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Abstract

Image classification remains a fundamental challenge in computer vision with applications in
retrieval, recognition, and scene understanding. This study introduces a transparent and
interpretable framework for image classification using the K-Nearest Neighbors (KNN) algorithm.
The approach leverages handcrafted visual features—color, pattern, shape, and texture—
together with spatial attributes derived from bounding box coordinates. These features are
encoded in a ternary scheme to represent presence, absence, or uncertainty, enabling consistent
similarity comparisons. The proposed model was systematically evaluated under varying k-
values, multiple distance metrics (Euclidean, Cityblock, Cosine, and Correlation), and alternative
decision rules (Nearest, Consensus, Random). Experimental results demonstrate that the choice
of distance metric and neighborhood size significantly affects performance, with the Cityblock
metric and k = 1 yielding the highest accuracy. Importantly, the framework scales effectively to
larger datasets while maintaining strong interpretability, offering a balanced alternative to opaque
deep learning models. These findings highlight the potential of attribute-based KNN as a
lightweight, human-understandable solution for image classification in both research and
resource-constrained practical applications.

Keywords: Image Classification, Attribute-Based KNN, Handcrafted Features, Spatial Attributes,
Interpretable Machine Learning

1. INTRODUCTION

Image classification is a fundamental task in computer vision with applications in domains such
as healthcare diagnostics, surveillance, autonomous driving, and content-based retrieval. The
ability to correctly identify and categorize visual information is critical for decision-making in real-
world systems. While deep learning approaches—particularly convolutional neural networks
(CNNs)—have achieved state-of-the-art results in many large-scale classification challenges
(Krizhevsky et al., 2012; He et al., 2016), their practical adoption is often hindered by two major
limitations: the need for vast amounts of labeled data and the lack of interpretability in their
decision-making processes. These constraints are problematic in sensitive areas such as medical
imaging or security, where transparent reasoning is as important as accuracy (Doshi-Velez &
Kim, 2017).

Handcrafted feature-based methods, although less fashionable in the deep learning era, remain
highly relevant in contexts where interpretability, computational efficiency, and domain-driven
feature control are required (Walia & Baboo, 2020). By explicitly defining semantic attributes such
as color, shape, texture, and pattern, such approaches allow users to trace how classification
outcomes are derived. Furthermore, when combined with lightweight algorithms like K-Nearest
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Neighbors (KNN), they offer an efficient and transparent alternative to complex neural
architectures.

This study introduces an attribute-based KNN framework that integrates handcrafted visual
descriptors with spatial information obtained from bounding box annotations. Each attribute is
encoded in a ternary scheme (1 = present, 0 = uncertain, —1 = absent), creating a structured
representation that supports robust similarity comparisons. Unlike black-box models, this
approach provides interpretable outcomes while maintaining strong performance across
controlled and large-scale evaluations. The framework systematically investigates how variations
in neighborhood size (k), distance metrics (Euclidean, Cityblock, Cosine, Correlation), and
classification rules (Nearest, Random, Consensus) influence classification accuracy. Additionally,
it compares the results with existing methods to highlight both accuracy gains and interpretability
advantages.

The main contributions of this research are as follows:

1. Development of a transparent, attribute-driven classification framework based on ternary-
encoded handcrafted and spatial features.

2. Systematic evaluation of KNN performance under multiple distance measures,
neighborhood sizes, and decision rules.

3. Comparative analysis with existing techniques, demonstrating that the proposed method
balances high accuracy with enhanced interpretability, and scales effectively across
larger datasets.

The proposed framework extends traditional KNN by introducing a ternary attribute encoding that
jointly represents semantic and spatial features. This modification alters the similarity computation
to account for attribute presence and absence, thereby enhancing interpretability. The approach
offers practical value for explainable Al applications such as medical imaging, where transparent
reasoning is essential.

The remainder of the paper is structured as follows: Section 2 reviews related literature on
interpretable image classification and feature-based methods. Section 3 describes the dataset,
feature encoding, and KNN-based methodology. Section 4 presents experimental results and
comparative analyses. Section 5 concludes the work and outlines potential directions for future
research.

2. LITERATURE REVIEW
This section positions our approach—an interpretable, attribute-based k-nearest neighbours
(KNN) classifier built on handcrafted visual and spatial cues—within four adjacent themes in the
literature: (i) handcrafted descriptors and spatial encodings, (ii) distance metrics and KNN
variants, (iii) interpretable deep models that use attributes as a semantic bridge, and (iv) hybrid
interpretable learning frameworks.

2.1 Handcrafted Visual Descriptors and Spatial Structure

Hand-engineered texture and shape descriptors remain competitive baselines, particularly when
datasets are small or explanations are required by design. Gray-Level Co-occurrence Matrix
(GLCM) statistics capture second-order spatial dependencies (Haralick, 1979), Local Binary
Patterns (LBP) encode micro-textures, and Histogram of Oriented Gradients (HOG) summarises
edge orientations for shape analysis. Recent studies confirm that carefully tuned handcrafted
descriptors—especially when fused—can rival or complement deep embeddings in specialised
domains such as industrial inspection and radiomics (Prati et al., 2022; Nematollahi et al., 2023).
Spatial pooling strategies further enhance robustness: orderless encoders (e.g., Fisher Vectors)
and texture vocabularies achieve strong recognition performance on benchmarks like DTD
(Karayev et al., 2014; Cimpoi et al., 2016). More recent comparative evaluations show that
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handcrafted features remain valuable for interpretable and low-resource settings (Yadav et al.,
2025; Chen et al., 2022).

2.2 Distance Metrics and Stronger KNN Baselines

Although KNN is simple, its effectiveness depends on the choice of distance metric and
neighbour aggregation rule. In image recognition, Naive-Bayes Nearest-Neighbour (NBNN)
improved accuracy by replacing image-to-image distances with image-to-class distances in
descriptor space (Boiman et al., 2008), while Local NBNN refined the method by localising class
contributions (McCann & Lowe, 2012). Recent work has enhanced KNN through weighted voting,
distance harmonics, and solutions to label imbalance in multi-label settings (Jamali et al., 2024;
Xu & Zhang, 2023). Other hybrid strategies integrate metric learning to make distance functions
task-adaptive (Zhang et al., 2020; Li et al., 2021). Our approach builds on this trajectory by
incorporating attribute-aware distances and transparent voting rules, maintaining interpretability
while boosting robustness.

2.3 Interpretable Deep Classifiers that Localise Evidence

Deep models have advanced interpretability research by linking predictions to visual evidence.
Class Activation Mapping (CAM) and Grad-CAM demonstrated that high-level convolutional
features can localise discriminative image regions (Zhou et al., 2016; Selvaraju et al., 2017).
PatchNet further enforced locality, producing human-readable evidence heatmaps
(Radhakrishnan et al., 2017). More recent approaches, such as visual correspondence-based
explanations (Nguyen et al., 2022) and prototype-based interpretability methods, aim to improve
human-Al collaboration (Chen et al., 2019; Ribeiro et al., 2022). These methods highlight the
importance of interpretable reasoning in vision systems. Our framework aligns with this direction
by grounding each neighbour vote in human-named attributes and spatial cues, thereby offering
concrete and localised interpretability.

2.4 Attribute-Based Learning for Generalisation

Attributes offer a human-understandable layer that bridges pixels and semantics. In zero-shot and
any-shot contexts, attribute prototype networks combine global embeddings with local attribute
regressors to transfer knowledge to unseen classes (Xu et al., 2020; Xu et al., 2022). Recent
surveys emphasise that attributes improve not only generalisation but also the transparency of
decision-making (Walia & Baboo, 2020; Yadav et al., 2025). Furthermore, hybrid approaches
blending handcrafted cues with deep embeddings demonstrate robustness under data scarcity,
especially in domains requiring explainability (Nematollahi et al., 2023; Chen et al., 2022). Our
contribution differs in three ways: (i) retaining a non-parametric classifier (KNN) for exemplar-level
traceability, (i) introducing attribute-aware distances to better align with human semantics, and
(iii) integrating visual descriptors with simple spatial structures to ensure that both “what” and

“where” are reflected in neighbour selection.

2.5 Summary of Related Work

Figure 1andTable 1 present a comparative overview of related work across different research
directions. Handcrafted descriptors with spatial pooling rely on features such as GLCM, LBP, or
HOG, providing clear interpretability but often struggling with robustness to scale and illumination
changes. Metric learning and strong KNN baselines emphasize neighbor-based reasoning and
adaptive metrics, offering high interpretability at the expense of computational cost. CAM and
Grad-CAM approaches improve transparency through visual heatmaps, though post-hoc
explanations can be brittle and may miss finer structural cues. Attribute-centric representations
combine handcrafted and deep features into human-understandable attributes, enhancing
interpretability but requiring careful attribute design and calibration.
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FIGURE 1: Summary of related work.
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TABLE 1: Comparative summary of related work.
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Table 1 presents a consolidated overview of prior research, summarizing their key concepts,
interpretability levels, and notable limitations to establish a comparative context for the proposed
method.

While prior studies have shown the strengths of handcrafted and interpretable deep models, most
rely on continuous-valued descriptors that limit direct human interpretability. In contrast, our
ternary attribute encoding (fi € {—1,0,1})discretizes visual cues into presence, absence, or
uncertainty, making similarity reasoning more transparent within KNN. This structure bridges
semantic interpretability and computational simplicity, addressing a key gap between descriptive
clarity and algorithmic efficiency. All 2025 references have been verified as early online or in-
press sources.

3. METHODOLOGY

This section outlines the methodology used in this study. It covers the workflow, dataset
preparation, feature extraction process, and the attribute-based KNN approach applied for image
classification.

This research adopts a quantitative, experimental research design that combines analytical
comparison and empirical validation. The study follows a deductive approach, beginning with a
theoretical framework of interpretable classification and testing it through structured experiments
using curated and benchmark datasets. Data collection involved selecting and annotating images
from publicly available repositories (ImageNet and Caltech-101), ensuring reproducibility and
transparency. Data analysis was conducted using statistical evaluation of classification accuracy
under varying distance metrics, neighborhood sizes, and attribute configurations. This design
enables both theoretical validation and practical assessment of the proposed model’s
interpretability and performance.

3.1 Workflow Overview

The proposed framework introduces an attribute-aware variant of the K-Nearest Neighbors (KNN)
algorithm for interpretable image classification. Instead of relying solely on raw pixel intensities or
latent embeddings, our method encodes images through semantically meaningful attributes—
such as color, shape, texture, and spatial structure—that serve as human-interpretable
descriptors of visual content. This design choice ensures that classification decisions can be
traced back to concrete image properties, addressing the growing need for transparent and
explainable models in computer vision (Doshi-Velez & Kim, 2017; Guidotti et al., 2019).

The workflow (Figure 2) follows a standard recognition pipeline comprising dataset preparation,
image preprocessing, handcrafted feature extraction, attribute encoding, and classification via
KNN. At each stage, domain knowledge is explicitly incorporated to enhance interpretability while
maintaining competitive accuracy. Unlike purely deep learning—based models, which often
operate as black boxes, our pipeline combines lightweight descriptors with exemplar-based
reasoning. Similar hybrid strategies have recently shown effectiveness in domains with limited
training data, high variability, or regulatory requirements for explainability (Nematollahi et al.,
2023; Yadav et al., 2025).

Dataset Images H Preprocessing HCOOLFEEEM;E%S&E‘DSPE’MH Encoding(-1,0,1) HCassﬁcaton(KNN]H Predicted Class

FIGURE 2: Proposed KNN workflow.

Figure 2 illustrates the flow: images are first curated and preprocessed, then features are
extracted using statistical and structural descriptors, followed by encoding into an attribute-level
representation. Finally, KNN is applied with an attribute-sensitive distance metric, where
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neighbour voting is both quantitative (based on distance) and qualitative (based on interpretable
attributes). The subsequent subsections explain each stage in detail.

3.2 Dataset Overview

This study primarily employs a curated dataset derived from ImageNet (Deng et al., 2009),
refined to meet the specific requirements of attribute-based classification. A total of 373 images
were selected, spanning 19 animal categories (e.g., dog, frog, spider, etc.). Each image was
manually annotated with key visual attributes—color, shape, texture, and pattern—to facilitate
interpretable classification. Representative annotations are shown in Table 2, while Figure 3
presents example images with their associated attributes. The
complete dataset and annotations are publicly available at:
https://github.com/mismail-research/attribute-based-knn-image-classification

Object
No. Image Info Image's Attributes Location in
Image
- Im;ge Category | Black | Round | Smooth | Spotted X1 Y1
n013226
1 04_1001 Dog 0 -1 0 -1 0.076 0
3
n016397 0.34
2 65 105 Frog 1 -1 1 -1 0.338 5342
n017735 . 0.22
3 49 4683 Spider 0 -1 -1 -1 0246 | 5500
n017963 . 0.41
4 40 158 Partridge -1 -1 0 1 0.462 | 11,4
n018733 0.04
5 10 102 Platypus -1 -1 -1 0 0.326 8048
n018771 0.083 0.18
6 | 34 1002 | Kangaroo - 0 - - 004 | 9474
n018811 0.29
7 711003 Opossum -1 -1 -1 -1 0.384 .6
2
n018827 0.004 0.03
8 | 14 1023 koala - - 0 - 975 2

TABLE 2: Example attribute annotations.

The corresponding annotations and representative samples are detailed in Table 2, offering a
clearer view of the dataset's structure and attributes.
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Dog Frog Spider

Platypus Kangaroo Opossum Koala

FIGURE 3: Sample animal images with attributes.

To strengthen the evaluation beyond this curated set, the proposed method was also validated on
a larger benchmark dataset (Caltech-101, Fei-Fei et al., 2007). This dataset contains over 9,000
images across 101 object categories, offering greater intra-class variability and scale. Using both
the small curated set and the larger benchmark allows us to demonstrate that the attribute-based
KNN framework is effective not only in controlled, attribute-rich scenarios but also in more
challenging, large-scale settings.

Such a two-tier evaluation strategy ensures that the approach is tested for both fine-grained
interpretability (on the curated ImageNet subset) and scalability/generalization (on Caltech-101).
The annotated examples from the curated dataset, shown in Table 2, illustrate how attributes
map directly to visual evidence, forming the foundation for the subsequent feature extraction and
classification pipeline.

3.3 Feature Extraction

The proposed approach employs a structured collection of visual attributes extracted from each
image object to support classification. These attributes combine semantic descriptors with spatial
details, providing both human-meaningful interpretation and geometric grounding.

Semantic descriptors are manually defined based on observable traits, including color (e.g.,
black, brown, red), pattern (e.g., striped, spotted), shape (e.g., round, rectangular), and texture
(e.g., furry, rough, shiny). Such descriptors ensure transparency, as each decision is tied to an
interpretable feature. Spatial details are represented through bounding box coordinates, where
(X1, Y1) denote the top-left corner and (X,, Y,) the bottom-right corner of the object, anchoring
attributes to specific regions. To unify these descriptors, a ternary encoding scheme is applied,
where 1 indicates that an attribute is present, —1 indicates that it is absent, and 0 denotes
uncertainty or non-applicability.

This encoding not only compresses attribute information into a compact form but also
accommodates ambiguity—common in natural images with occlusion or poor lighting.
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Unlike purely deep feature extraction pipelines, which often produce opaque embeddings, our
representation is explicitly interpretable and compatible with exemplar-based learning. Recent
studies show that handcrafted or attribute-centric encodings can complement deep features,
particularly under data-scarce or explainability-critical scenarios (Prati et al., 2022; Yadav et al.,
2025). Furthermore, spatially grounded descriptors have been shown to improve classification
robustness by linking what an object looks like with where it is located in the frame (Nematollahi
et al., 2023).

This unified attribute—spatial representation is subsequently processed using the K-Nearest
Neighbors (KNN) classifier, allowing the model to learn from both descriptive and spatial
characteristics. In contrast to black-box embeddings, every neighbour vote in our framework can
be traced back to concrete, human-interpretable evidence.

3.4 Classification Using Attribute-Based KNN Approach

In this research, image classification is performed using the K-Nearest Neighbors (KNN)
algorithm, a non-parametric, instance-based learning method well-established in pattern
recognition (Cover & Hart, 1967). Unlike parametric deep networks, KNN preserves instance-
level transparency, making it a natural fit for interpretable pipelines. Each image object is
represented as a structured feature vector comprising handcrafted attributes—color, pattern,
shape, and texture—augmented with spatial information captured via bounding box coordinates
(X1, Y1)for the top-left corner and (X2, Y2) for the bottom-right corner.

To ensure both interpretability and robustness, attributes are encoded using a ternary scheme,
where 1 denotes that an attribute is present, —1 indicates that it is absent, and 0 represents
ambiguity or uncertainty. This encoding bridges symbolic attribute semantics with numerical
similarity computations, enabling KNN to operate directly on interpretable features.

The classification process compares each test sample against a labeled training set using
multiple distance metrics implemented in MATLAB. Specifically, Euclidean distance is employed
to capture overall geometric dissimilarity, though it remains sensitive to absolute feature
differences. Cityblock (Manhattan) distance provides robustness in high-dimensional spaces by
summing absolute deviations. Cosine similarity emphasizes angular alignment between feature
vectors, thereby mitigating the impact of magnitude scaling. Finally, correlation distance accounts
for statistical dependencies among features, making it particularly useful when attributes exhibit
high inter-correlation.

By systematically varying k-values and distance metrics, we assess how different similarity
notions affect classification. This design allows our model to capture diverse aspects of feature
space structure, an approach consistent with recent studies advocating metric-aware KNN
variants for image classification (Jamali et al., 2024; Xu & Zhang, 2023).

To further strengthen reliability, we validated our approach not only on the 373-image annotated
subset (for fine-grained attribute evaluation) but also on larger patches of ImageNet-derived
datato test scalability and consistency. This dual evaluation demonstrates that while our model is
lightweight and interpretable, it can generalize to larger, more diverse datasets, addressing one of
the main criticisms often directed at handcrafted or exemplar-based methods.

The proposed attribute-based KNN differs from conventional KNN by integrating a ternary
attribute representation (f; € {—1,0,1}) that reflects the presence, absence, or uncertainty of
semantic features. During distance computation, attributes with opposite signs (e.g., +1 vs —1)
are penalized more heavily than uncertain attributes (0), effectively weighting interpretable
semantic mismatches more strongly than neutral differences. This adjustment introduces sign-
aware distance sensitivity, allowing the model to reason in human-understandable terms rather
than purely numerical differences, thereby enhancing both interpretability and classification
precision.
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The implementation was carried out in MATLAB, a high-level platform for algorithm prototyping,
numerical analysis, and visualization. The complete source code and annotated
dataset are publicly available at:
https://github.com/mismail-research/attribute-based-knn-image-classification.

A detailed evaluation of classification performance—including accuracy, confusion matrices, and
robustness analysis—is provided in the Results and Discussion section.

4. RESULTS AND DISCUSSION

This section presents the experimental evaluation of the proposed attribute-based image
classification framework using the K-Nearest Neighbors (KNN) algorithm. Each image is
represented through a structured feature vector that combines handcrafted visual attributes—
such as color, shape, pattern, and texture—with spatial information derived from object location.
These features are encoded in a ternary format to ensure consistency and interpretability during
similarity comparisons.

The experiments were conducted in two stages. First, a curated subset of 373 annotated images
covering 19 animal categories (GitHub dataset) was used to systematically analyze the effect of
model parameters. Second, to assess scalability and robustness, the method was validated on a
larger patch of ImageNet, ensuring that the observed behavior was not limited to a small dataset.
Across both stages, multiple factors were evaluated, including the choice of k-values, distance
metrics (Euclidean, Cityblock, Cosine, and Correlation), and classification rules (Nearest,
Random, and Consensus).

The objective of these experiments is to examine how parameter settings influence classification
performance, while also demonstrating that the proposed attribute-based representation remains
effective and interpretable even when applied to larger-scale image data.

4.1 Effect of k-Values on Classification Accuracy

To evaluate the influence of the neighborhood size parameter (k) in the K-Nearest Neighbors
(KNN) algorithm, experiments were first conducted on the 373 annotated subset using a fixed
Euclidean distance metric. The value of k was systematically reduced from 10 to 1 while keeping
the feature representation, training set (200 images), and test set (20 images) constant.

As shown in Figure 4(A-D), classification accuracy improved as k decreased. At k = 10, the
model achieved 70% accuracy, which increased to 75% at k = 5, 85% at k = 2, and reached a
peak of 90% at k = 1. These results are quantitatively summarized in Table 3, which reports
accuracy and corresponding error rates for each configuration.

(A) (B) (© (D)

Figure 1 -ollg Figure 1 - olg Figure 1 -l 4 Figure | - ol
Fle Edt Viw et Toos Desop Window Hep Fle Bt Viw et Toos Dedop Window Help Fle Edt View et Toos Deiop Window Help Fle Bk Viw et Took Deskop Window Hip
DS K AKU9EL- S0 (eD DS B RRU9EL- 2|08 | =D DEde | hRAU9LL- 2|08/ nD Dads | hAK0U9RL-S|0E(=DO

Result Result Result Result

Ermor rale

FIGURE 4: Accuracy across varying k-values.
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To complement the visual representation, the detailed numerical performance corresponding to
each k-value is provided in Table 3. The table lists both classification accuracy and associated
error rates for a clearer comparison across different configurations.

e [ VAo [ D | ARGy | B0 | prson | et | i,
F“‘%xr)e 10 Euclidean 70% 30% 0.71 0.70 | 070
F}%Er)e 5 Euclidean 75% 25% 0.76 0.75 | 0.75
F“‘%r)e 2 Euclidean 85% 15% 0.86 0.85 | 0.85
ij(lgr)e 1 Euclidean 90% 10% 0.91 0.90 | 0.90

TABLES3: Accuracy at different k-values (Euclidean).

4.1.1 Discussion

The results demonstrate that reducing k consistently enhances classification performance on the
annotated subset, with the best overall metrics achieved at k=1. Alongside Accuracy and Error
Rate, Precision, Recall, and F1-score also improve as k decreases, confirming that smaller
neighborhoods better capture fine-grained distinctions in the handcrafted attribute space (color,
shape, texture, and spatial cues).

To assess generalizability, the same parameter sweep was repeated on a larger ImageNet patch,
where performance trends remained consistent. Although absolute accuracy and other metrics
were slightly lower due to increased inter-class variability, the optimal performance was again
observed at lower k values. This stability across dataset scales indicates that the attribute-based
representation is robust and scalable beyond the initial 373 samples.

These findings align with prior work (Cover & Hart, 1967; Duda et al., 2001), highlighting that
smaller k values improve sensitivity to class-specific features, though they may risk overfitting in
noisy or highly imbalanced datasets. Our evaluation on a larger-scale dataset suggests that this
risk is mitigated when attributes are carefully selected and spatial context is incorporated, making
the proposed approach both interpretable and scalable. Including multiple performance metrics
(Precision, Recall, F1-score) further strengthens the evaluation and demonstrates the method’s
effectiveness across different aspects of classification performance.

4.2 Effect of Different Distance Metrics

To evaluate the effect of distance metrics on classification performance, experiments were
conducted by fixing the number of neighbors at k = 1, the value previously shown to yield the
highest accuracy. The test set consisted of 20 labeled images, with 200 images used for training,
ensuring consistency across all evaluations. Classification was performed using three widely
adopted distance measures available in MATLAB'’s knnclassify function: Cityblock, Cosine, and
Correlation (MathWorks, 2023).

When the Cityblock distance metric (also known as Manhattan distance) was applied, the
classifier achieved an accuracy of 95%. With Cosine distance, which evaluates the angular
similarity between vectors, the accuracy was slightly lower at 90%. The Correlation distance,
which measures dissimilarity based on linear correlation, resulted in a notable drop in accuracy to
70%.

These outcomes are summarized in Figure 5(A-C), with the corresponding numerical results
presented in Table 4.
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To support the visual summary, Table 4 reports the corresponding accuracy values for each

FIGURE 5: Accuracy with distance metrics.

distance metric, providing a clear comparison of their impact on classification performance.

Figure | Value of | Distance Accuracy Error - F1-
No k Formula Rate Rate Precision | Recall score
Fg(lx;e 1 Cityblock 95% 5% 0.96 0.95 | 0.95
Fg(]g;e 1 Cosine 90% 10% 0.91 090 | 0.90
Fé%gr)e 1 Correlation 70% 30% 0.71 070 | 0.70

TABLE 4: Accuracy with Different Distance Metrics.

4.2.1 Discussion

The results indicate that the Cityblock distance metric provides the best performance for this
attribute-based KNN framework. This can be attributed to the ternary encoding scheme (-1, 0, 1)
used for the features, where absolute differences more effectively capture attribute variation than
vector orientation (Cosine) or correlation-based similarity. The Cosine metric still achieves
reasonable performance, suggesting it may be suitable in cases where directional relationships
among attributes are meaningful. Correlation, however, proved less compatible with the
structured feature representation, highlighting the importance of aligning distance metric selection
with feature encoding (Hastie et al., 2009; Duda et al., 2001).

Validation on larger ImageNet-derived patches confirmed the same trend: Cityblock consistently
outperformed other metrics, with observed performance variations within 5% compared to the
annotated subset. Incorporating additional evaluation measures such as Precision, Recall, and
F1-score further confirmed the robustness of Cityblock across both small and large-scale
datasets.

Compared to recent studies that employ metric learning or deep feature—based KNN approaches
(Xu & Zhang, 2023; Liu et al., 2022), these findings emphasize that metric selection remains
critical even when using handcrafted attributes. While deep embeddings often rely on Euclidean
or learned distances, our results demonstrate that for discrete, structured features, Cityblock is
better aligned with the feature space. This underscores that metric—feature compatibility is as
important as dataset scale or model complexity, particularly in interpretable classification
scenarios.

4.3 Effect of Classification Rules

The impact of classification decision rules within the K-Nearest Neighbors (KNN) framework was
analyzed to evaluate their role in determining image categorization performance. Using the
optimized configuration (k = 1 and Cityblock distance), three decision strategies were examined:
Nearest, which assigns the class of the closest neighbor; Random, which selects a class
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arbitrarily among neighbors; and Consensus, which determines the class based on majority
voting. Since k was fixed at 1, the Consensus and Nearest strategies were functionally identical,
as the outcome depended solely on the label of the nearest neighbor.

The experiments were carried out using the structured dataset of 200 training samples and 20
test images, with features encoded in ternary form. Classification accuracies under each decision
rule are presented in Table 5, with corresponding accuracy distributions illustrated in Figure 6(A—
C).

s [Fi e view s Too Owsp Window el sl [re e view
DEade (kR0 L- 208 /w0

FIGURE 6: Accuracy under classification rules.

Table 5 presents the accuracy values obtained under each decision rule, complementing the
visual insights provided by the confusion matrices.

Figure Value of Accuracy Error - F1-
No K Rule Used Rate Rate Precision | Recall score
Figure 6(A) 1 Nearest 95% 5% 0.95 0.95 0.95
Figure 6(B) 1 Random 85% 15% 0.86 0.85 0.85
Figure 6(C) 1 Consensus 95% 5% 0.95 0.95 0.95

TABLE 5: Accuracy with Different Classification Rules.

4.3.1 Discussion

The results indicate that the Nearest and Consensus rules produced equivalent and stable
performance when k = 1, as reflected not only in accuracy but also in high Precision, Recall, and
F1-score values (all approximately 0.95). In contrast, the Random rule introduced stochasticity,
resulting in lower accuracy (85%) and correspondingly reduced Precision, Recall, and F1 (=0.85),
demonstrating inconsistent predictions across test runs. This behavior aligns with prior studies
(Cover & Hart, 1967; Duda et al., 2001), which report that deterministic decision mechanisms are
more suitable for structured and interpretable feature spaces.

When extended to larger-scale evaluations using ImageNet-derived patches, the same trend
persisted: Nearest and Consensus rules maintained high and stable performance, whereas
Random exhibited variability. This confirms that deterministic rules are robust to dataset size and
class diversity, ensuring reliable classification outcomes even as the number of samples
increases.

Recent research in interpretable KNN frameworks also emphasizes the importance of rule-based
strategies for maintaining reproducibility, fairness, and transparency in decision-making (Zhang et
al., 2021; Rahman & Bhattacharya, 2022). These findings reinforce that, for low k values—
particularly k = 1—deterministic strategies such as Nearest and Consensus should be preferred
to achieve consistent, interpretable, and scalable classification across both small and large
datasets.
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4.4 Comparative Analysis of Previous Methods

This section presents a comparative assessment of the proposed Attribute-Based KNN
framework against several representative methods reported in related work. The analysis focuses
on four key dimensions: feature representation, classifier choice, accuracy, and interpretability.
The results, summarized in Table 6 and Figure 7, demonstrate that the proposed approach
achieves competitive accuracy while maintaining high interpretability, addressing a major
limitation of many existing methods.

. Features ce i F1-
Technique Used Classifier | Accuracy | Precision | Recall score Level
CNN-based | Automatic

Deep ally . .
Learning learned CNN 90-95% | 0.91-0.95 %99% %99% Low
(Zhang et al., deep ) )

2020) features
SIFT + Keypoints
BoVW & texture o . 0.80- | 0.80- .
(Wang et al., | descriptor SVM 80-85% 0.81-0.84 0.83 0.3 | Partia

2019) S
Color & his(t;gglg?;m
Shape o 0.75- 0.75- .

. s, shape KNN 75-80% 0.76-0.79 Partial
Features Li descriptor 0.78 0.78
et al., 2021)
s
Hybrid CNN
+ Deep + .
Handcrafted | handcrafte (C,\'l*l\{fg‘\’/M) 92-94% | 0.92-0.93 | 4= | 9% | partia
(Chen et al., | dfeatures ; ;
2022)
Handcraft
ed visual
& spatial
attributes KNN (k=1

Proposed . ’

- i (color, Cityblock, 0Ro B 0.93- 0.93- Good
B’;ggg":éﬁm pattern, | Nearest/Con | 23796% | 0.94-0.96 | ‘505 | 495 | (high)

shape, sensus)
texture +
bounding-
box)

TABLE 6: Performance comparison with existing methods.

Note: The proposed method's accuracy (93-96%) corresponds to the best-performing
configuration (k=1, Cityblock distance, Nearest/Consensus rule) as observed in Section 4.3.
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FIGURE 7: Performance Metrics Comparison.

The results indicate that while deep learning-based CNN methods achieve high accuracy (90—
95%), their internal decision-making remains largely opaque, which limits transparency and
interpretability. Hybrid approaches combining CNNs with handcrafted descriptors provide a
balance between feature richness and accuracy (92-94%), but they still rely on abstract deep
features, offering only partial semantic interpretability. Traditional handcrafted feature methods
(75—-80%) achieve clearer interpretability but often compromise on accuracy.

In contrast, the proposed Attribute-Based KNN framework leverages structured, ternary-encoded
visual and spatial features (color, pattern, shape, texture, bounding-box coordinates) to achieve
both competitive accuracy (93—-96%) and high interpretability. Precision, recall, and F1-scores
(0.93-0.96) confirm that the model consistently identifies relevant classes while maintaining
balanced performance across evaluation metrics.

Furthermore, the framework’s robustness is demonstrated through validation on a larger-scale
ImageNet patch, where trends observed on the smaller 373-image subset persisted. This
indicates that the approach is scalable and reliable even under increased inter-class variability.
The dual advantage of high interpretability and reproducible performance across scales makes
this method particularly suitable for domains such as healthcare, surveillance, or affective
computing, where explainability is as critical as raw classification accuracy (Doshi-Velez & Kim,
2017; Arrieta et al., 2020).

The comparative results clearly indicate that the proposed attribute-based KNN framework not
only attains accuracy levels comparable to deep models but also enhances interpretability
through discrete ternary attribute encoding. Unlike deep architectures, which function as black
boxes, this approach provides transparent reasoning at the feature level, allowing each
classification decision to be traced back to visual and spatial attributes. The consistent
performance across small and large datasets further validates the scalability and robustness of
the framework. Overall, these results emphasize that interpretable, low-complexity models can
deliver competitive accuracy without sacrificing explainability—an important advancement for
responsible Al deployment in practical domains.

5. CONCLUSION AND FUTURE WORK

This section provides a summary of the study's main contributions and outlines potential
directions for further development.
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5.1 Conclusion

The central objective of this research was to develop an interpretable and computationally
efficient image classification framework that balances accuracy, transparency, and scalability.
Specifically, the study investigated whether an attribute-based K-Nearest Neighbors (KNN)
model—using handcrafted semantic attributes (color, shape, texture, and pattern) combined with
spatial features—could achieve competitive performance while remaining human-interpretable.

The findings confirm that the proposed framework successfully meets this objective. Systematic
experiments on a curated subset of 373 annotated images demonstrated that the optimal
configuration (k = 1, Cityblock distance, and deterministic decision rules) achieved a high
classification accuracy of 93-96%. Validation on larger-scale ImageNet-derived subsets
produced consistent results, showing that the model retains interpretability and stability even
under increased visual diversity. These outcomes highlight that ternary attribute encoding (-1, O,
1) effectively bridges human-understandable reasoning with quantitative similarity measures,
addressing a key limitation of opaque deep models.

Beyond numerical performance, this study demonstrates that interpretable, attribute-driven KNN
models can serve as trustworthy, resource-efficient alternatives to complex deep networks. The
framework’s transparency and traceability make it suitable for use in domains requiring
explainability, such as medical imaging, surveillance, educational visual analytics, and assistive
technologies. These findings therefore provide a practical foundation for advancing explainable Al
methodologies in image classification.

5.2 Future Work

Although the proposed framework achieved promising results, several directions remain open for
further exploration. Integrating deep learning—based representations (e.g., CNNs or vision
transformers) with attribute-driven models could enhance scalability and adaptability across large
and diverse datasets (Doerrich et al., 2024; Norrenbrock et al., 2023). Hybrid or ensemble
learning strategies that combine interpretable handcrafted features with modern embedding-
based methods may further improve robustness and generalization (Zhang et al., 2024).

Another promising avenue is the incorporation of multi-label classification and class imbalance
handling through adaptive sampling or metric learning, which would expand the applicability of
the framework to more complex domains (Tsoumakas & Katakis, 2007; Zhang & Zhou, 2014). In
addition, future studies could evaluate interpretability metrics to objectively compare explanation
quality, as suggested in recent surveys on explainable ML (Alangari et al., 2023). Finally,
optimizing the framework for real-time deployment on mobile or embedded edge devices would
address growing demands for lightweight, on-device intelligence in applications such as
healthcare, surveillance, and autonomous systems.

By addressing these directions, the framework can evolve into a more versatile, scalable, and
trustworthy solution for practical image classification tasks.
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