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Abstract 

 
A new method for enhancing the contrast of magnetic resonance images (MRI) by 
retinex algorithm is proposed. It can correct the blurrings in deep anatomical 
structures and inhomogeneity of MRI. Multiscale retinex (MSR) employed SSR 
with different weightings to correct inhomogeneities and enhance the contrast of 
MR images. The method was assessed by applying it to phantom and animal 
images acquired on MRI scanner systems. Its performance was also compared 
with other methods based on two indices: (1) the peak signal-to-noise ratio 
(PSNR) and (2) the contrast-to-noise ratio (CNR). Two indices, including PSNR 
and CNR, were used to evaluate the performance of correction of inhomogeneity 
in MR images. The PSNR/CNR of a phantom and animal images were 11.8648 
dB/2.0922 and 11.7580 dB/2.1157, respectively, which were higher or very close 
to the results of wavelet algorithm. The retinex algorithm successfully corrected a 
nonuniform grayscale, enhanced contrast, corrected inhomogeneity, and clarified 
the deep brain structures of MR images captured by surface coils and 
outperformed histogram equalization, local histogram equalization, and a wavelet-
based algorithm, and hence may be a valuable method in MR image processing. 
 
Keywords: Magnetic resonance imaging, Surface coils, Single-scale Retinex, multiscale retinex, Peak 

signal-to-noise ratio, Contrast-to-noise ratio. 
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1. INTRODUCTION 
Magnetic resonance imaging (MRI) has been used to diagnose various diseases over the past two 
decades and represented an important diagnostic technique in medicine [2] for the effective and 
noninvasive detection of objects such as cancers and tumors. Several techniques have been 
recently developed to improve the detection and diagnosis capabilities [5], including eliminating 
artifacts and enhancing the contrast of MR images [6, 7]. Zoroofi et. al [7] used a postprocessing 
technique to reduce MRI body motion artifacts due to the presence of an object on the imaging 
plane. They proposed a reconstruction algorithm, based on a superposition bilinear interpolation 
algorithm, reducing such artifacts with a minimum-energy method to estimate the unknown 
parameters of body motion Results showed feasibility in clinical application. Sled et al [8] 
demonstrated the efficacy of an automatic nonparametric method in correcting intensity 
nonuniformities using both real and simulated MR data. Ahn et al [9] proposed a method of local 
adaptive template filtering for enhancing the signal-to-noise ratio (SNR) in MRI without reducing 
the resolution. Moreover, Styner et al [10] showed that a parametric bias-field correction method 
could correct bias distortions that are much larger than the image contrast. Likar et al [11] 
proposed a model-based correction method to adjust inhomogeneity in the intensity of an MR 
image. They applied an inverse image-degradation model where parameters were optimized by 
minimizing the information content of simulated and real MR data. Lin et al [12] used a wavelet-
based algorithm to approximate surface-coil sensitivity profiles. They corrected image intensity in 
homogeneities acquired by surface coils, and used a parallel MRI method to verify the spatial 
sensitivity profile of surface coils from the images captured without using a body coil. It has also 
been shown [13, 14] that contrast enhancement can be used to improve the quality of MR images. 
Several MRI-related techniques have been suggested to facilitate more accurate clinical 
diagnoses [1, 2, 15]. Among them, surface coils were used to enhance the SNR and improve the 
resolution [15]. A surface coil consisted of conductive loops that transmit radiofrequency (RF) 
energy can also be used as receivers. They exhibited maximal sensitivity in localizing surface 
structures and facilitate faster MRI scanning [15–18]. The use of stronger gradients increased the 
spatial resolution but reduced the sensitivity. Nevertheless, the location of surface coils must be 
controlled to increase sensitivity. Image quality can be improved by reducing the thermal noise 
generated outside the region of sensitivity, eliminating artifacts due to body movements and 
respiration, and using steep imaging gradients. Another obvious disadvantage of planar surface 
coils was that the low signal level made it difficult to image deep brain structures, resulting in a 
large dynamic range of signal intensities in MR images. Dynamic-range compression has been 
used to solve this problem [14, 15], with views of larger regions being captured by a phased array 
of surface coils [19]. Phased-array surface coils can be implemented by switching among multiple 
surface-coil receivers. This improved the SNR and increased the clinical applications, but the 
problem of signal loss in deep brain structures remained. Therefore, an optimum contrast-
enhancement algorithm would be helpful to improve the quality of MR images acquired by surface 
coils. 
Stretching the pixel dynamic range of certain objects in an image is a widely adopted approach for 
enhancing the contrast [20]. The image contrast-enhancement techniques can be divided into two 
types: global and local histogram enhancement [21, 22]. The (global) histogram equalization 
technique improved the uniformity of the intensity distribution of an image [21, 22] by equalizing 
the number of pixels at each gray level. The disadvantage of this method is that it is not effective 
in improving poor localized contrasts [23]. Local histogram enhancement [22, 24] used an 
equalization method to improve the detailed histogram distribution within small regions of an 
image, and also preserved the gray-level values of the image. The obtained histogram is updated 
in neighboring regions at each iteration, then local histogram equalization is applied. However, the 
visual perception quality of a processed image is subjective, and it is known that both global and 
local histogram equalization do not result in the best contrast enhancement [22–27].  
For image processing, the presence of the nonuniformity of an MR image caused by the 
inhomogeneity of the magnetic intensity is very similar to that of a normal image resulted from bad 
illumination sources and environmental conditions. To address the nonuniformity problem of an 
image, Land [28], inspired by the psychological knowledge about the brain’s processing of image 
information from retinas, developed a concept named retinex as a model for describing the color 
constancy in human visual perception. His idea is that the perception of human is not completely 
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defined by the spectral character of the light reaching the eye from scenes. It includes the 
processing of spatial-dependant color and intensity information of the retina of an eye, which can 
be realized by the computation of dynamic-range compression and color rendition [29–32]. 
Moreover, Jobson et al [33] found in his study that the selection the parameters of surrounding 
function can greatly affect the performance of the retinex. He then balanced the dynamic 
compression and color rendition by using multi-scale retinex (MSR). Although hardware 
techniques can be utilized to correct the image inhomogeneity and to enhance image contrast, 
they are costly and inflexible. Hence, it is promising to develop easy and low-cost software-based 
techniques to address the inhomogeneity problem in MR images. In this study, we introduced a 
software-based retinex algorithm for contrast enhancement and dynamic-range compression that 
improve image quality by decreasing image inhomogeneity. 
 

2. MATERIALS AND METHODS 
2.1  Retinex Algorithm 
In general, the human visual system is better than machines when processing images. Observed 
images of a real scene are processed based on brightness variations. The images captured by 
machines are easily affected by environmental lightening conditions, which tends to reduce its 
dynamic range. On the contrary, the human visual system can automatically compensate the 
image information by psychological mechanism of color constancy. Color constancy, an 
approximation process of human perception system, makes the perceived color of a scene or 
objects remain relatively constant even with varying illumination conditions. Land [28] proposed a 
concept of the retinex, formed from "retina" and "cortex", suggesting that both the eye and the 
brain are involved, to explain the color constancy processing of human visual systems. After the 
human visual system obtain the approximate of the illuminating light, the illumination is then 
discounted such that the "true color" or reflectance can be determined. More details about subject 
color constancy can be found in [1, 3].  
Hurlbert and Poggio [31] and Hurlbert [32] applied the retinex properties and luminosity principles 
to derive a general mathematical function. Differences arose when images from various 
center/surround functions in three scales of gray-level variations were shown. Hurlbert [31–32] 
applied a center/surround function to solve the brightness problem, using the learning mechanism 
of neural networks and a general solution to evaluate the relative brightness in arbitrary 
environments. 
Although Jobson et al proposed a single-scale retinex (SSR) algorithm that could support different 
dynamic-range compressions [33, 34], the multi-scale retinex (MSR) can better approximates 
human visual processing, verified by experiments [33–36], by transforming recorded images into a 
rendering which is much closer to the human perception of the original scene.  

 
2.2  Single-Scale Retinex  
The basics of an SSR [28] were briefly described as follows. A logarithmic photoreceptor function 
that approximates the vision system was applied, based on a center/surround organization [28, 
34]. The SSR was given by 

)],(*),(log[(),(log),( yxFyxIyxIyxR iii −= ,               (1) 

where ),( yxRi  was the retinex output, ),( yxI i  was the image distribution in the ith spectral 

band, and “*” represented the convolution operator. In addition, ),( yxF  was represented as 

∫∫ = 1),( dxdyyxF ,                        (2)

 
which was the normalized surround function. The purpose of the logarithmic manipulation was to 
transform a ratio at the pixel level to a mean value for a larger region. We selected MR images for 
our implementation with this form in Eq. (5) proposed by Land [28]. 
This operation was applied to each spectral band to improve the luminosity, as suggested by Land 
[28]. It was independent from the spectral distribution of a single-source illumination since 

),(),(),( yxryxSyxI iii = ,                        (3) 

where ),( yxS i  was the spatial distribution on an illumination source, and ),( yxri  was the 
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reflectance distribution in an image, so 
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where S  represented the spatially weighted average value, as long as 
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This approximate equation was the reflectance ratio, and was equivalent to illumination variations 
in many cases. 

 
2.3  The Surround Function 
Several types of surround function were implemented. First, an inverse-square spatial surround 
function proposed by Land [28] was formed as  

2/1),( ryxF = ,                           (7) 

where 
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yxr +=                             (8) 

could be changed to another surround function as 
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where 1c  was a space constant. 

Moore et al [29, 30] used a surround function on an exponential function with the absolute value r 
as 

2/||),( cr
eyxF

−

=                            (10) 

to approximate the spatial response, where 2c  was a space constant. 

Hurlbert and Poggio [31] and Hurlbert [32] used the Gaussian surround function  
2
3

2 /
),(

cr
KeyxF

−

=                          (11) 

to reconcile natural and human vision, where 3c  was a space constant. For a given space 

constant, the inverse-square surround function accounted for a greater response from the 
neighboring pixels than the exponential and Gaussian functions. The spatial response of the 
exponential surround function was larger than that of the Gaussian function at distant pixels. 
Therefore, the inverse-square surround function was more commonly used in global dynamic-
range compression, and the Gaussian surround function was generally used in regional dynamic-
range compression [33]. 
The exponential and Gaussian surround functions were able to produce good dynamic-range 
compression over neighboring pixels [29, 32, 33]. From the proposed surround functions [29–32], 
the Gaussian surround function exhibited good performance over a wider range of space 
constants, so it was used to enhance contrasts and to solve the inhomogeneity of MR images in 
the present study. 

 
2.4  Adjustment of Single-Scale Retinex Output 
The final process output was not obvious from the center/surround retinex proposed by Land [28]. 
Moore et al [29] also offered an automatic gain and offset operation, in which the triplet retinex 
outputs were regulated by the absolute maximum and minimum values of all scales in a scene. In 
this study, a constant gain and offset technique (as shown in Fig. 1) was used to select the best 
rendition.  

Fig. 1 described how to choose the transferred output interval of both the highest- and lowest-
scale rendition scene for each SSR. The offset value can be directly determined by the lower 
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bound. Furthermore, the gain can be computed according to the range between the upper and 
lower bounds. The selection of a larger upper bound leaded to minor contrast improvement but 
prevents heavy distortion caused by truncation. The lower bound functions in a similar way as 
explained previously. Adjustments to the gain and offset result in the retinex outputs caused little 
information lost, and the constant gain and offset of retinex was independent of the image content. 
We evaluated the effects of variations in the histogram characteristics in a gray-level scene. The 
gain and offset were constant between images in accordance with the original algorithm proposed 
by Land [28], and also demonstrated that it can be applied as a common manipulation to most 
types of images. 

 
FIGURE 1: A histogram distribution plot that illustrated the gain and offset values of an MR image, which 
underwent the single-scale retinex (SSR) to enhance its contrast. 

 
2.5  Multiscale Retinex 
It was our intention to select the best value of scale factor c in the surround function ),( yxF  

based on the dynamic-range compression and brightness rendition for every SSR. We also 
intended to maximize the optimization of the dynamic-range compression and brightness rendition. 
MSR was a good method for summing a weighted SSR according to  

∑
=

=

N

n

niiMSRi RR
1

ω ,                               (12) 

where N represented a scaling parameter, niR  represented the ith component of the nth scale, 

iMSRR  was the nth spectral component of the MSR output, and nω  represented the multiplication 

weight for the nth scale. The differences between ),( yxR  and ),( yxRn  resulted in surround 
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function ),( yxFn  became  

22 /
),( ncr

n KeyxF
−

= .                               (13) 

MSR combined various SSR weightings [33, 34], selecting the number of scales used for the 
application and evaluating the number of scales that can be merged. Important issues to be 
concerned were the number of scales and scaling values in the surround function, and the weights 
in the MSR. MSR was implemented by a series of MR images, based on a trade-off between 
dynamic-range compression and brightness rendition. Also, we needed to choose the best weights 
in order to obtain suitable dynamic-range compression at the boundary between light and dark 
parts of the image, and to maximize the brightness rendition over the entire image. We verified the 
MSR performances on visual rendition with a series of MR images scanned by MR systems. 
Furthermore, we compared the efficacy of the MSR technique in enhancing the contrast of these 
MR images with other image processing techniques. 
An algorithm for MSR as applied to human vision has been described in past literature [33, 34]. 
The MSR worked by compensating for lighting variations to approximate the human perception of 
a real scene. There were two methods to achieve this: (1) compare the psychophysical 
mechanisms between the human visual perceptions of a real scene and a captured image, and (2) 
compare the captured image with the measured reflectance values of the real scene. 
To summarize, our method involved combining specific features of MSR with processes of SSR, in 
which the center/surround operation was a Gaussian function. A narrow Gaussian distribution was 
used for the neighboring areas of a pixel (which was regarded as the center). Space constants for 
Gaussian functions with scales of 15, 80, and 250 pixels in the surrounding area, as proposed by 
Jobson et al [33, 34], were adopted in this study. The logarithm was then applied after surround 
function processing (i.e., two-dimensional spatial convolution). Next, appropriate gain and offset 
values were determined according to the retinex output and the characteristics of the histogram. 
These values were constant for all the images. This procedure yielded the MSR function. 

 
2.6  Phantom and Animal Magnetic Resonance Imaging  
All experiments were performed at the NMR Center, Institute of Biomedical Sciences, Academia 
Sinica. They were carried out in accordance with the guidelines established by the Academia 
Sinica Institutional Animal Care and Utilization Committee.  
A single adult male Wistar rat weighing 275 g (National Laboratory Animal Center, Taiwan) was 
anesthetized using 2 % isoflurane and positioned on a stereotaxic holder. The body temperature of 
the animal was maintained using a warm-water circulation system. 
For MR experiments, images were captured on a Bruker BIOSPEC BMT 47/40 spectrometer 
(Bruker GmBH, Ettlingen, Germany), operating at 4.7 Tesla (200 MHz), equipped with an actively 
shielded gradient system (0 ~ 5.9 G/cm in 500 ms). A 20-cm volume coil was used as the RF 
transmitter, and a 2-cm linear surface coil and the above volume coil were used separately as the 
receiver. Coronal T2-weighted images of the phantom – comprising a 50-ml plastic centrifuge tube 
filled with water and an acrylic rod – and the rat brain were acquired using RARE sequences with 
a repetition time of 4000 ms, an echo time of 80 ms, a field of view of 3 cm, a slice thickness of 

1.5 mm, 2 repetitions, and an acquisition matrix of 256 × 256 pixels. 

 
2.7  Peak Signal-to-Noise Ratio and Contrast-to-Noise Ratio Analysis 
The PSNR [37] and contrast-to-noise ratio (CNR) were commonly used performance indices in 
image processing [9, 38]. The PSNR was given by 

∑
⋅

−

=

lk

peak

LK

lkmlky

I
PSNR

,

2)},(),({
log20 ,                    (14) 

where y(k, l) and m(k, l) were the enhanced and original images of size K and L respectively, and 
Ipeak was the maximum magnitude of images [37]. The CNR was given by  
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where 
d

jkP  and 
u

jkP  were the gray levels, ][ d

jkPE  and ][ u

jkPE  were the means, and )( d

jkPVar  and 

)( u

jkPVar  were the variances of the (j, k)th pixel in the enhanced and original images respectively 

[9, 38]. 
 

3. RESULTS 
3.1  Phantom Image 
The performance of our retinex algorithm was assessed by determining the parameters for a test 
series of MR images of the phantom, with dimensions of 256 × 256 pixels and 16-bit quantization. 
The dynamic-range compression and brightness constancy were determined in the MR images of 
the test series, based on postprocessing by the retinex method.  
Fig. 2 showed the results of using SSR and MSR to correct for the inhomogeneity of an MR image 
of the phantom. The original MR image was shown in Fig. 2(a), which exhibited inhomogeneity, 
nonuniformity, low brightness, and a large dynamic range. SSR with a scale of every 10 pixels 
between 0 and 255 was used to analyze the series of phantom images. SSR with a scale of 15 
pixels was also applied in this test. Fig. 2(b), (c), and (d) illustrated the successful reductions in 
intensity inhomogeneity of the phantom images using SSR with scales of 15, 80, and 250 pixels 
respectively. The images in Fig. 2(b), (c), and (d) showed dynamic-range compressions and 
brightness were large, moderate, and small, respectively, which indicated the dynamic-range 
compression increased when the SSR scale decreased. Fig. 2(e) showed the image obtained from 

MSR by combining three scales of SSR weightings ( nω = 1/3, n = 1, 2, and 3), where the three 

scales of SSR were 15, 80, and 250 pixels as used by Jobson et al [33, 34]. The images obtained 
from the retinex algorithms were of higher quality than the original phantom image. Also, Fig. 2(f) 
showed an MR image captured by a volume coil as a receiver with the same MR imaging 
procedures and parameters. Comparison of Fig. 2(e) and (f) revealed that MSR successfully 
corrected the original MR phantom image. 
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FIGURE 2: Corrected MR images of a phantom demonstrating the performance of retinex. (a) The original 
MR image. (b) Image obtained from SSR with scale of 15 pixels. (c) Image obtained from SSR with scale of 
80 pixels. (d) Image obtained from SSR with scale of 250 pixels. (e) Image obtained from MSR with three 
combined scales of SSR weightings (

nω = 1/3, n = 1, 2, and 3). (f) MR image captured by a volume coil. 

 
3.2  Animal Image 
In Fig. 3, results of applying SSR and MSR to adjust a rat brain MR image were shown. Fig. 3(a) 
showed the original MR image, which was one of 28 coronal brain slices. Fig. 3(b), (c), and (e) 
showed the images obtained from SSR with scales of 15, 80, and 250 pixels respectively, with 
dynamic-range compressions that are large, moderate, and small; and brightness variations that 
are small, moderate, and large respectively. The images obtained from retinex demonstrated 
better visual rendition than that of the original MR image in Fig. 3(a). The background of the 
original brain MR image was blurred, and its brightness contrast and dynamic range were poor. 
Fig. 3(d) was the image obtained from MSR, displaying its strength of combining small, moderate, 

and large scales of SSR with the same weightings of nω = 1/3 (n = 1, 2, and 3). Fig. 3(f) showed 

an MR image captured by a volume coil with the same MR imaging procedure, it had better 
homogeneity than the image obtained by surface coils, yet the resolution was lower. Fig. 3(g) was 
enlarged (× 5) from dotted-line block of the original image in Fig. 3(a), showing the deep brain 
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structure subimage, the details in the medial forebrain bundle (MFB) and mammillothalamic tract 
(MT) regions were not clear and inhomogeneous.  
Fig. 3(h) showed the MR image enlarged (× 5) from dotted-line block of Fig. 3(d) from MSR, 
regions (MFB and MT) circled with dotted-curve demonstrated better homogeneity and clarity. Fig. 
3(h) exhibited clearer deep anatomical structures from MSR than Fig. 3(g) from original image.  
The MSR clearly improved the quality, relative to that of the original MR image. Comparing among 
the original MR image, the image captured by a volume coil and the image obtained from the 
retinex algorithm revealed that the last method showed the best performance in terms of 
brightness, dynamic-range compression, and overall visual rendition. 
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FIGURE 3: Performance of the retinex was demonstrated with adjusted MR images of a coronal section of 
the rat brain. (a) The original MR image. (b) Image obtained from SSR with scale of 15 pixels. (c) Image 
obtained from SSR with scale of 80 pixels. (d) Image obtained from MSR with three combined scales of SSR 

weightings (
nω = 1/3, n = 1, 2, and 3). (e) Image obtained from SSR with scale of 250 pixels. (f) MR image 

captured by a volume coil. (g) A 500% enlargement form the dotted-line block area in (a). The enlargement 
exhibits areas of tissue inhomogeneity within the deep brain structures. (h) The enlarged medical forebrain 
bundle (MFB), from dotted-line block of (d). The MFB was more clearly differentiated from other structures 
and the homogeneity of the circled region can be guaranteed. 

 
3.3  Comparisons of Histogram Equalization, Local Histogram Equalization, 
and a Wavelet-Based Algorithm with Multiscale Retinex  
The effectiveness of the retinex algorithm was compared with a phantom image captured by MR 
imaging systems, using histogram equalization, local histogram equalization, and a wavelet-based 
algorithm.  
In Fig. 4(a), the image was obtained with histogram equalization, and Fig. 4(b) showed the image 

obtained from local histogram equalization with a local region of 128 × 128 pixels. Both techniques 
resulted in blurred edges and poor contrast. A large amount of noise was still present in Fig. 4(a) 
and (b), with the performance of local histogram equalization being worse than that of histogram 
equalization. Fig. 4(c) showed the image processed by the wavelet-based algorithm [12, 13], 
indicating the presence of some noise. In Fig. 4(d) and (e), the images were obtained from MSR 
with combined 15-pixel small-scale SSR weightings of ω1 = 3/5 and 4/6; 80-pixel moderate-scale 
SSR weightings of ω2 = 1/5 and 1/6; and 250-pixel large-scale SSR weightings of ω3 = 1/5 and 1/6 
respectively. Fig.4 (f) showed the image obtained from MSR with combined 10-pixel small-scale 
SSR weightings of ω1 = 3/5; 60-pixel moderate-scale SSR weightings of ω2 = 1/5; and 220-pixel 
large-scale SSR weightings of ω3 = 1/5. All phantom figures in Fig. 4 displayed clear deep 
structures and edges. The MSR algorithm exhibited better visual rendition than histogram 
equalization, local histogram equalization, and the wavelet-based algorithm. The performance of 
MSR was also compared with those of histogram equalization, local histogram equalization, and 
the wavelet-based algorithm on an MR image of rat brain. 
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FIGURE 4: Corrected MR images of a phantom, obtained via four methods. (a) MR image obtained from 
histogram equalization. (b) MR image obtained from local histogram equalization. (c) MR image obtained with 
the wavelet-based algorithm. (d) and (e) MR images from MSR with 15-pixel, 80-pixel, and 250-pixel; ω1 = 
3/5 and 4/6, ω2 = 1/5 and 1/6, and ω3 = 1/5 and 1/6 respectively. (f) MR image from MSR with 10-pixel, 60-
pixel, and 220-pixel; ω1 = 3/5, ω2 = 1/5, and ω3 = 1/5 respectively. 

 
Fig. 5(a) showed the corrected image obtained with histogram equalization, and Fig. 5(b) showed 

the image obtained from local histogram equalization with a local region of 128 × 128 pixels. Both 
techniques resulted in blurred edges and poor contrast. A large amount of noise was still present 
in Fig. 5(a) and (b), with the performance of local histogram equalization being worse than that of 
histogram equalization. In Fig. 5(c), the image was processed by the wavelet-based algorithm [12, 
13], resulting in many artifacts. Fig. 5(d) showed the image corrected by MRS with configuration of 
15-pixel small-scale SSR weightings of ω1 = 2/4 (high brightness), 80-pixel moderate-scale SSR 
weightings of ω2 = 1/4 (moderate brightness), and 250-pixel large-scale SSR weightings of ω3 = 
1/4 (low brightness). Fig. 5(e) showed the image corrected by MRS with configuration of 10-pixel 
small-scale SSR weightings of ω1 = 1/3 (high brightness), 60-pixel moderate-scale SSR 
weightings of ω2 = 1/3 (moderate brightness), and 220-pixel large-scale SSR weightings of ω3 = 
1/3 (low brightness). Fig. 5(f) showed the image corrected by MRS with configuration of 10-pixel 
small-scale SSR weightings of ω1 = 2/6 (high brightness), 60-pixel moderate-scale SSR 
weightings of ω2 = 3/6 (moderate brightness), and 220-pixel large-scale SSR weightings of ω3 = 
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1/6 (low brightness). The dynamic compression, brightness variation, and overall rendition were 
better for MSR that combined three scales of SSR weightings than those for histogram 
equalization, local histogram equalization, or the wavelet-based algorithm alone. All rat brain 
figures in Fig. 5 displayed clear deep anatomy structures and edges.  

 

 
FIGURE 5: Corrected MR images of a rat brain obtained from four algorithms. (a) MR image obtained from 
histogram equalization. (b) MR image obtained from local histogram equalization. (c) MR image obtained 
from the wavelet-based algorithm. (d) MR image obtained from MSR, with 15-pixel, 80-pixel, and 250-pixel; 
ω1 = 2/4, ω2 = 1/4, and ω3 = 1/4 respectively. (e) and (f) MR images obtained from MSR with 10-pixel, 60-
pixel, and 220-pixel; ω1 = 1/3 and 2/6, ω2 = 1/3 and 3/6, and ω3 = 1/3 and 1/6 respectively. 
 

 
3.4  Results of Peak Signal-to-Noise Ratio and Contrast-to-Noise Ratio 
Analysis  
Obtaining MR images of the highest possible clarity is crucial to effective structural brain imaging. 
The quality of images obtained from histogram equalization, local histogram equalization, the 
wavelet-based algorithm, and retinex can be quantified using appropriate indices. The values of 
PSNR and CNR for the phantom images obtained in the present study with the four correction 
methods were listed in Table 1, where higher values indicate images of higher quality. As shown 
on the table, the use of SSR increased PSNR but decreased CNR. In Tables 1 and 2, MSR 
showed combined small-, moderate-, and large-scale weightings of 15, 80, and 250 pixels 
respectively, and MSR2 indicated combined small-, moderate-, and large-scale weightings of 10, 
60, and 220 pixels respectively. In Table 1, MSR with ω1 = 3/5, ω2 = 1/5, and ω3 = 1/5; MSR with 
ω1 = 4/6, ω2 = 1/6, and ω3 = 1/6; and MSR2 with ω1 = 2/4, ω2 = 1/4, and ω3 = 1/4, and MSR2 with 
ω1 = 3/5, ω2 = 1/5, and ω3 = 1/5 resulted in higher values of  PSNR and CNR than histogram 
equalization, local histogram equalization, and the wavelet-based algorithm. 
The values of PSNR and CNR for animal images were listed in Table 2. Whilst histogram 
equalization and local histogram equalization resulted in high CNR values, the low PSNR values 
resulted in many noise artifacts. The wavelet-based algorithm resulted in some noise, as indicated 
by the lower CNR value. MSR with ω1 = 1/3, ω2 = 1/3, and ω3 = 1/3; MSR with ω1 = 2/4, ω2 = 1/4, 
and ω3 = 1/4; MSR with ω1 = 1/4, ω2 = 2/4, and ω3 = 1/4; MSR with ω1 = 1/5, ω2 = 3/5, and ω3 = 
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1/5; MSR2 with ω1 = 1/3, ω2 = 1/3, and ω3 = 1/3; MSR2 with ω1 = 1/4, ω2 = 2/4, and ω3 = 1/4; and 
MSR2 with ω1 = 2/6, ω2 = 3/6, and ω3 = 1/6 resulted in higher values of  PSNR and CNR than  
histogram equalization, local histogram equalization, and the wavelet-based algorithm. 

 

Algorithm PSNR (dB) CNR 

SSR (scale = 15 pixels) 8.4850 2.4007 

SSR (scale = 80 pixels) 17.7173 0.6783 

SSR (scale = 250 pixels) 27.1259 0.1848 

MSR (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 15.0569 1.0086 

MSR (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 12.9146 1.3437 

MSR (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 15.6836 0.9224 

MSR (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 17.0583 0.7798 

MSR (ω1 = 3/5, ω2 = 1/5, ω3 = 1/5) 11.8356 1.5544 

MSR (ω1 = 4/6, ω2 = 1/6, ω3 = 1/6) 11.1821 1.6973 

SSR (scale = 10 pixels) 7.7921 2.6780 

SSR (scale = 50 pixels) 14.1465 1.0492 

SSR (scale = 60 pixels) 14.6290 1.0056 

SSR (scale = 120 pixels) 22.4192 0.3782 

SSR (scale = 200 pixels) 26.5111 0.2121 

SSR (scale = 220 pixels) 26.8245 0.1987 

MSR2 (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 13.7010 1.2132 

MSR2 (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 11.8239 1.5718 

MSR2 (ω1 = 3/5, ω2 = 1/5, ω3 = 1/5) 10.8591 1.7957 

Histogram equalization 7.7978 1.5199 

Local histogram equalization 7.4683 1.5236 

Wavelet-based algorithm 6.0785 1.1225 

 
TABLE 1: Comparisons of PSNR and CNR for phantom images obtained from retinex algorithms 
with those obtained from histogram equalization, local histogram equalization, and the wavelet-
based algorithm. 

 

Algorithm PSNR (dB) CNR 

SSR (scale = 15 pixels) 7.5729 3.8213 

SSR (scale = 80 pixels) 16.7675 0.9751 

SSR (scale = 250 pixels) 21.3775 0.3568 

MSR (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 13.8641 1.5566 

MSR (ω1 = 2/4, ω2 = 1/4, ω3 = 1/4) 11.8648 2.0922 

MSR (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 14.5375 1.4031 
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MSR (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 15.5348 1.2157 

MSR (ω1 = 1/5, ω2 = 3/5, ω3 = 1/5) 14.9590 1.3135 

SSR (scale = 10 pixels) 7.0382 4.2851 

SSR (scale = 60 pixels) 13.6414 1.5104 

SSR (scale = 220 pixels) 21.2816 0.3752 

MSR2 (ω1 = 1/3, ω2 = 1/3, ω3 = 1/3) 12.6385 1.8747 

MSR2 (ω1 = 1/4, ω2 = 2/4, ω3 = 1/4) 12.8957 1.7817 

MSR2 (ω1 = 1/4, ω2 = 1/4, ω3 = 2/4) 14.4219 1.4399 

MSR2 (ω1 = 2/6, ω2 = 3/6, ω3 = 1/6) 11.7580 2.1157 

Histogram equalization 6.4478 1.8631 

Local histogram equalization 6.3042 1.8807 

Wavelet-based algorithm 11.8304 0.8571 

 
TABLE 2: Comparisons of PSNR and CNR for animal images obtained from retinex algorithms 
with those obtained from histogram equalization, local histogram equalization, and the wavelet-
based algorithm. 
 

4. DISCUSSION 
The inhomogeneity and anatomic-structure blurring found in images captured by surface receiving 
coils was due to variations in image brightness. The inhomogeneities of MR images were very low 
frequency components in frequency domain of images. The retinex algorithm [33, 34] especially 
performed to remove the very low frequency components of images by an estimator constructed 
with a similar lowpass filter from a Gaussian surround function as described in Eq. (11) for the 
purpose of correction of the inhomogeneous MR images. The variations of inhomogeneity in MR 
images received with surface coils were shown in Fig. 2(a) and Fig. 3(a). Hence, MR 
postprocessing techniques were crucial in improving the structural details and homogeneity of 
such brain images. In the present study, we proposed an easy, low-cost software-based method to 
solve these problems, also avoiding expensive charges to the imaging hardware. Our novel 
retinex algorithm successfully corrected a nonuniform grayscale, enhanced contrast, corrected 
inhomogeneity, and clarified the MFB and MT areas in deep brain structures of MR images 
captured by surface coils (see Fig . 3). 
For evaluatiing the performance of correction of inhomogeneous MR images, the two indices, 
PSNR and CNR [9, 37, 38], were proposed to compare the performance of correction of 
inhomogeneous MR images using retinex algorithm with other correction algorithms. The retinex 
algorithm improved the quality of phantom images in terms of visual rendition and dynamic range 
compression, with reduced errors and noise, and correspondingly higher PSNR and CNR values. 
Similar results were found for animal images, except that PSNR increased whereas CNR 
decreased. (see Table 1 and Table 2) This may indicate that retinex processing of animal data 
should combine with appropriate reference objects. 
For comparison, consider the approach proposed by Jobson et al [33, 34]. The MR images 
obtained with the retinex algorithm were also better than those obtained with histogram 
equalization, local histogram equalization, and the wavelet-based algorithm, in terms of dynamic-
range compression, brightness constancy, and overall visual rendition. The PSNR and CNR 
values were also higher for retinex than for the other correction algorithms. Furthermore, the 
advantages of the retinex were that the weightings of MSR and scales of SSR could be modulated 
to improve image correction and contrast enhancement performance. The retinex algorithm could 
also be used to increase the SNR and dynamic-range compression in other types of medical 
image, such as those captured by computed tomography, digital X-ray systems, and digital 
mammography. 
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