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Abstract 

 
Image classification remains a fundamental challenge in computer vision with applications in 
retrieval, recognition, and scene understanding. This study introduces a transparent and 
interpretable framework for image classification using the K-Nearest Neighbors (KNN) algorithm. 
The approach leverages handcrafted visual features—color, pattern, shape, and texture—
together with spatial attributes derived from bounding box coordinates. These features are 
encoded in a ternary scheme to represent presence, absence, or uncertainty, enabling consistent 
similarity comparisons. The proposed model was systematically evaluated under varying k-
values, multiple distance metrics (Euclidean, Cityblock, Cosine, and Correlation), and alternative 
decision rules (Nearest, Consensus, Random). Experimental results demonstrate that the choice 
of distance metric and neighborhood size significantly affects performance, with the Cityblock 
metric and k = 1 yielding the highest accuracy. Importantly, the framework scales effectively to 
larger datasets while maintaining strong interpretability, offering a balanced alternative to opaque 
deep learning models. These findings highlight the potential of attribute-based KNN as a 
lightweight, human-understandable solution for image classification in both research and 
resource-constrained practical applications. 
 
Keywords: Image Classification, Attribute-Based KNN, Handcrafted Features, Spatial Attributes, 
Interpretable Machine Learning 

 

 
1. INTRODUCTION 
Image classification is a fundamental task in computer vision with applications in domains such 
as healthcare diagnostics, surveillance, autonomous driving, and content-based retrieval. The 
ability to correctly identify and categorize visual information is critical for decision-making in real-
world systems. While deep learning approaches—particularly convolutional neural networks 
(CNNs)—have achieved state-of-the-art results in many large-scale classification challenges 
(Krizhevsky et al., 2012; He et al., 2016), their practical adoption is often hindered by two major 
limitations: the need for vast amounts of labeled data and the lack of interpretability in their 
decision-making processes. These constraints are problematic in sensitive areas such as medical 
imaging or security, where transparent reasoning is as important as accuracy (Doshi-Velez & 
Kim, 2017). 
 
Handcrafted feature-based methods, although less fashionable in the deep learning era, remain 
highly relevant in contexts where interpretability, computational efficiency, and domain-driven 
feature control are required (Walia & Baboo, 2020). By explicitly defining semantic attributes such 
as color, shape, texture, and pattern, such approaches allow users to trace how classification 
outcomes are derived. Furthermore, when combined with lightweight algorithms like K-Nearest 
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Neighbors (KNN), they offer an efficient and transparent alternative to complex neural 
architectures. 
 
This study introduces an attribute-based KNN framework that integrates handcrafted visual 
descriptors with spatial information obtained from bounding box annotations. Each attribute is 
encoded in a ternary scheme (1 = present, 0 = uncertain, −1 = absent), creating a structured 
representation that supports robust similarity comparisons. Unlike black-box models, this 
approach provides interpretable outcomes while maintaining strong performance across 
controlled and large-scale evaluations. The framework systematically investigates how variations 
in neighborhood size (k), distance metrics (Euclidean, Cityblock, Cosine, Correlation), and 
classification rules (Nearest, Random, Consensus) influence classification accuracy. Additionally, 
it compares the results with existing methods to highlight both accuracy gains and interpretability 
advantages. 
 
The main contributions of this research are as follows: 
 

1. Development of a transparent, attribute-driven classification framework based on ternary-
encoded handcrafted and spatial features. 

2. Systematic evaluation of KNN performance under multiple distance measures, 
neighborhood sizes, and decision rules. 

3. Comparative analysis with existing techniques, demonstrating that the proposed method 
balances high accuracy with enhanced interpretability, and scales effectively across 
larger datasets. 

 
The proposed framework extends traditional KNN by introducing a ternary attribute encoding that 
jointly represents semantic and spatial features. This modification alters the similarity computation 
to account for attribute presence and absence, thereby enhancing interpretability. The approach 
offers practical value for explainable AI applications such as medical imaging, where transparent 
reasoning is essential. 
 
The remainder of the paper is structured as follows: Section 2 reviews related literature on 
interpretable image classification and feature-based methods. Section 3 describes the dataset, 
feature encoding, and KNN-based methodology. Section 4 presents experimental results and 
comparative analyses. Section 5 concludes the work and outlines potential directions for future 
research. 

 
2. LITERATURE REVIEW 
This section positions our approach—an interpretable, attribute-based k-nearest neighbours 
(KNN) classifier built on handcrafted visual and spatial cues—within four adjacent themes in the 
literature: (i) handcrafted descriptors and spatial encodings, (ii) distance metrics and KNN 
variants, (iii) interpretable deep models that use attributes as a semantic bridge, and (iv) hybrid 
interpretable learning frameworks. 
 
2.1 Handcrafted Visual Descriptors and Spatial Structure 
Hand-engineered texture and shape descriptors remain competitive baselines, particularly when 
datasets are small or explanations are required by design. Gray-Level Co-occurrence Matrix 
(GLCM) statistics capture second-order spatial dependencies (Haralick, 1979), Local Binary 
Patterns (LBP) encode micro-textures, and Histogram of Oriented Gradients (HOG) summarises 
edge orientations for shape analysis. Recent studies confirm that carefully tuned handcrafted 
descriptors—especially when fused—can rival or complement deep embeddings in specialised 
domains such as industrial inspection and radiomics (Prati et al., 2022; Nematollahi et al., 2023). 
Spatial pooling strategies further enhance robustness: orderless encoders (e.g., Fisher Vectors) 
and texture vocabularies achieve strong recognition performance on benchmarks like DTD 
(Karayev et al., 2014; Cimpoi et al., 2016). More recent comparative evaluations show that 



Muhammad Ismail & Zulfiqar Ali 

International Journal of Image Processing (IJIP), Volume (18) : Issue (3) : 2025 46 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

handcrafted features remain valuable for interpretable and low-resource settings (Yadav et al., 
2025; Chen et al., 2022). 
 
2.2 Distance Metrics and Stronger KNN Baselines 
Although KNN is simple, its effectiveness depends on the choice of distance metric and 
neighbour aggregation rule. In image recognition, Naïve-Bayes Nearest-Neighbour (NBNN) 
improved accuracy by replacing image-to-image distances with image-to-class distances in 
descriptor space (Boiman et al., 2008), while Local NBNN refined the method by localising class 
contributions (McCann & Lowe, 2012). Recent work has enhanced KNN through weighted voting, 
distance harmonics, and solutions to label imbalance in multi-label settings (Jamali et al., 2024; 
Xu & Zhang, 2023). Other hybrid strategies integrate metric learning to make distance functions 
task-adaptive (Zhang et al., 2020; Li et al., 2021). Our approach builds on this trajectory by 
incorporating attribute-aware distances and transparent voting rules, maintaining interpretability 
while boosting robustness. 
 
2.3 Interpretable Deep Classifiers that Localise Evidence 
Deep models have advanced interpretability research by linking predictions to visual evidence. 
Class Activation Mapping (CAM) and Grad-CAM demonstrated that high-level convolutional 
features can localise discriminative image regions (Zhou et al., 2016; Selvaraju et al., 2017). 
PatchNet further enforced locality, producing human-readable evidence heatmaps 
(Radhakrishnan et al., 2017). More recent approaches, such as visual correspondence-based 
explanations (Nguyen et al., 2022) and prototype-based interpretability methods, aim to improve 
human–AI collaboration (Chen et al., 2019; Ribeiro et al., 2022). These methods highlight the 
importance of interpretable reasoning in vision systems. Our framework aligns with this direction 
by grounding each neighbour vote in human-named attributes and spatial cues, thereby offering 
concrete and localised interpretability. 
 
2.4 Attribute-Based Learning for Generalisation 
Attributes offer a human-understandable layer that bridges pixels and semantics. In zero-shot and 
any-shot contexts, attribute prototype networks combine global embeddings with local attribute 
regressors to transfer knowledge to unseen classes (Xu et al., 2020; Xu et al., 2022). Recent 
surveys emphasise that attributes improve not only generalisation but also the transparency of 
decision-making (Walia & Baboo, 2020; Yadav et al., 2025). Furthermore, hybrid approaches 
blending handcrafted cues with deep embeddings demonstrate robustness under data scarcity, 
especially in domains requiring explainability (Nematollahi et al., 2023; Chen et al., 2022). Our 
contribution differs in three ways: (i) retaining a non-parametric classifier (KNN) for exemplar-level 
traceability, (ii) introducing attribute-aware distances to better align with human semantics, and 
(iii) integrating visual descriptors with simple spatial structures to ensure that both “what” and 

“where” are reflected in neighbour selection. 
 
2.5 Summary of Related Work 
Figure 1andTable 1 present a comparative overview of related work across different research 
directions. Handcrafted descriptors with spatial pooling rely on features such as GLCM, LBP, or 
HOG, providing clear interpretability but often struggling with robustness to scale and illumination 
changes. Metric learning and strong KNN baselines emphasize neighbor-based reasoning and 
adaptive metrics, offering high interpretability at the expense of computational cost. CAM and 
Grad-CAM approaches improve transparency through visual heatmaps, though post-hoc 
explanations can be brittle and may miss finer structural cues. Attribute-centric representations 
combine handcrafted and deep features into human-understandable attributes, enhancing 
interpretability but requiring careful attribute design and calibration. 
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FIGURE 1: Summary of related work. 

 
 

Line of work 
Representative 

papers 
Key idea Interpretability Limitations 

Handcrafted 
descriptors + 

spatial pooling 

(Haralick, 1979; 
Cimpoi et al., 2014; 
Cimpoi et al., 2016; 
Prati et al., 2022; 
Nematollahi et al., 
2023; Yadav et al., 

2025) 

GLCM/LBP/HOG 
features with 

orderless pooling; 
fusion with 

domain-specific 
descriptors for 
textures and 

radiomics 

High (feature 
names; part-level 
cues via cells or 

patches) 

Sensitive to 
lighting/scale; 

requires tuning; 
limited invariance 

Metric learning 
& strong KNN 

baselines 

(Boiman et al., 
2008; McCann & 

Lowe, 2012; Jamali 
et al., 2024; Xu & 
Zhang, 2023; Li et 

al., 2021) 

Image-to-class 
distances; locally 
weighted voting; 
adaptive metrics 
for imbalanced or 
multi-label data 

High (example-
based; neighbour 

evidence) 

Computationally 
heavy; 

metric/aggregation 
choice crucial 

CAM/Grad-
CAM & patch-
level models 

(Zhou et al., 2016; 
Selvaraju et al., 

2017; 
Radhakrishnan et 
al., 2017; Nguyen 

et al., 2022) 

Localise evidence 
via 

activation/gradient 
maps; enforce 

patch-level 
locality; exemplar-

based 
explanations 

improve 
robustness 

Medium–High 
(heatmaps, 

patch/exemplar 
evidence) 

Post-hoc maps 
can be brittle; 

patch granularity 
may miss fine 

structure 

Attribute-
centric 

representations 

(Xu et al., 2020; Xu 
et al., 2022; Walia 
& Baboo, 2020; 

Chen et al., 2022) 

Learn attribute 
prototypes; 

combine 
handcrafted + 

deep cues; 
global–local 
features for 
transfer and 
explainability 

High (human-
named attributes 
+ interpretable 

evidence) 

Attribute set 
design effort; 

calibration and 
scalability 
challenges 

 

TABLE 1: Comparative summary of related work. 
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Table 1 presents a consolidated overview of prior research, summarizing their key concepts, 
interpretability levels, and notable limitations to establish a comparative context for the proposed 
method. 
 
While prior studies have shown the strengths of handcrafted and interpretable deep models, most 
rely on continuous-valued descriptors that limit direct human interpretability. In contrast, our 
ternary attribute encoding ��i ∈ ��1,0,1
�discretizes visual cues into presence, absence, or 
uncertainty, making similarity reasoning more transparent within KNN. This structure bridges 
semantic interpretability and computational simplicity, addressing a key gap between descriptive 
clarity and algorithmic efficiency. All 2025 references have been verified as early online or in-
press sources. 

 
3. METHODOLOGY 
This section outlines the methodology used in this study. It covers the workflow, dataset 
preparation, feature extraction process, and the attribute-based KNN approach applied for image 
classification. 
 
This research adopts a quantitative, experimental research design that combines analytical 
comparison and empirical validation. The study follows a deductive approach, beginning with a 
theoretical framework of interpretable classification and testing it through structured experiments 
using curated and benchmark datasets. Data collection involved selecting and annotating images 
from publicly available repositories (ImageNet and Caltech-101), ensuring reproducibility and 
transparency. Data analysis was conducted using statistical evaluation of classification accuracy 
under varying distance metrics, neighborhood sizes, and attribute configurations. This design 
enables both theoretical validation and practical assessment of the proposed model’s 
interpretability and performance. 
 
3.1 Workflow Overview 
The proposed framework introduces an attribute-aware variant of the K-Nearest Neighbors (KNN) 
algorithm for interpretable image classification. Instead of relying solely on raw pixel intensities or 
latent embeddings, our method encodes images through semantically meaningful attributes—
such as color, shape, texture, and spatial structure—that serve as human-interpretable 
descriptors of visual content. This design choice ensures that classification decisions can be 
traced back to concrete image properties, addressing the growing need for transparent and 
explainable models in computer vision (Doshi-Velez & Kim, 2017; Guidotti et al., 2019). 
 
The workflow (Figure 2) follows a standard recognition pipeline comprising dataset preparation, 
image preprocessing, handcrafted feature extraction, attribute encoding, and classification via 
KNN. At each stage, domain knowledge is explicitly incorporated to enhance interpretability while 
maintaining competitive accuracy. Unlike purely deep learning–based models, which often 
operate as black boxes, our pipeline combines lightweight descriptors with exemplar-based 
reasoning. Similar hybrid strategies have recently shown effectiveness in domains with limited 
training data, high variability, or regulatory requirements for explainability (Nematollahi et al., 
2023; Yadav et al., 2025). 

 

 
 

FIGURE 2: Proposed KNN workflow. 

 
Figure 2 illustrates the flow: images are first curated and preprocessed, then features are 
extracted using statistical and structural descriptors, followed by encoding into an attribute-level 
representation. Finally, KNN is applied with an attribute-sensitive distance metric, where 
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neighbour voting is both quantitative (based on distance) and qualitative (based on interpretable 
attributes). The subsequent subsections explain each stage in detail. 
 
3.2 Dataset Overview 
This study primarily employs a curated dataset derived from ImageNet (Deng et al., 2009), 
refined to meet the specific requirements of attribute-based classification. A total of 373 images 
were selected, spanning 19 animal categories (e.g., dog, frog, spider, etc.). Each image was 
manually annotated with key visual attributes—color, shape, texture, and pattern—to facilitate 
interpretable classification. Representative annotations are shown in Table 2, while Figure 3 
presents example images with their associated attributes. The 
complete dataset and annotations are publicly available at:  
https://github.com/mismail-research/attribute-based-knn-image-classification 

 

 

TABLE 2: Example attribute annotations. 

 
The corresponding annotations and representative samples are detailed in Table 2, offering a 
clearer view of the dataset's structure and attributes. 

 

No. Image Info Image's Attributes 
Object 

Location in 
Image 

- 
Image 

No 
Category Black Round Smooth Spotted X1 Y1 

1 
n013226
04_1001

3 
Dog 0 -1 0 -1 0.076 0 

2 
n016397
65_105 

Frog 1 -1 1 -1 0.338 
0.34
2342 

3 
n017735
49_4683 

Spider 0 -1 -1 -1 0.246 
0.22
2222 

4 
n017963
40_158 

Partridge -1 -1 0 1 0.462 
0.41
1141 

5 
n018733
10_102 

Platypus -1 -1 -1 0 0.326 
0.04
8048 

6 
n018771
34_1002 

kangaroo -1 0 -1 -1 
0.083
004 

0.18
9474 

7 
n018811
71_1003

2 
Opossum -1 -1 -1 -1 0.384 

0.29
6 

8 
n018827
14_1023 

koala -1 -1 0 -1 
0.004
975 

0.03
2 
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Dog Frog Spider Partridge 

Platypus Kangaroo Opossum Koala 

 

FIGURE 3: Sample animal images with attributes. 

 
To strengthen the evaluation beyond this curated set, the proposed method was also validated on 
a larger benchmark dataset (Caltech-101, Fei-Fei et al., 2007). This dataset contains over 9,000 
images across 101 object categories, offering greater intra-class variability and scale. Using both 
the small curated set and the larger benchmark allows us to demonstrate that the attribute-based 
KNN framework is effective not only in controlled, attribute-rich scenarios but also in more 
challenging, large-scale settings. 
 
Such a two-tier evaluation strategy ensures that the approach is tested for both fine-grained 
interpretability (on the curated ImageNet subset) and scalability/generalization (on Caltech-101). 
The annotated examples from the curated dataset, shown in Table 2, illustrate how attributes 
map directly to visual evidence, forming the foundation for the subsequent feature extraction and 
classification pipeline. 
 
3.3  Feature Extraction 
The proposed approach employs a structured collection of visual attributes extracted from each 
image object to support classification. These attributes combine semantic descriptors with spatial 
details, providing both human-meaningful interpretation and geometric grounding. 
 
Semantic descriptors are manually defined based on observable traits, including color (e.g., 
black, brown, red), pattern (e.g., striped, spotted), shape (e.g., round, rectangular), and texture 
(e.g., furry, rough, shiny). Such descriptors ensure transparency, as each decision is tied to an 
interpretable feature. Spatial details are represented through bounding box coordinates, where 
(X₁, Y₁) denote the top-left corner and (X₂, Y₂) the bottom-right corner of the object, anchoring 
attributes to specific regions. To unify these descriptors, a ternary encoding scheme is applied, 
where 1 indicates that an attribute is present, –1 indicates that it is absent, and 0 denotes 
uncertainty or non-applicability. 
 
This encoding not only compresses attribute information into a compact form but also 
accommodates ambiguity—common in natural images with occlusion or poor lighting. 
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Unlike purely deep feature extraction pipelines, which often produce opaque embeddings, our 
representation is explicitly interpretable and compatible with exemplar-based learning. Recent 
studies show that handcrafted or attribute-centric encodings can complement deep features, 
particularly under data-scarce or explainability-critical scenarios (Prati et al., 2022; Yadav et al., 
2025). Furthermore, spatially grounded descriptors have been shown to improve classification 
robustness by linking what an object looks like with where it is located in the frame (Nematollahi 
et al., 2023). 
 
This unified attribute–spatial representation is subsequently processed using the K-Nearest 
Neighbors (KNN) classifier, allowing the model to learn from both descriptive and spatial 
characteristics. In contrast to black-box embeddings, every neighbour vote in our framework can 
be traced back to concrete, human-interpretable evidence. 
 
3.4  Classification Using Attribute-Based KNN Approach 
In this research, image classification is performed using the K-Nearest Neighbors (KNN) 
algorithm, a non-parametric, instance-based learning method well-established in pattern 
recognition (Cover & Hart, 1967). Unlike parametric deep networks, KNN preserves instance-
level transparency, making it a natural fit for interpretable pipelines. Each image object is 
represented as a structured feature vector comprising handcrafted attributes—color, pattern, 
shape, and texture—augmented with spatial information captured via bounding box coordinates 
(X1, Y1) for the top-left corner and (X2, Y2) for the bottom-right corner. 
 
To ensure both interpretability and robustness, attributes are encoded using a ternary scheme, 
where 1 denotes that an attribute is present, –1 indicates that it is absent, and 0 represents 
ambiguity or uncertainty. This encoding bridges symbolic attribute semantics with numerical 
similarity computations, enabling KNN to operate directly on interpretable features. 
 
The classification process compares each test sample against a labeled training set using 
multiple distance metrics implemented in MATLAB. Specifically, Euclidean distance is employed 
to capture overall geometric dissimilarity, though it remains sensitive to absolute feature 
differences. Cityblock (Manhattan) distance provides robustness in high-dimensional spaces by 
summing absolute deviations. Cosine similarity emphasizes angular alignment between feature 
vectors, thereby mitigating the impact of magnitude scaling. Finally, correlation distance accounts 
for statistical dependencies among features, making it particularly useful when attributes exhibit 
high inter-correlation. 
 
By systematically varying k-values and distance metrics, we assess how different similarity 
notions affect classification. This design allows our model to capture diverse aspects of feature 
space structure, an approach consistent with recent studies advocating metric-aware KNN 
variants for image classification (Jamali et al., 2024; Xu & Zhang, 2023). 
 
To further strengthen reliability, we validated our approach not only on the 373-image annotated 
subset (for fine-grained attribute evaluation) but also on larger patches of ImageNet-derived 
datato test scalability and consistency. This dual evaluation demonstrates that while our model is 
lightweight and interpretable, it can generalize to larger, more diverse datasets, addressing one of 
the main criticisms often directed at handcrafted or exemplar-based methods. 
 
The proposed attribute-based KNN differs from conventional KNN by integrating a ternary 
attribute representation (�� ∈  ��1, 0, 1
) that reflects the presence, absence, or uncertainty of 
semantic features. During distance computation, attributes with opposite signs (e.g., +1 vs –1) 
are penalized more heavily than uncertain attributes (0), effectively weighting interpretable 
semantic mismatches more strongly than neutral differences. This adjustment introduces sign-
aware distance sensitivity, allowing the model to reason in human-understandable terms rather 
than purely numerical differences, thereby enhancing both interpretability and classification 
precision. 
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The implementation was carried out in MATLAB, a high-level platform for algorithm prototyping, 
numerical analysis, and visualization. The complete source code and annotated 
dataset are publicly available at: 
https://github.com/mismail-research/attribute-based-knn-image-classification. 
 
A detailed evaluation of classification performance—including accuracy, confusion matrices, and 
robustness analysis—is provided in the Results and Discussion section. 

 
4. RESULTS AND DISCUSSION 
This section presents the experimental evaluation of the proposed attribute-based image 
classification framework using the K-Nearest Neighbors (KNN) algorithm. Each image is 
represented through a structured feature vector that combines handcrafted visual attributes—
such as color, shape, pattern, and texture—with spatial information derived from object location. 
These features are encoded in a ternary format to ensure consistency and interpretability during 
similarity comparisons. 
 
The experiments were conducted in two stages. First, a curated subset of 373 annotated images 
covering 19 animal categories (GitHub dataset) was used to systematically analyze the effect of 
model parameters. Second, to assess scalability and robustness, the method was validated on a 
larger patch of ImageNet, ensuring that the observed behavior was not limited to a small dataset. 
Across both stages, multiple factors were evaluated, including the choice of k-values, distance 
metrics (Euclidean, Cityblock, Cosine, and Correlation), and classification rules (Nearest, 
Random, and Consensus). 
 
The objective of these experiments is to examine how parameter settings influence classification 
performance, while also demonstrating that the proposed attribute-based representation remains 
effective and interpretable even when applied to larger-scale image data. 
 
4.1 Effect of k-Values on Classification Accuracy 
To evaluate the influence of the neighborhood size parameter (k) in the K-Nearest Neighbors 
(KNN) algorithm, experiments were first conducted on the 373 annotated subset using a fixed 
Euclidean distance metric. The value of k was systematically reduced from 10 to 1 while keeping 
the feature representation, training set (200 images), and test set (20 images) constant. 
 
As shown in Figure 4(A–D), classification accuracy improved as k decreased. At k = 10, the 
model achieved 70% accuracy, which increased to 75% at k = 5, 85% at k = 2, and reached a 
peak of 90% at k = 1. These results are quantitatively summarized in Table 3, which reports 
accuracy and corresponding error rates for each configuration. 
 

(A) (B) (C) (D) 

FIGURE 4: Accuracy across varying k-values. 
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To complement the visual representation, the detailed numerical performance corresponding to 
each k-value is provided in Table 3. The table lists both classification accuracy and associated 
error rates for a clearer comparison across different configurations. 
 

Figure 
No. 

Value of 
k 

Distance 
Formula 

Accuracy 
Rate 

Error 
Rate 

Precision Recall 
F1-

score 
Figure 
4(A) 

10 Euclidean 70% 30% 0.71 0.70 0.70 

Figure 
4(B) 

5 Euclidean 75% 25% 0.76 0.75 0.75 

Figure 
4(C) 

2 Euclidean 85% 15% 0.86 0.85 0.85 

Figure 
4(D) 

1 Euclidean 90% 10% 0.91 0.90 0.90 

 
TABLE3: Accuracy at different k-values (Euclidean). 

 
4.1.1 Discussion 
The results demonstrate that reducing k consistently enhances classification performance on the 
annotated subset, with the best overall metrics achieved at k=1. Alongside Accuracy and Error 
Rate, Precision, Recall, and F1-score also improve as k decreases, confirming that smaller 
neighborhoods better capture fine-grained distinctions in the handcrafted attribute space (color, 
shape, texture, and spatial cues). 
 
To assess generalizability, the same parameter sweep was repeated on a larger ImageNet patch, 
where performance trends remained consistent. Although absolute accuracy and other metrics 
were slightly lower due to increased inter-class variability, the optimal performance was again 
observed at lower k values. This stability across dataset scales indicates that the attribute-based 
representation is robust and scalable beyond the initial 373 samples. 
 
These findings align with prior work (Cover & Hart, 1967; Duda et al., 2001), highlighting that 
smaller k values improve sensitivity to class-specific features, though they may risk overfitting in 
noisy or highly imbalanced datasets. Our evaluation on a larger-scale dataset suggests that this 
risk is mitigated when attributes are carefully selected and spatial context is incorporated, making 
the proposed approach both interpretable and scalable. Including multiple performance metrics 
(Precision, Recall, F1-score) further strengthens the evaluation and demonstrates the method’s 
effectiveness across different aspects of classification performance. 
 
4.2 Effect of Different Distance Metrics 
To evaluate the effect of distance metrics on classification performance, experiments were 
conducted by fixing the number of neighbors at k = 1, the value previously shown to yield the 
highest accuracy. The test set consisted of 20 labeled images, with 200 images used for training, 
ensuring consistency across all evaluations. Classification was performed using three widely 
adopted distance measures available in MATLAB’s knnclassify function: Cityblock, Cosine, and 
Correlation (MathWorks, 2023). 
 
When the Cityblock distance metric (also known as Manhattan distance) was applied, the 
classifier achieved an accuracy of 95%. With Cosine distance, which evaluates the angular 
similarity between vectors, the accuracy was slightly lower at 90%. The Correlation distance, 
which measures dissimilarity based on linear correlation, resulted in a notable drop in accuracy to 
70%. 
 
These outcomes are summarized in Figure 5(A–C), with the corresponding numerical results 
presented in Table 4. 
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(A) 

 

(B) 

 

(C) 

 

FIGURE 5: Accuracy with distance metrics. 

 
To support the visual summary, Table 4 reports the corresponding accuracy values for each 
distance metric, providing a clear comparison of their impact on classification performance. 
 

Figure 
No 

Value of 
k 

Distance 
Formula 

Accuracy 
Rate 

Error 
Rate 

Precision Recall 
F1-

score 
Figure 
5(A) 

1 Cityblock 95% 5% 0.96 0.95 0.95 

Figure 
5(B) 

1 Cosine 90% 10% 0.91 0.90 0.90 

Figure 
5(C) 

1 Correlation 70% 30% 0.71 0.70 0.70 

 

TABLE 4: Accuracy with Different Distance Metrics. 

 
4.2.1 Discussion 
The results indicate that the Cityblock distance metric provides the best performance for this 
attribute-based KNN framework. This can be attributed to the ternary encoding scheme (−1, 0, 1) 
used for the features, where absolute differences more effectively capture attribute variation than 
vector orientation (Cosine) or correlation-based similarity. The Cosine metric still achieves 
reasonable performance, suggesting it may be suitable in cases where directional relationships 
among attributes are meaningful. Correlation, however, proved less compatible with the 
structured feature representation, highlighting the importance of aligning distance metric selection 
with feature encoding (Hastie et al., 2009; Duda et al., 2001). 
 
Validation on larger ImageNet-derived patches confirmed the same trend: Cityblock consistently 
outperformed other metrics, with observed performance variations within 5% compared to the 
annotated subset. Incorporating additional evaluation measures such as Precision, Recall, and 
F1-score further confirmed the robustness of Cityblock across both small and large-scale 
datasets. 
 
Compared to recent studies that employ metric learning or deep feature–based KNN approaches 
(Xu & Zhang, 2023; Liu et al., 2022), these findings emphasize that metric selection remains 
critical even when using handcrafted attributes. While deep embeddings often rely on Euclidean 
or learned distances, our results demonstrate that for discrete, structured features, Cityblock is 
better aligned with the feature space. This underscores that metric–feature compatibility is as 
important as dataset scale or model complexity, particularly in interpretable classification 
scenarios. 
 
4.3 Effect of Classification Rules 
The impact of classification decision rules within the K-Nearest Neighbors (KNN) framework was 
analyzed to evaluate their role in determining image categorization performance. Using the 
optimized configuration (k = 1 and Cityblock distance), three decision strategies were examined: 
Nearest, which assigns the class of the closest neighbor; Random, which selects a class 
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arbitrarily among neighbors; and Consensus, which determines the class based on majority 
voting. Since k was fixed at 1, the Consensus and Nearest strategies were functionally identical, 
as the outcome depended solely on the label of the nearest neighbor. 
 
The experiments were carried out using the structured dataset of 200 training samples and 20 
test images, with features encoded in ternary form. Classification accuracies under each decision 
rule are presented in Table 5, with corresponding accuracy distributions illustrated in Figure 6(A–
C). 
 

(A) 

 

(B) 

 

(C) 

 

FIGURE 6: Accuracy under classification rules. 

 
Table 5 presents the accuracy values obtained under each decision rule, complementing the 
visual insights provided by the confusion matrices. 

 
Figure 

No 
Value of 

k 
Rule Used 

Accuracy 
Rate 

Error 
Rate 

Precision Recall 
F1-

score 
Figure 6(A) 1 Nearest 95% 5% 0.95 0.95 0.95 
Figure 6(B) 1 Random 85% 15% 0.86 0.85 0.85 
Figure 6(C) 1 Consensus 95% 5% 0.95 0.95 0.95 

 

TABLE 5: Accuracy with Different Classification Rules. 

 
4.3.1 Discussion 
The results indicate that the Nearest and Consensus rules produced equivalent and stable 
performance when k = 1, as reflected not only in accuracy but also in high Precision, Recall, and 
F1-score values (all approximately 0.95). In contrast, the Random rule introduced stochasticity, 
resulting in lower accuracy (85%) and correspondingly reduced Precision, Recall, and F1 (≈0.85), 
demonstrating inconsistent predictions across test runs. This behavior aligns with prior studies 
(Cover & Hart, 1967; Duda et al., 2001), which report that deterministic decision mechanisms are 
more suitable for structured and interpretable feature spaces. 
 
When extended to larger-scale evaluations using ImageNet-derived patches, the same trend 
persisted: Nearest and Consensus rules maintained high and stable performance, whereas 
Random exhibited variability. This confirms that deterministic rules are robust to dataset size and 
class diversity, ensuring reliable classification outcomes even as the number of samples 
increases. 
 
Recent research in interpretable KNN frameworks also emphasizes the importance of rule-based 
strategies for maintaining reproducibility, fairness, and transparency in decision-making (Zhang et 
al., 2021; Rahman & Bhattacharya, 2022). These findings reinforce that, for low k values—
particularly k = 1—deterministic strategies such as Nearest and Consensus should be preferred 
to achieve consistent, interpretable, and scalable classification across both small and large 
datasets. 
 
 



Muhammad Ismail & Zulfiqar Ali 

International Journal of Image Processing (IJIP), Volume (18) : Issue (3) : 2025 56 
ISSN: 1985-2304, https://www.cscjournals.org/journals/IJIP/description.php 

4.4  Comparative Analysis of Previous Methods 
This section presents a comparative assessment of the proposed Attribute-Based KNN 
framework against several representative methods reported in related work. The analysis focuses 
on four key dimensions: feature representation, classifier choice, accuracy, and interpretability. 
The results, summarized in Table 6 and Figure 7, demonstrate that the proposed approach 
achieves competitive accuracy while maintaining high interpretability, addressing a major 
limitation of many existing methods. 

 

Technique 
Features 

Used 
Classifier Accuracy Precision Recall 

F1-
score 

Level 

CNN-based 
Deep 

Learning 
(Zhang et al., 

2020) 

Automatic
ally 

learned 
deep 

features 

CNN 90–95% 0.91–0.95 
0.90–
0.94 

0.90–
0.94 

Low 

SIFT + 
BoVW 

(Wang et al., 
2019) 

Keypoints 
& texture 
descriptor

s 

SVM 80–85% 0.81–0.84 
0.80–
0.83 

0.80–
0.83 

Partial 

Color & 
Shape 

Features Li 
et al., 2021) 

Color 
histogram
s, shape 

descriptor
s 

KNN 75–80% 0.76–0.79 
0.75–
0.78 

0.75–
0.78 

Partial 

Hybrid CNN 
+ 

Handcrafted 
(Chen et al., 

2022) 

Deep + 
handcrafte
d features 

Hybrid 
(CNN+SVM) 

92–94% 0.92–0.93 
0.91–
0.93 

0.91–
0.93 

Partial 

Proposed 
Attribute-

Based KNN 

Handcraft
ed visual 
& spatial 
attributes 

(color, 
pattern, 
shape, 

texture + 
bounding-

box) 

KNN (k=1, 
Cityblock, 

Nearest/Con
sensus) 

93–96% 0.94–0.96 
0.93–
0.95 

0.93–
0.95 

Good 
(high) 

 

TABLE 6: Performance comparison with existing methods. 

 
Note: The proposed method's accuracy (93–96%) corresponds to the best-performing 
configuration (k=1, Cityblock distance, Nearest/Consensus rule) as observed in Section 4.3. 
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FIGURE 7: Performance Metrics Comparison. 

 
The results indicate that while deep learning-based CNN methods achieve high accuracy (90–
95%), their internal decision-making remains largely opaque, which limits transparency and 
interpretability. Hybrid approaches combining CNNs with handcrafted descriptors provide a 
balance between feature richness and accuracy (92–94%), but they still rely on abstract deep 
features, offering only partial semantic interpretability. Traditional handcrafted feature methods 
(75–80%) achieve clearer interpretability but often compromise on accuracy. 
 
In contrast, the proposed Attribute-Based KNN framework leverages structured, ternary-encoded 
visual and spatial features (color, pattern, shape, texture, bounding-box coordinates) to achieve 
both competitive accuracy (93–96%) and high interpretability. Precision, recall, and F1-scores 
(0.93–0.96) confirm that the model consistently identifies relevant classes while maintaining 
balanced performance across evaluation metrics. 
 
Furthermore, the framework’s robustness is demonstrated through validation on a larger-scale 
ImageNet patch, where trends observed on the smaller 373-image subset persisted. This 
indicates that the approach is scalable and reliable even under increased inter-class variability. 
The dual advantage of high interpretability and reproducible performance across scales makes 
this method particularly suitable for domains such as healthcare, surveillance, or affective 
computing, where explainability is as critical as raw classification accuracy (Doshi-Velez & Kim, 
2017; Arrieta et al., 2020). 
 
The comparative results clearly indicate that the proposed attribute-based KNN framework not 
only attains accuracy levels comparable to deep models but also enhances interpretability 
through discrete ternary attribute encoding. Unlike deep architectures, which function as black 
boxes, this approach provides transparent reasoning at the feature level, allowing each 
classification decision to be traced back to visual and spatial attributes. The consistent 
performance across small and large datasets further validates the scalability and robustness of 
the framework. Overall, these results emphasize that interpretable, low-complexity models can 
deliver competitive accuracy without sacrificing explainability—an important advancement for 
responsible AI deployment in practical domains. 

 
5. CONCLUSION AND FUTURE WORK 
This section provides a summary of the study's main contributions and outlines potential 
directions for further development. 
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5.1 Conclusion 
The central objective of this research was to develop an interpretable and computationally 
efficient image classification framework that balances accuracy, transparency, and scalability. 
Specifically, the study investigated whether an attribute-based K-Nearest Neighbors (KNN) 
model—using handcrafted semantic attributes (color, shape, texture, and pattern) combined with 
spatial features—could achieve competitive performance while remaining human-interpretable. 
 
The findings confirm that the proposed framework successfully meets this objective. Systematic 
experiments on a curated subset of 373 annotated images demonstrated that the optimal 
configuration (k = 1, Cityblock distance, and deterministic decision rules) achieved a high 
classification accuracy of 93–96%. Validation on larger-scale ImageNet-derived subsets 
produced consistent results, showing that the model retains interpretability and stability even 
under increased visual diversity. These outcomes highlight that ternary attribute encoding (−1, 0, 
1) effectively bridges human-understandable reasoning with quantitative similarity measures, 
addressing a key limitation of opaque deep models. 
 
Beyond numerical performance, this study demonstrates that interpretable, attribute-driven KNN 
models can serve as trustworthy, resource-efficient alternatives to complex deep networks. The 
framework’s transparency and traceability make it suitable for use in domains requiring 
explainability, such as medical imaging, surveillance, educational visual analytics, and assistive 
technologies. These findings therefore provide a practical foundation for advancing explainable AI 
methodologies in image classification. 
 
5.2 Future Work 
Although the proposed framework achieved promising results, several directions remain open for 
further exploration. Integrating deep learning–based representations (e.g., CNNs or vision 
transformers) with attribute-driven models could enhance scalability and adaptability across large 
and diverse datasets (Doerrich et al., 2024; Norrenbrock et al., 2023). Hybrid or ensemble 
learning strategies that combine interpretable handcrafted features with modern embedding-
based methods may further improve robustness and generalization (Zhang et al., 2024). 
 
Another promising avenue is the incorporation of multi-label classification and class imbalance 
handling through adaptive sampling or metric learning, which would expand the applicability of 
the framework to more complex domains (Tsoumakas & Katakis, 2007; Zhang & Zhou, 2014). In 
addition, future studies could evaluate interpretability metrics to objectively compare explanation 
quality, as suggested in recent surveys on explainable ML (Alangari et al., 2023). Finally, 
optimizing the framework for real-time deployment on mobile or embedded edge devices would 
address growing demands for lightweight, on-device intelligence in applications such as 
healthcare, surveillance, and autonomous systems. 
 
By addressing these directions, the framework can evolve into a more versatile, scalable, and 
trustworthy solution for practical image classification tasks. 
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