methods for setting or getting the selection when the selection mode allows more
than one item to be selected. If we want, we can listen for events on the list's list selection model
rather than on the list itself.

FIGURE 8: List component.

JMenu
A menu provides a space-saving way to let user choose one of several options, as in figure 9.
Other components with which user can make a one-of-many choice include combo boxes, lists,
radio buttons, spinners, and tool bars. Menus are unique in that, by convention, they are not
placed with other components in the UI. Instead, a menu usually appears either in a menu bar or
as a popup menu. A menu bar contains one or more menus and has a customary, platform-
dependent location. It is usually along the top of a window. A popup menu is a menu that is
invisible until user makes a platform-specific mouse action, such as pressing the right mouse
button, over a popup-enabled component. The popup menu then appears under the cursor.

FIGURE 9: Menu component.

JRadioButton
Radio buttons are groups of buttons in which, by convention, only one button at a time can be
selected. The Swing release supports radio buttons with the JRadioButton and ButtonGroup
classes. To put a radio button in a menu, use JRadioButtonMenuItem class. Other ways of
displaying one-of-many choices are combo boxes and lists. Radio buttons look similar to check
boxes, but, by convention, check boxes place no limits on how many items can be selected at a
time. Because JRadioButton inherits from AbstractButton, Swing radio buttons have all the usual
button characteristics. For instance, we can specify the image displayed in a radio button, as in
figure 10.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 104

FIGURE 10: RadioButton component.

JSlider
A JSlider component is intended to let user easily enter a numeric value bounded by a minimum
and maximum value. If space is limited, a spinner is a possible alternative to a slider, as in figure
11. By default, spacing for major and minor tick marks is zero. To see tick marks, we must
explicitly set the spacing for either major or minor tick marks (or both) to a non-zero value and call
the setPaintTicks(true) method. However, we also need labels for our tick marks. To display
standard, numeric labels at major tick mark locations, set the major tick spacing, then call the
setPaintLabels(true) method.

FIGURE 11: Slider component.

JSpinner
Spinners are similar to combo boxes and lists in that they let user choose from a range of values.
Like editable combo boxes, spinners allow user to type in a value. Unlike combo boxes, spinners
do not have a drop-down list that can cover up other components. Because spinners do not
display possible values, they are often used instead of combo boxes or lists when set of possible
values is extremely large. However, spinners should only be used when the possible values and
their sequence are obvious. A spinner is a compound component with three subcomponents: two
small buttons and an editor. The editor can be any JComponent, but by default it is implemented
as a panel that contains a formatted text field. The spinner's possible and current values are
managed by its model, illustrated in figure 12.

FIGURE 12: Spinner component.

JTextField
A text field is a basic text control that enables user to type a small amount of text. When user
indicates that text entry is complete which is usually by pressing Enter, the text field fires an
action event. If we need to obtain more than one line of input from the user, use a text area. The
use of JTextField's getText method is to retrieve the text currently contained by text field. The text
returned by this method does not include a new line character for the Enter key that fired the
action event. Because JTextField class inherits from JTextComponent class, text fields are very
flexible and can be customized almost any way you like. For instance, we can add a document
listener or a document filter to be notified when text changes, and in the filter case we can modify

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 105

text field accordingly. Information on text components can be found in Text Component Features.
Figure 13 shows the textfield component.

FIGURE 13: TextField component.

JPasswordField
The JPasswordField class, a subclass of JTextField, provides specialized text fields for password
entry. For security reasons, a password field does not show the characters that user types,
shown in figure 14. Instead, the field displays a character different from the one typed, such as an
asterisk '*'. As another security precaution, a password field stores its value as an array of
characters, rather than as a string. Like an ordinary text field, a password field fires an action
event when the user indicates that text entry is complete, for example by pressing the Enter
button.

FIGURE 14: PasswordField component.

3.2 Interactive Displays of Highly Formatted Information

JColorChooser
A color chooser is a component that we can place anywhere within our program GUI. The
JColorChooser API also makes it easy to bring up a dialog (modal or not) that contains a color
chooser. Figure 15 is a picture of an application that uses a color chooser to set the text color in a
banner.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 106

FIGURE15: ColorChooser component.

The color chooser consists of everything within the box labeled ChooseTextColor. It contains two
parts, a tabbed pane and a preview panel. The three tabs in the tabbed pane select chooser
panels. The preview panel below the tabbed pane displays the currently selected color.

JFileChooser
File choosers provide a GUI for navigating the file system, and then either choosing a file or
directory from a list, or entering the name of a file or directory as in figure 16. To display a file
chooser, we usually use JFileChooser API to show a modal dialog containing file chooser.
Another way to present a file chooser is to add an instance of JFileChooser to a container. The
JFileChooser API makes it easy to bring up open and save dialogs.

FIGURE 16: FileChooser component.

JEditorPane and JTextPane
Two Swing classes support styled text which is JEditorPane and its subclass JTextPane,
illustrated in figure 17. The JEditorPane class is the foundation for Swing's styled text
components and provides a mechanism through which we can add support for custom text
formats. If we want unstyled text, use a text area instead.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 107

FIGURE 17: Menu component.

JTables
With the JTable class we can display tables of data, optionally allowing user to edit data. JTable
does not contain or cache data; it is simply a view of the data. Figure 18 illustrated a picture of a
typical table displayed within a scroll pane.

FIGURE 18: Tables component.

To set and change column widths, all columns in a table start out with equal width by default, and
the columns automatically fill the entire width of table. When table becomes wider or narrower
(which might happen when user resizes the window containing the table), all column widths
change appropriately. When user resizes a column by dragging its right border, then either other
columns must change size, or the table's size must change. By default, the table's size remains
the same, and all columns to the right of the drag point resize to accommodate space added to or
removed from the column to the left of the drag point.

JTextComponents
Swing text components display text and optionally allow user to edit the text. Swing provides six
text components, along with supporting classes and interfaces that meet even the most complex
text requirements. In spite of their different uses and capabilities, all Swing text components
inherit from same super class, JTextComponent, which provides a highly-configurable and
powerful foundation for text manipulation. The following figure 19 shows JTextComponent
hierarchy.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 108

FIGURE 19: Text component hierarchy.

JTree
With JTree class, we can display hierarchical data. A JTree object does not actually contain our
data; it simply provides a view of data. Like any non-trivial Swing component, the tree gets data
by querying its data model. JTree displays its data vertically. Figure 20 is a picture of a tree.

FIGURE 20: Tree hierarchy.

JLabel
With JLabel class, we can display unselectable text and images. If we need to create a
component that displays a string, an image, or both, we can do so by using or extending JLabel.
If the component is interactive and has a certain state, use a button instead of a label. The
following figure 21 introduces a label demo that displays three labels. The window is divided into
three rows of equal height; the label in each row is as wide as possible.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 109

FIGURE 21: Label component.

JProgressBar
Sometimes we can't immediately determine the length of a long-running task, or the task might
stay stuck at same state of completion for a long time. We can show work without measurable
progress by putting the progress bar in indeterminate mode. A progress bar in indeterminate
mode displays animation to indicate that work is occurring. As soon as the progress bar can
display more meaningful information, we should switch it back into its default, determinate mode.
ProgressBar showed in figure 22.

FIGURE 22: ProgressBar component.

JSeparator
The JSeparator class provides a horizontal or vertical dividing line or empty space. It is most
commonly used in menus and tool bars. In fact, we can use separators without even knowing that
a JSeparator class exists, since menus and tool bars provide convenience methods that create
and add separators customized for their containers. Separators are somewhat similar to borders,
except that they are genuine components and, as such, are drawn inside a container, rather than
around the edges of a particular component. Figure 23 showed a menu that has three separators,
used to divide the menu into four groups of item.

FIGURE 23: Separator component.

JToolTip
Creating a tool tip for any JComponent object is easy. Use the setToolTipText method to set up a
tool tip for the component. When user of program pauses with cursor over any of the program's
buttons, the tool tip for the button comes up. We can see this by running the ButtonDemo
example, which is explained in How to Use Buttons, Check Boxes, and Radio Buttons. Figure 24

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 110

showed tool tip that appears when the cursor pauses over the left button in the ButtonDemo
example.

FIGURE 24: ToolTip component.

3.3 Top-Level Containers

JApplet
JApplet is a subclass of java.applet.Applet that is a “Top-Level Swing Container”. Because of
that, each Swing applet has a root pane. The most noticeable effects of the root pane's presence
are support for adding a menu bar and the need to use a content pane. As described in Using
Top-Level Containers, each top-level container such as a JApplet has a single content pane.
JApplet also provides getImage method for loading images into an Applet. The getImage method
creates and returns an Image object that represents the loaded image.

JDialog
A Dialog window is an independent sub window meant to carry temporary notice apart from the
main Swing Application Window as in figure 25. Most Dialogs present an error message or
warning to a user, but Dialogs can present images, directory trees, or just about anything
compatible with the main Swing Application that manages them. Every dialog is dependent on a
Frame component. A Dialog can be modal. When a modal Dialog is visible, it blocks user input to
all other windows in the program. JOptionPane creates JDialogs that are modal. To create a non-
modal Dialog, we must use the JDialog class directly.

FIGURE 25: Dialog component.

JFrame
A Frame is a top-level window with a title and a border. The size of the frame includes any area
designated for the border. The dimensions of border area may be obtained using the getInsets
method. Since the border area is included in overall size of the frame, the border effectively
obscures a portion of frame. A frame, implemented as an instance of the JFrame class, is a
window that has decorations such as a border, a title, and supports button components that close
or iconify the window. Applications with a GUI usually include at least one frame. Applets
sometimes use frames, as well. To make a window that appears within another window, use an
internal frame. Figure 26 showed the demo of frame.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 111

FIGURE 26: Frame component.

3.4 General-Purpose Containers
JPanel
The JPanel class provides general-purpose containers for lightweight components. By default,
panels do not add colors to anything except their own background. However, we can easily add
borders to them and otherwise customize their painting. We can change a panel's transparency
by invoking the setOpaque method. A transparent panel draws no background, so that any
components underneath show through. Figure 27 illustrated a demo of panel.

FIGURE 27: Panel component.

JScrollPane
A JScrollPane provides a scrollable view of a component. When screen real estate is limited, use
a scroll pane to display a component that is large or one whose size can change dynamically.
Other containers used to save screen space include split panes and tabbed panes.

A scroll pane uses a JViewport instance to manage the visible area of the client. The viewport is
responsible for positioning and sizing the client, based on the positions of the scroll bars, and
displaying it. A scroll pane also may use two separate instances of JScrollBar for scroll bars. The
scroll bars provide interface for user to manipulate the visible area. The following figure 28 shows
the three areas of a scroll bar: the knob (sometimes called the thumb), the (arrow) buttons, and
the track.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 112

FIGURE 28: ScrollPane component.

JSplitPane
A JSplitPane displays two components, either side by side or one on top of the other as in figure
29. By dragging the divider that appears between components, user can specify how much of
split pane's total area goes to each component. The user can use them to make the divider move
completely to one side or the other. Instead of adding the components of interest directly to a split
pane, we often put each component into a scroll pane. We then put the scroll panes into the split
pane. This allows the user to view any part of a component of interest, without requiring the
component to take up a lot of screen space or adapt to displaying itself in varying amounts of
screen space.

FIGURE 29: SplitPane component.

JTabbedPane
With JTabbedPane class, we can have several components, such as panels; share the same
space, illustrated in figure 30. The user chooses which component to view by selecting the tab
corresponding to desired component. If we want similar functionality without the tab interface, we
can use a card layout instead of a tabbed pane.

FIGURE 30: TabbedPane component.

JToolBar
A JToolBar is a container that groups several components, such as buttons with icons, into a row
or column. Often, tool bars provide easy access to functionality that is also in menus. By default,
user can drag tool bar to another edge of its container or out into a window of its own. The
component that the tool bar affects is generally in the center of container. The tool bar must be

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 113

the only other component in the container, and it must not be in the center. Figure 31 showed the
demo of toolbar.

FIGURE 31: ToolBar component.

3.5 Special-Purpose Containers
JInternalFrame
With JInternalFrame class we can display a JFrame that looks like window within another
window. Usually, users add internal frames to a desktop pane. The desktop pane is an instance
of JDesktopPane, which is a subclass of JLayeredPane that has added API for managing multiple
overlapping internal frames. Internal frames are not windows or top-level containers, however,
which makes them different from frames, shown in figure 32. Because internal frames are
implemented with platform-independent code, they add some features that frames cannot give
us. One such feature is that internal frames give us more control over their state and capabilities
than frames do.

FIGURE 32: InternalFrame component.

JLayeredPane
Swing provides two layered pane classes. The first, JLayeredPane, is class that root panes use
and is class used here. The second, JDesktopPane, is a JLayeredPane subclass that is
specialized for the task of holding internal frames. A layered pane is a Swing container that
provides a third dimension for positioning components: depth, also known as Z order. When
adding a component to a layered pane, we specify its depth as an integer. The higher the
number, the closer the component is to the "top" position within the container. If components
overlap, the "closer" components are drawn on top of components at a lower depth. The
relationship between components at the same depth is determined by their positions within the
depth. The demo of layeredpane showed in figure 33.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 114

FIGURE 33: LayeredPane component.

Using Top-Level Containers tells us that the basics of using root panes — getting the content
pane, setting its lower manager, and adding Swing components to it. The glass pane is useful
when we want to be able to catch events or paint over an area that already contains one or more
components. For example, we can deactivate mouse events for a multi-component region by
having the glass pane intercept the events. Or we can display an image over multiple
components using the glass pane. The layered pane serves to position its contents, which consist
of the content pane and the optional menu bar. It can also hold other components in a specified Z
order. The container of the root pane's visible components, excluding the menu bar. The optional
menu bar, home for the root pane's container's menus. If the container has a menu bar, we
generally use the container's setJMenuBar method to put the menu bar in the appropriate place.

4. DISCUSSION

Swing is a Tool Kit that is a development of the AWT aiming to overcome shortages in AWT. For
example, many of GUI components are absent in AWT e.g. Table components which can be
used to create the reports interface from database objects. Moreover, as an UI platform AWT
lacks of flexibility. AWT components are derived directly from the Component class. Unlike AWT,
Swing components are derived from the Container class. That is, Swing has greater flexibility to
fulfill the needs of desktop applications development.
Furthermore, AWT is built as native application where the look of application follows the setting of
operating system. This is caused by native subroutine call in order to display the application on
the screen. Whereas Swing is built not as native application, so the look of application interfaces
is independent from operating system and may be customized. Swing is written pure 100% in
Java programming language without using the wrapper to call native routines code via JNI (Java
Native Interface). Look A Feel facility support enables the ability to switch the display
instantly. Thus, the program interface can be easily altered in accordance to the desire and goals.
For instance, to have fancy UI or to have consistent looks in all circumstances. However, when
native look a like interface is desired, Swing is not able to give better results from AWT. For
example, fonts rendering are lees smooth from those of SWT.

In addition, Swing already supports 2D technology provided by its library. Hence, it is possible to
use it for visual data processing, such as image processing, 2D object, painter, animated, or even
OpenGL using JOGL. These capabilities added value to the Swing, so applications will
look more beautiful and professional.

The following description compare commonly used UI development environment using five
parameters, namely cross-platform ability, usability, effectiveness, efficiency, and user
satisfaction. Table 1 shows summary of the discussion.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 115

Parameter Swing Silverlight GTK HTML 5 QT

Cross-Platform Ability � � � � �
Usability 3 4 4 3 3
Effectiveness 3 4 3 4 4
Efficiency 4 4 3 4 2
Satisfaction 4 4 3 4 3

*The range of value is 1 - 5.

TABLE 1: Advantages and disadvantages some of the standard widget.

Swing and Silverlight runs on many platforms. Both could be used to develop the desktop, web,
as well as mobile widget. Though, Silverlight is currently supported on Windows Mobile phones.
Besides desktop widget, QT Widget could be used to develop the mobile widget. Its performance
has been seen in mobile applications developed for Nokia’s Symbian OS. GTK is mostly used in
developing desktop widget for Linux/ Unix environment. HTML5 combined with Ajax and Java
Script can be used to create powerful web widgets. HTML 5 can be rendered and runs on any
platforms as long as the browser supports it.

Silverlight and GTK are easy to use than the others. Silverlight application can be written in C++,
Basic, and Java language environment. In progress, Silverlight is also developed for ASP.NET. In
addition to C++, GTK applications can also be written in other programming language. The
abandoned PHP-GTK project showed an example that GTK can also be used with the most
popular web programming language to develop desktop applications.

HTML and GTK have consistency on their goal which is GTK as Desktop Widget and HTML 5 as
Web Widget. However Silverlight, QT, and HTML 5 are more effective to solve the real problem in
widget area. For example, the web applications become more attractive and interactive.

The other parameters are efficiency and satisfaction. These parameters are two idealisms that
always equal. For instance, the password field widget that we needed to protect or authorized our
system. Swing, Silverlight and HTML are provided this function. So, It is only needed a function to
call this widget. A programmer only needs a few times to develop the field to password input.
Details of all comparison can be seen in the table 2 below.

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 116

TABLE 2: Comparison of the component standard widgets.

Standard
Widget’s

Name

Hybrid Widget Desktop Widget
Web

Widget
Swing Silverlight QT GTK HTML 5

Basic Concept
Button JButton Button Control Qbutton GtkButton <command>

Check Box JcheckBox CheckBox Control QcheckBox GtkCheckButton <command
checked>

Combo Box JcomboBox ComboBox
Control

QcomboBox GtkComboBox

List Jlist ListBox Control Qlist GtkListStore <datalist>

Menu Jmenu Qmenu GtkMenu <menu>

Radio
Button

JradioButton RadioButton
Control

QradioButton GtkRadioButton <command
radiogroup>

Slider Jslider Slider Control Qslider GtkScale

Spinner Jspinner Qspin GtkSpinButon

Text Field JtextField TextBox Control QeditText GtkEntry <input>

Password
Field

JpasswordField PasswordBox
Control

 <input pass>

Interactive Display
Color
Chooser

JColorChooser GtkColorDialog

File
Chooser

JFileChooser GtkFileChooserDial
og

Pane JEditorPane &
JTextPane

 QPane GtkTextView

Tables JTables Table Control QTables GtkTable <table>

Text
Component

JTextCompone
nts

Tree JTree QTree GtkTreeView <datagrid>

Label JLabel Label Control QLabel GtkLabel <label>

Progress
Bar

JProgressBar ProgressBar
Control

QProgressBar GtkProgressBar <progress>

Separator JSeparator QLine

Tool Tip JToolTip

Top Level Containers
Applet JApplet

Dialog Jdialog Qdialog GtkMessageDialog <dialog>

Frame Jframe Qframe <iframe>

General-purpose Containers
Panel JPanel Stack, Dock, Wrap

Panel
QPanel

Scroll Pane JScroolPane ScrollViewer
Control

QHScroll &
QVScroll

GtkScrolledWindow

Split Pane JSplitPane Q Split GtkSplit

Tabbed
Pane

JTabbedPane Tab Control QTab

Tool Bar JToolBar QToolBar GtkToolBar

Special-purpose Containers
Internal
Frame

JInternalFrame

Layered
Pane

JLayeredPane QPane GtkPaned

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 117

In the table 2 above, the completeness component of all standard widget were compared to the
Swing widget. Desktop Widget has more function than Web Widget. Desktop widget is used as
interactive tools on single-purpose problem. Hence developer could develop the widget by small
limited problem. This kind of widget could be developed as free as possible which is not
depended on network problem. Contrast on Web Widget that need wider environment and higher
access. Developing of this widget will need limited. Widgets platform have difference on main
function based on kind of widget platform. Desktop Widget Standard Development in this
discussion is Swing, GTK, and Silverlight. Swing Widget Standard is under Java Platform [4] [5],
which is provided by NetBeans. Whereas GTK as a Standard Widget expanded by C
programming language. GTK runs on the Linux Operating System. Silverlight is Microsoft
products, which usually is integrated on the ASP.NET Environment.

Back on the completeness of the component widget, Swing has complete aspect. This kind of
widget could be used as the Desktop Widget and Web Widget, moreover mobile widget
development. The components detail is much more than in the table. Every widget has special
widget which proves the main function of the standard widget. Swing develops a web
environment use JApplet and support on developing the mobile widget, because it is able to
support on Java ME. Based on ISO 19241 Part 14 and 15, this widget satisfies the Menu Dialogs
and Command Dialogs [17].

Another kind of the widget is Silverlight. This widget could be developed on the .NET Framework.
In addition this widget could be support on ASP.NET as desktop widget. This widget is able to
integrate with web service such as, JSON, SOAP, REST, RSS, and ATOM [9]. The performance
samples of Silverlight were seen on the Olympic Design Web site (http://nbcolympics.com) and
Hard Rock Café Memorable Web site (http://memorabilia.hardrock.com) which are utilized a new
imaging technology based on Silverlight. Silverlight also approved a library of websites that are
registered early adopters can be reviewed by visiting the Silverlight website at
http://silverlight.net/Showcase/.

Little bit different with the GTK (Gnome Tool Kit). It is a pure desktop widget. It could be run under
Linux platform. To develop widget using this standard widget, have to adapt to C programming
language. Nevertheless, this GTK has been expands to be GTK+ version which is support on
Microsoft Windows, BeOS, Solaris, Mac OS X, and others [18]. The interface result by this
standard widget is like Swing Widget.

The latest of HTML version is HTML 5. This version has a new vision compatibility, usability,
interoperability, and universal access. This version is not at all changed from the version before.
Generally, the improvement is to keep everything working smoothly. A lot of effort has been put
into researching common behavior. For example, Google analyzed millions of pages to discover
the common ID names for DIV tags and found a huge amount of repetition. This improvement is
to overcome the problem of web widget which has a high access by user. The standard widget
that is developing is devoted to the text processing and image graphic and it is all about a real
problem [19].

The mobile widget which is compared in this discussion is QT Widget. The widget in QWidget
(QT Widget) is the atom of the user interface: it receives mouse, keyboard and other events from
the window system, and paints a representation of itself on the screen. Every widget is
rectangular, and they are sorted in a Z-order. A widget is clipped by its parent and by the widgets
in front of it. All of components of this widget are defined in class. QT needs “gcc” machine in the
windows layered to compile the code [20].

5. CONCLUSION AND FUTURE WORK

A widget is often small part of a bigger user interface, it needs component that is simple, but
nevertheless provides the users with easy navigation and rich interactivities. The using of Java

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 118

Swing enables developer to develop widgets that can run on wide range of platforms, from
desktop computers, web applications, to mobile phone or gadgets. Moreover, Java Swing
provides rich of components that are useful in developing widgets. This advantage has been
discussed in this article along with a comprehensive review of each components mentioned.

In order to gain higher usability, specific user behavior in operating widgets should be taken into
account. How user navigates in making specific action in such limited screen space can be
brought into a design of a framework. The forthcoming work emphasizes in developing this
framework. It will take the advantage of the richness of Java Swing’s components and user
interface system that are optimized for developing multi-platforms widgets.

6. REFERENCES

1. Caeceres, S. M., “Standardising Widgets – Improving various aspects of client-side web

applications”. PhD dissertation, Queensland University of Technology Brisbane Australia,
2007

2. Manjunath, G., Thara S. & Bosamiya H. “Creating Personal Mobile Widgets without

Programming”, 18
th
 International World Wide Web Conference, Madrid, Spain, 20-24, 2009

3. Zhao X., & Zou Y. “A Framework for Incorporating Usability into Model Transformations”.

MDDAUI07@Models Conference. - Nashville, Tennessee, USA, 2007

4. Java-Oracle. “Using Java Component”.

http://java.sun.com/docs/books/tutorial/uiswing/components/index.html (22 April 2010)

5. Murtagh T. P. “Programming with Java, Swing and Squint”. Williams College, 2007

6. Bima, I., “Materi Pelatihan Java Swing”. http://projecttemplate.googlecode.com./files/swing-

excerpt.pdf, 2003 (15 January 2011)

7. Zukowski J. “Fundamentals of JFC/Swing: Part II”. Java Developer Connection, Training

Course, MageLang Institute, 1999

8. Wu, J.H., Shin, S.S., Chien, J.L., Chao, W.S., and Hsieh, M.C., “An Extended MDA Method

for User Interface Modeling and Transformation”. The 15th European Conference on
Information Systems, St. Gallen, Swiss, June 7-9, pp 1632 – 1642, 2007

9. Horn, S. “Microsoft Silverlight 3: A Beginner’s Guide”. McGraw-Hill, New York, 2010

10. Wilson, S., Shaples, P. & Griffiths, D. “Extending IMS Learning Design Services Using

Widgets: Initial findings and proposed architecture”. Inter-science Enterprises, Vol. 2, No. 4,
1-11, 2006

11. Paller G. “Widget Technologies on different mobile platforms”

12. Bezemer, Cor-P. “Automated Security Testing of AJAX Web Widget Interactions”. Master’s

Thesis, Delft University of Technology Delft, the Netherlands, 2008

13. Kaar, C. “An Introduction to Widgets with particular emphasis on Mobile Widgets”. Technical

Report Number 06/1/0455/009/02, Hagenberg University of Applied Sciences, October 2007

14. Bower, A., & McGlashan. B. “Twisting the Triad – The evolution of the Dolphin Smalltalk

MVP application framework”. Tutorial Paper for ESUG, 2000

Dewi AR, Avinanta T, Egy WM, Fitria HS & Sigit W.

International Journal of Human Computer Interaction (IJHCI), Volume (1): Issue (4) 119

15. Ritchie, Simon. “SWT – The Standard Widget Toolkit”. Technical Report, 2002

16. Hanson R., & Tacy A., “GWT in Action – Easy Ajax with the Google Web Toolkit”, Chapter 4,

Manning Publications, 2007.

17. Travis, D. ”Bluffers’ Guide to ISO 9241”. User-Focus, UK, 2004

18. Krause, A. “Foundation of GTK+ Development”. APRESS, USA, 2007

19. David, M., “HTML5: Designing Rich Internet Applications”, Focal Press, USA, 2010

20. Summerfield, M. “Rapid GUI Programming with Python and Qt:The Definitive Guide to PyQt

Programming”. Prentice-Hall, Michigan, 2007

