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ABSTRACT 

The wavelet transform has become the most interesting new algorithm for video 
compression. Yet there are many parameters within a wavelet analysis and 
synthesis which govern the quality of a decoded video. In this paper different 
wavelet decomposition strategies and their implications for the decoded video 
are discussed. A pool of color video sequences has been wavelet-transformed at 
different settings of the wavelet filter bank and quantization threshold and with 
decomposition of dyadic and packet wavelet transformation strategies. The 
empirical evaluation of the decomposition strategy is based on three 
benchmarks: a first judgment regards the perceived quality of the decoded video. 
The compression rate is a second crucial factor, and finally the best parameter 
setting with regards to the Peak Signal to Noise Ratio (PSNR). The investigation 
proposes dyadic decomposition as the chosen decomposition strategy.  

Keywords: Wavelet Analysis, Decomposition Strategies, Empirical Evaluation 

 
 
1. INTRODUCTION 
Wavelet technology has provided an efficient framework of multi-resolution space-frequency 
representation with promising applications in video processing. Discrete wavelet transform (DWT) 
is becoming increasingly important in visual applications because of its flexibility in representing 
non-stationary signals such as images and video sequences. 
 
Applying 3D wavelet transform to digital video is a logical extension to the 2D analysis [20]. Most 
video compression techniques use 2D coding to achieve spatial compression and motion 
compensated difference coding in the time domain. Most of these techniques involved 
complicated and expensive hardware.  By applying the wavelet transform in all the three 
dimensions, the computational complexity of coding while achieving high rates of compression 
can be reduced, depending on the coding strategy [1]. 
  
The choice of coding strategy has been reported by many researchers [19], [20], [22], [6], [5], [1]. 
Basically the three-dimensional wavelet decomposition can be performed in three ways: temporal 
filtering followed by two-dimensional spatial filtering known as (t+2D) [19], [20], [27], [22], [6], two-
dimensional spatial filtering followed by temporal filtering (2D+t) [30]. The third approach is 
introduced for scalable video coding (SVC) is 2D+t+2D uses a first stage DWT to produce 
reference video sequence at various resolution; t+2D transform are then performed on each 
resolution level of the obtained spatial pyramid [1].  
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The research in t+2D orientation of the 3D spatio-temporal wavelet video coding one important 
advantage is that it avoids motion estimation and motion compensation which are generally very 
difficult task where the motion parameters are usually sensitive to transmission errors, include low 
computational complexity [22]. The research on t+2D was on low bit rate wavelet image and 
video compression with adaptive quantization, coding and post processing.  A video signal is 
decomposed into temporal and spatial frequency sub bands using temporal and spatial bandpass 
analysis filter-banks. The computational burden of the 3D sub band video coding is minimized by 
decomposing the video signal of temporal decomposition based on 2-tap Haar filter-bank 
basically the difference and average between frames [24], [28].  
 
However this research uses traditional multi-tap FIR filterbanks such as the 9-tap QMF filter of 
Adelson [2] and perfect-reconstruction FIR filters of Daubechies [9], [10], [11]. This spatio-
temporal wavelet transformation which produces fixed and limited to 11 sub-bands tree-structured 
spatio-temporal decomposition [22] as not optimum and not flexible since the limited level of 
penetration is limited to two for low-pass-temporal and one level for high-pass temporal.  
 
Along the same t+2D orientation using Haar filter for the temporal sub band filtering, research by 
Ashourian et al. [6] on Robust 3-D sub band video coder has followed the same orientation as 
done by Luo [22]. The research uses traditional multi-tap FIR filterbanks such as the 9-tap QMF 
filter of Adelson [2] and spatio-temporal wavelet transformation produces 11 sub-bands.  The 
research also applies different types of quantization depends on the statistics of each of the 11 
sub bands which is not optimum in video coding performance, and the high-pass sub bands are 
quantized using a variant of vector quantization.  
 
The rest of the paper is organized as follows: Section 2 discusses related works. Section 3 
presents the proposed 3D wavelet video compression scheme. Section 4 contains performance 
measures, and Section 5 presents results of decomposition strategy. Section 6 discusses the 
outcomes from decomposition strategy. Finally, the conclusions are mentioned in Section 7. 
 

2. RELATED WORKS 
Research reported by Luo [22] was on low bit rate wavelet image and video compression with 
adaptive quantization, coding and post processing. A video signal was decomposed into temporal 
and spatial frequency subbands using temporal and spatial bandpass analysis filter-banks. 
According to Karlsson et. al [19], the computational burden of the 3D sub band video coding is 
minimized by decomposing the video signal of temporal decomposition based on 2-tap Haar filter-
bank, basically the difference and average between frames [24], [28]. This also minimizes the 
number of frames needed to be stored and the delay caused by the analysis and synthesis 
procedures. In the case of spatial decomposition, longer length of filters can be applied since 
these filters can be operated in parallel.  
 
The research uses traditional multi-tap FIR filterbanks such as the 9-tap QMF filter of Adelson  [2] 
and perfect-reconstruction FIR filters of Daubechies [9], [10], [11]. This spatio-temporal wavelet 
transformation produces a fixed and limited an 11 sub-bands tree-structured spatio-temporal 
decomposition as in Figure 1. The template for displaying the 11-band decomposition is as in 
Figure 2. The sub bands produced correspond to penetration depth or decomposition level of two 
to the Temporal Low-pass and one level to the Temporal High-Pass sub-bands. 

 
The general strategies for the quantization and coding algorithm on the characteristics of the 11 
sub bands are as follows: 

1. Sub bands at courser scale levels with small index in Figure 2 with most significant 
energy and higher visual significance requires relatively higher quality coding and finer 
quantization. 

2. Sub bands at finer scale levels are quantized more coarsely, or can be discarded. 
 

 
 
 
 
 



Rohmad Fakeh & Abdul Azim Abd Ghani 

International Journal of Image Processing, Volume (3) : Issue (1)                                           33 

 
FIGURE 1: An 11 sub-bands tree-structured spatio-temporal decomposition 

 
 

 
FIGURE 2: Template for displaying the 11-band decomposition 

 
Since images are of finite support, the research by Luo [22] used several applicable extension 
methods, including zero padding and symmetric extension. Although the best extension method 
may be image dependent, in most cases, appropriate symmetric extension yield optimum result. 
The video sequences used are in CIF formats (360x288), with frame rate of 15fps, which are 
typically used in videoconferencing through ISDN channels. There is no direct comparison to the 
performance of the 3D methods used since the experimental results are on the entropy reduction 
for Lena image and the extent of the adaptive quantization with results in comparison to EZW 
coding. The report proposes a fixed number of sub bands with represents a decomposition of 
level 2 and this is might not be optimal for rate-distortion point of view since the lowest frequency 
sub bands can further be decomposed in a tree-structured fashion to achieve higher compression 
ratio.  
 
Research by Ashourian [6] on robust 3-D sub band video coder has followed the same orientation 
as done by Luo [22]. The research also applies different types of quantization depends on the 
statistics of each of the 11 sub bands and the high-pass sub bands are quantized using a variant 
of vector quantization. The results of the simulation over un-noisy channels are as in Table 1.  
 

 Claire 
Miss-

America
Salesman Suzie Carphone

Bitrate 
(kbits/s)

Average PSNR [dB 

62.0 37.0 38.5 30.2 33.5 30.0 

113.0 39.5 42.0 32.8 34.9 32.2 

355.0 42.1 43.8 37.6 38.6 36.9 

 
TABLE 1:   Performance comparison (PSNR, [dB] of research by Ashourian [6]  at frame rate of 

7.5fps, and video bitrate of 62, 113 and 355 kbps. 
 

3. PROPOSED 3D WAVELET VIDEO COMPRESSION SCHEMEThe proposed wavelet 3D 

video coding methods is outlined in Figure 3. The original input color video sequences in 

INPUT VIDEO 

SEQUENCES 
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QCIF, CIF and SIF formats are used in the simulations. The video sequences are fed into the 

coder either in RGB, YUV or YCbCr color space first by temporal filtering without motion 

compensation and followed by spatial filtering.  The color-separator signal is transformed 

into frequency space yielding a multi-resolution representation or wavelet tree of image 

with different levels of detail.  

 
Separable 3D dyadic wavelet transformation from the four families of filter banks are used and 
applied to each of the luminance and chrominance components of the video sequences frame by 
frame. The boundary extensions can be applied here from the proposed boundary treatment 
strategies. The appropriate level of decomposition depth or penetration depth can be applied to 
the compression scheme employing either global or level-dependent thresholds. The compressed 
video sequences of every color components are reconstructed and the objective evaluation of 
MSE, MAE, PSNR, Bit- rate and compression ratio are then calculated. 
 
The input color sequences are first temporally decomposed into Low-Pass-Temporal (LPT) and 
High-Pass-Temporal (HPT) sub bands. For example for YUV color space of the input video 
sequences received, for SIF resolution of 352x240 pixels, the corresponding functions to read the 
.sif video yielding individual Y,U and V image components using level dependent threshold, each 
of the Y,U,V components are fed into the function of “comp_3dy_qsif_lvd.m” .  
 

 
 [Y,U,V]=read_sif('football',i). 
By initializing  A = zeros(size(352,240)); 
B = Y;  % B is also assigned to values of U and V for the chrominance components 
 L_B = plus(A,B)/2;        % For average temporal subbands of the same size 
 H_B = minus(A,B);        % For difference temporal subbands of the same size 

 
The various related information and explanation steps used in the proposed algorithm are 
explained in the proceeding sections. 
 
3.1 Input  Sequences 
The fundamental difficulty in testing an input image and video compression system is how to 
decide which test sequences to use for the evaluations. Monochrome, color images and color 
video sequences are to be selected and evaluated.   
 
A) Monochrome Images 
 
A digital grayscale image is typically represented by 8 bits per pixel (bpp) in its uncompressed 
form. Each pixel has a value ranging from 0 (black) to 255 (white). Transform methods are 
applied directly to a two dimensional image by first operating on the rows, and then on the 
columns. Transforms that can be implemented in this way are called separable. Figure 4: (a) 
shows the original Lena image which is then wavelet transformed to the fifth decomposition 
levels, as in (b). The corresponding histogram plot and the frequency response are as in Figure 4: 
(c) and (d) respectively.  
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FIGURE 3: Proposed 3D Wavelet Video Compression 

 
 

 
 
B) Color Images 
 
A digital color image is stored as a three-dimensional array and uses 24 bits to represent each 
pixel in its uncompressed form. Each pixel contains a value representing a red (R), green (G), 
and blue (B) component scaled between 0 and 255–this format is known as the RGB format. 
Image compression schemes first convert the color image from the RGB format to another color 
space representation that separates the image information better than RGB. In this thesis the 
color images are converted to the luminance (Y), chrominance-blue (Cb), and chrominance-red 
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(Cr) color space. The luminance component represents the intensity of the image and looks like a 
grey scale version of the image. The chrominance-blue and chrominance-red components 
represent the color information in the image. The Y, Cb, and Cr components are derived from the 
RGB space. 
 

a b 

C d 

FIGURE 4: (a) The original Lena Image, (b) Level 5 decomposition of Lena image, (c)  
Histogram plot of the original Lena image,  (d) Frequency response after level 
5 decomposition of Lena image. 

 

 
C) Source Picture Formats  
 
To implement the standard, it is very important to know the picture formats that the standard 
supports and positions of the samples in the picture. Table 2 shows the different kinds of motion 
of QCIF video sequences. The samples are also referred to as pixels (picture elements) or pels. 
Source picture formats are defined in terms of the number of pixels per line, the number of lines 
per picture, and the pixel aspect ratio. H.263 allows for the use of five standardized picture 
formats. 
 
These are the CIF (common intermediate format), QCIF (quarter-CIF), sub-QCIF, 4CIF, and 
16CIF. Besides these standardized formats, H.263 allows support for custom picture formats that 
can be negotiated. Details of the five standardized picture formats are summarized in Table 3. 
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Since human eyes are less sensitive to the chrominance components, these components 
typically have only half the resolution, both horizontally and vertically, of the Y components, 
hence the term “4:2:0 format.” 
 

No Video Sequences in QCIF 
Formats 

 

Kinds of Motion 

1 Carphone Fast object translation 

2 Claire  Slow object translation 

3 Foreman Object translation and panning. Medium spatial 
detail and low amount of motion or vice versa.  

4 News Medium spatial detail and low amount of motion or 
vice versa. 

5 Akiyo Low spatial detail and low amount of motion 

6 Mother &Daughter Low spatial detail and low amount of motion 

7 Grandmother Low spatial detail and low amount of motion 

8 Salesman Low spatial detail and low amount of motion 

9 Suzie Low spatial detail and low amount of motion 

10 Miss America Low spatial detail and low amount of motion 

 
TABLE 2: Different Kinds of Motion of QCIF Video Sequences 

 
 
 

Format  

Property Sub_QCIF QCIF CIF 4CIF 16CIF 

Number of pixels per line 

Number of lines 

Uncompressed bit rate 
(at 30  Hz), Mbit/s 

128 

96 

4.4 

176 

144 

9.1 

352 

288 

37 

704 

576 

146 

1408 

1152 

584 

 
TABLE 3: Standard Picture Format Supported by H.263 

 
D) Original Sequences  
 
Original test video sequences of Quarter Common Intermediate Format (QCIF) with each frame 
containing 144 lines and 176 pixels per line, Common Interface Format (CIF) with each frame 
containing 288 lines and 352 pixels per line and SIF with each frame containing 240 lines and 
352 pixels per line. The QCIF test video sequences typically have different kinds of motion, such 
as fast object translation, for the case of Carphone. Foreman has slow object translation and 
panning. Claire sequence shows slow object translation and low motion activity. Suzie and Miss 
America show stationary, small displacement and slow motion.  
 
The original test sequences in CIF sized progressive digital sequences, are originally stored in 
YUV format or YCrCb, with the U or Cr and V or Cb components sub-sampled 2:1 in both 
horizontal and vertical directions.  
 
E) Color Space Conversion  
 
The video sequences of QCIF, CIF and SIF sizes are converted into individual YCbCr format so 
that the data is represented in a form more suitable for compression, and wavelet decomposition 
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of each color component.  In order to eliminate spectral redundancies, color space is changed 
from RGB to YCbCr as the first step of compression. Changing the color space does not 
introduce any error. The following equations transform RGB components into YCbCr of ICT 
(Irreversible component transformation, used for lossy image compression): 
 

 

  
Y 

   
0.299 0.587 0.114 

   R  

 
Cb 

 
= 

 
-0.16875 -0.33126 0.5 

   G  

 
Cr 

   
0.5 -0.41869 -0.08131 

    
B 

 

 
TABLE 4:  Matrix of RGB to YCbCr Color Conversion  

 
The first component Y, or luminance represents the intensity of the image. Cb and Cr are the 
chrominance components and specify the blueness and redness of image respectively. Figure 5, 
Figure 6, and Figure 7 shows the Akiyo, News and Stefan video image respectively, in the YCbCr 
color space and in each of the three components. This illustrates the advantage of using the 
YCbCr color space–most of the information is contained in the luminance. Each of the three 
components (Y, Cb, and Cr) is input to the coder. The PSNR is measured for each compressed 
component (Yout, Cbout, and Crout) just as for grayscale images. The three output components 
are reassembled to form a reconstructed 24-bit color image.   
 
As can be seen from the pictures of figures, the Y-component contributes the most information to 
the image, as compared to the other two components of Cb and Cr. This makes it possible to get 
greater compression by including more data from the Y-component than from the Cb and Cr 
components. 
 

(a) Original Akiyo  (b) Y-component 

 
 

 

(c) Cb Component  (d) Cr Component 

  
FIGURE 5: (a) The Original, (b) Y, (c) Cb and (d) Cr components for the Akiyo QCIF Sequence 

 
(a) Original News (b) Y-component 
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(c) Cb Component   (d) Cr Component 

  
 

FIGURE 6: a) The Original, (b) Y, (c) Cb and (d) Cr components for the News CIF Sequence 
 

(a) Original Stefan (b) Y-component 

  

(c)  Cb Component (d) Cr Component 

  

 
FIGURE 7: a) The Original, (b) Y, (c) Cb and (d) Cr components for the the Stefan SIF Sequence 
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3.2 Wavelet Transformation 
Video compression techniques, which only remove spatial redundancy, cannot be highly 
effective. To achieve higher compression ratios the similarity of successive video frames has to 
be exploited.  
 
A) Temporal Compression 
 
The color source video sequences in QCIF, SIF and CIF formats are used producing sequences 
in Y, U and V color components as the input to the compression scheme. The average and 
difference between frames producing two temporal low-pass and high-pass sub-bands are 
calculated. For example the average and difference frame and the corresponding histogram plot 
for the 1

st
. frame of Akiyo video sequence is given as in Figure 8.  

 

Average Frame  Hist(L_By) 

Difference Frame Hist(H_By) 
 

FIGURE 8: Wavelet decomposition of Average and Difference frame and the corresponding 
histogram plot for the 1

st
. frame of Akiyo video sequence 

 
 
B) Spatial  Compression 

 
For the application of the wavelet transform to images, cascaded 1D filters are used. The 1D 
discrete wavelet transformation step is calculated by using Mallat's pyramid algorithm [23]. First, 
the forward transformation combined with a down-sampling process of the image is performed, 
once in the horizontal and twice in the vertical direction. This procedure produces one low- and 
three high pass components. This procedure is applied recursively to the low pass output until the 
resulting low pass component reaches a size small enough to achieve effective compression of 
the image. In general, additional levels of transformation result in a higher compression ratio.  

 
Spatial compression attempts to eliminate as much redundancy from single video frames as 
possible without introducing degradation of quality. This is done by first transforming the image 
from spatial to frequency domain and secondly by applying quantizing threshold the transformed 
coefficients. A two dimensional discrete wavelet transformation (DWT) is applied spatially to the 
images producing one level of decomposition into LL, LH, HL and HH sub-bands as in Figure 9. 
Figure 10 shows the High-pass and Low pass sub-bands with the low-pass sub-bands further 
decomposed and iterated. Figure 11 further illustrated the decomposition steps up to level three. 
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Both the Low-Pass-temporal and the High-Pass-Temporal sequences are shown to be spatially 
decomposed into a number of sub bands as in Figure 12. 

 
 
 
 
 

 
 
 

 
 

FIGURE 9: Level one of 2-D DWT applied on an image 
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             f 

 
 
 
 
 
 
                                Lowpass 

 
 
 

 
FIGURE 10: Level one of 2-D DWT of Highpas and Lowpass  

 
 
 

 
 
 
 
 
                                                   1-level                         2-level                            3-level  
 

FIGURE 11: Level Three Dyadic DWT scheme used for Image Compression 
 
 
 
 
 
 

 
 
                                          

 

 

 
    IMAGE 

 

  LL 

 

 

 HL 

 

 

 HH 

 

 

 LH 

 

 G 

 H 
 

H 

G 

H 

G 

 

 

 

 

 

 

 

 

IMAGE 

LL HL 

HH LH LH HH 

HL 

LH HH 

HL  

 

 
   H 

 

 
   L 

 
  



Rohmad Fakeh & Abdul Azim Abd Ghani 

International Journal of Image Processing, Volume (3) : Issue (1)                                           42 

 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
FIGURE 12:   High-Pass Temporal and Low-Pass Temporal for Video sequences Compression 

 
 

Given a signal s of length N, the DWT consists of N2log  stages. The first step produces, 

starting from s, two sets of coefficients: approximation coefficients 1cA  and detail coefficients 

1cD . These vectors are obtained by convolving s with the low pass filter LoF_D for 

approximation, and with the high-pass filter HiF_D for detail, followed by dyadic decimation. For 
images, an algorithm similar to the one-dimensional case is possible for two-dimensional 
wavelets and scaling functions obtained from one-dimensional wavelets by tensor product. The 

two-dimensional DWT leads to a decomposition of approximation coefficients at level j  in four 

components: the approximation at level 1+j  and the details in three orientations (horizontal, 

vertical and diagonal). 
 
The multilevel 2-D decomposition in the MATLAB Environment, Wavelet Toolbox is a two-
dimensional wavelet analysis function, of [c,s] = wavedec2(x,n,’wname’), which returns the 
wavelet decomposition of the input image of matrix x, at n decomposition levels, using the 
wavelet named in the string ‘wname’. The output wavelet 2-D decomposition structure [C,S]  
contains the wavelet decomposition vector C and the   corresponding book-keeping matrix S. 
Vector C is organized as: C = [ A(N)   | H(N)   | V(N)   | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ...  | 
H(1) | V(1) | D(1) ], where A, H, V, D, are row vectors such that: A = approximation coefficients, H 
= horizontal detail coefficients, V = vertical detail coefficients, D = diagonal detail coefficients, 
each vector is the vector column-wise storage of a matrix. Matrix S is such that:  S(1,:) = size of 
approximation coefficient(N),   S(i,:) = size of detail coefficient(N-i+2) for i = 2,...,N+1 and S(N+2,:) 
= size(X).  
 
C) The choice wavelet filter banks 
 
The choice of wavelet basis for video compression was based on reconstruction properties and 

runtime complexity [16]. Generally, complexity for wavelet filter is )(nO , where n is the number 

of filter taps. The one-dimensional n-tap filter pair is applied as follows: 

∑
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L
~

 and  H
~

are the low- and high-pass filters, x the pixel values with row- or column-index i , and 

k  is the index of filter output. Iterating with step k2  automatically introduces the desired down-

sampling by 2. Filter coefficients are real numbers in the range [-1,1].   
 
Much research effort has been expended in the area of wavelet compression, with the results 
indicating that wavelet approaches outperform DCT-based techniques [3], [4], [21], [25]. 
However, it is not completely clear which wavelets are suitable for video compression. Wavelets 
implemented using linear-phase filters are generally advantageous for image processing because 
such filters preserve the location of spatial details. A key component of an efficient video coding 
algorithm is motion compensation. However at the present time it is too computationally intensive 
to be used in software video compression. A number of low end applications therefore use 
motion-JPEG, in essence frame by frame transmission of JPEG images [29] with no removal of 
inter-frame redundancy. 
  
The choice of filter bank in wavelet image and video compression is a crucial issue that affects 
both image and video quality and compression ratio. A series of bi-orthogonal, and orthogonal 
wavelet filters of differing length were evaluated by compressing and decompressing a number of 
standard video test sequences, using different quantization thresholds. In this section, the 
selection of wavelet filter-banks of QCIF, CIF and SIF video sequences and their implications for 
the decoded image are discussed. A pool of color video sequences has been wavelet -
transformed with different settings of the wavelet filter bank, boundary selection, quantization 
threshold and decomposition method. The reconstructed video sequences of QCIF sizes are 
evaluated using an objective quality of peak signal to noise ratio (PSNR).  
 
This section investigates how wavelet filter banks affect the subsequent quality and size of the 
reconstructed data, using a wavelet based video codec developed. Test video sequences were 
compressed with the codec, and the results obtained indicate that the choice of wavelet greatly 
influences the quality of the compressed data and its size. 
 
D) The Wavelet Filter-Banks 
 
The DWT is implemented using a two-channel perfect reconstruction linear phase filter bank [26]. 
Symmetric extension techniques are used to apply the filters near the frame boundaries; an 
approach that allows transforming images with arbitrary dimensions.  
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3.3 Wavelet Threshold Selection 
This section describes wavelet thresholding for image compression under the framework 
provided by Statistical Learning Theory aka Vapnik-Chervonenkis (VC) theory. Under the 
framework of VC-theory, wavelet thresholding amounts to ordering of wavelet coefficients 
according to their relevance to accurate function estimation, followed by discarding insignificant 
coefficients. Existing wavelet thresholding methods specify an ordering based on the coefficient 
magnitude, and use threshold(s) derived under gaussian noise assumption and asymptotic 
settings. In contrast, the proposed approach uses orderings better reflecting statistical properties 
of natural images, and VC-based thresholding developed for finite sample settings under very 
general noise assumptions.  

The plot of wavelet coefficients in Figure 4: (d) Frequency response after level 5 decomposition of 
Lena image in wavelet domain, suggests that small coefficients are dominated by noise, while 
coefficients with a large absolute value carry more signal information than noise. Stated more 
precisely, the motivation to this thresholding idea based on the following assumptions: 

• The de-correlating property of a wavelet transform creates a sparce signal: most 
untouched coefficients are zero or close to zero. 

• The noise level is not too high so that the signal wavelet coefficients can be distinguished 
from the noisy ones.  

As it turns out, this method is indeed effective and thresholding is a simple and efficient method 
for noise reduction.  
 
A) Global thresholding 
 
Wavelet thresholding for image denoising involves taking the wavelet transform of an image (i.e., 
calculating the wavelet coefficients discarding  setting to zero) the coefficients with relatively small 
or insignificant magnitudes. By discarding small coefficients one actually discard wavelet basis 
functions which have coefficients below a certain threshold. The denoised signal is obtained via 
inverse wavelet transform of the kept coefficients. One global threshold derived by Donoho [13], 
[14], [15] under gaussian noise assumption. Clearly, wavelet thresholding can be viewed a 
special case of signal/data estimation from noisy samples, which can be addressed within the 
framework of VC-theory. The original wavelet thresholding technique is equivalent to specifying a 
structure that uses only a magnitude ordering of the wavelet coefficients. Obviously, this is not the 
best way of ordering the coefficients.  
 
 B) Level dependent threshold 
 
Level-dependent thresholding has been proposed to improve the performance of wavelet 
thresholding method. Instead of using a global threshold, level-dependent thresholding uses a 
group of thresholds, one for each scale level. It can be interpreted as the ordering of the wavelet 
coefficients with respect to their magnitudes adjusted by scale level.  
 
This suggests that the level-dependent thresholding be viewed as a special case of more 
sophisticated importance ordering in model selection based denoising method. A number of 
different structures (ordering schemes) can be specified on the same set of basis functions. A 
good ordering should reflect the prior knowledge about the signal/data being estimated. Similarly, 
2-D image signal estimation with VC approach may require more complicated ordering scheme. 
 

4. PERFORMANCE MEASURES 
Although there are several metrics that tend to be indicative of image quality, each of them has 
situations in which it fails to coincide with an observer's opinion [26]. However, since running 
human trials is generally prohibitively expensive, a number of metrics are often computed to help 
judge image quality. Some of the more commonly used "quality" metrics are given below, 

),( nmx stands for the original data sized M by N, and  ),( nmx
)

 the reconstructed mage. 
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• MAE (Mean Absolute Error) 
MAE: One quantity, often computed in conjunction with other metrics, is maximum absolute error. 
Since this metrics measure error, it is regarded as inversely proportional to image quality. 

MAE   =  Max | |),(),( nmxnmx
)

−                                (1) 

 

• MSE (Mean Square Error) 
MSE, RMS: Two other quantities that appear frequently when comparing original and 
reconstructed or approximated data are mean square error, and root mean square. These metrics 
attempt to measure an inverse to image quality. 

MSE     = [ ]∑∑
−

=

−

=

−
1

0

2
1

0

|),(),(
.

1 M

j

N

i

nmxnmx
MN

)
                           (2) 

 

RMS      = MSE                                                                             (3) 

 
 

• SNR: Signal to noise ratio 
 

SNR     =  10 10log
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• Peak Signal-to-Noise Ratio (PSNR) 
 
Peak signal-to-noise ratio (PSNR) is the standard method for quantitatively comparing a 
compressed image with the original. For an 8-bit grayscale image, the peak signal value is 255. 
Hence the PSNR of an M×N 8-bit grayscale image x and its reconstruction ˆx is calculated. 
PSNR: Peak signal-to-noise ratio. The MSE and PSNR are directly related, and one normally 
uses PSNR to measure the coder's objective performance. 
 

PSNR   = 10 10log 








MSE

2255
                                            (5) 

         
At high rate, images with PSNR above 32 dB are considered to be perceptually lossless. At 
medium and low rates, the PSNR does not agree with the quality of the image. For color images, 
the reconstruction of all three color spaces must be considered in the PSNR calculation. The MSE 
is calculated for the reconstruction of each color space. The average of these three MSEs is used 
to generate the PSNR of the reconstructed RGB image (as compared to the original 24-bit RGB 
image).  
 

PSNR   = 10 10log 








RGBMSE

2255
                                                (6) 

 

Where RGBMSE  is:- 

RGBMSE =  3

gluegreenred MSEMSEMSE ++

                            (7) 
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• Compression ratio (CR) 
Compression ratio is the relation between the amount of data of the original signal compared to 
the amount of data of the encoded signal [8]:  
 

                         =CR
)(

)(

encodeddataofAmount

signaloriginaldataofAmount
                        (8) 

  

 

5. RESULTS OF DECOMPOSITION STRATEGY 
To evaluate the decomposition strategy, three types of video sequences in QCIF resolutions with 
varying types of motion such as Miss America, Foreman and Carphone are used in the 
simulation. To compare the performance of the decomposition strategy between the dyadic 
discrete wavelet transform (DWT) and wavelet packet (WP), an empirical evaluation is conducted 
using three test video sequences of Miss America, Foreman and Carphone. Nine types of 
wavelet filter-banks s are used for the evaluation. They are Bior-22, Bior-2.6, Bior-4.4, Bior-6.8, 
Coif-2, Coif-3, Sym-4, Sym-5 and Sym-7. Global threshold is used in this evaluation, with values 
of threshold (thr) ranging from 10 to 125. For every filter-bank used for decoding the three video 
sequences, the average PSNR values for both the DWT and WP are calculated and tabulated as 
in Table 5 to Table 10. The corresponding plots of PSNR values Vs the filter-banks used are as in 
Figure 13 to Figure 18.  

 
 

Thr=10 

Miss America 
 

Foreman 
 

Carphone 
 

Average  
PSNR [dB] 

Filter 
Name

DWT WP DWT WP DWT WP DWT WP 

Bior-2.2 

Bior-2.6 

Bior-4.4 

Bior-6.8 

Coif-2 

Coif-3 

Sym-4 

Sym-5 

Sym-7 

   42.09 

   42.40 

   41.80 

   41.96   

   41.97 

   41.89 

   41.98 

   42.03 

   41.86 

   40.90 

   40.88 

   40.73 

   40.86   

   30.33 

   40.06 

   30.02 

   41.86 

   39.96 

   38.16 

   38.34 

   38.28 

   38.33    

   38.42 

   38.39 

   38.41 

   38.39 

   38.34 

   32.85 

   32.78 

   33.38 

   33.33    

   21.99 

   30.18 

   22.36 

   36.10 

   28.47 

   39.99 

   40.18 

   39.71 

   39.63 

   39.87 

   39.74 

   39.88 

   39.85 

   39.62 

33.77 

33.18 

34.37 

34.07 

22.30 

31.47 

21.34 

37.86 

29.90 

   40.08 

   40.31 

   39.93 

   39.98 

   40.08 

   40.01 

   40.09 

   40.09 

   39.94 

   35.84 

   35.61 

   36.16 

   36.09   

   24.88 

   33.90 

   24.57 

   38.60 

   32.78 

 
TABLE 5:  Average in PSNR for Wavelet Packet and Discrete Wavelet Transform of three video 

sequences of Miss America, Foreman, and Carphone , using the best nine types 
filters and Global threshold of 10 
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FIGURE 13:  The Plot for Average PSNR for Wavelet Packet and Discrete Wavelet Transform of 

using the best nine types of wavelet filters and Global threshold of 10 
 
 

 
Thr=20 

Miss America 
 

Foreman 
 

Carphone 
 

Average  
PSNR [dB] 

Filter Name

DWT WP DWT WP DWT WP DWT WP 

bior-2.2 

bior-2.6 

bior-4.4 

bior-6.8 

coif-2 

coif-3 

sym-4 

sym-5 

sym-7 

   38.32 

   38.69 

   37.74 

   38.02 

   38.09 

   38.06 

   37.97 

   38.04 

   37.94 

  37.99 

   38.17 

   37.47 

   37.73 

   30.60 

   37.59 

   30.77 

   38.09 

   37.09 

   33.45 

   33.69 

   33.32 

   33.47  

   33.46 

   33.43 

   33.48 

   33.44 

   38.34 

   30.98 

   31.08 

   31.54 

   31.60   

   23.03 

   29.94 

   23.61 

   32.88 

   29.59 

   35.32 

   35.47 

   34.85 

   34.88 

   34.97 

   34.86 

   35.00 

   34.76 

   34.61 

   32.28 

   32.07 

   32.78 

   32.73   

   22.61 

   31.28 

   22.79 

   34.31 

   30.11 

   35.70 

   35.95 

   35.30 

   35.45   

   35.51 

   35.45 

   35.48 

   35.42 

   36.96 

   33.75 

   33.77 

   33.93 

   34.02   

   25.42 

   32.94 

   25.72 

  35.09 

   32.27 

 
Table 6: Average in PSNR for Wavelet Packet and Discrete Wavelet Transform of three video 

sequences of Miss America, Foreman, and Carphone, using the best nine types 
filters and Global threshold of 20 
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FIGURE 14:  The Plot for Average PSNR for Wavelet Packet and Discrete Wavelet Transform of 
using the best nine types of wavelet filters and Global threshold of 20 

 
 

 
Thr=45 

Miss America 
 

Foreman 
 

Carphone 
 

Average  
PSNR [dB] 

Filter 
Name

 DWT WP DWT WP DWT WP DWT WP 

bior-2.2 

bior-2.6 

bior-4.4 

bior-6.8 

coif-2 

coif-3 

sym-4 

sym-5  

sym-7 

   34.70 

   35.06 

   33.92 

   34.23   

   34.24 

   34.22 

   34.06 

  33.90      

   34.07 

   34.34 

   34.69 

   33.86 

   34.18 

   31.72 

   34.04 

   31.75 

   33.97 

   33.94 

   29.09 

   29.37 

   28.43 

   28.66 

   28.50 

   28.48 

   28.44 

   28.51 

   28.45 

   28.07 

   28.26 

   28.01 

   28.32 

   24.06 

   27.30 

   25.08 

   28.67 

   28.69 

   29.67 

   30.02 

   29.20 

   29.28 

   29.38 

   29.10 

   29.34 

   29.44 

   29.10 

28.99 

28.99 

29.14 

29.22 

27.83 

29.18 

26.99 

29.76 

28.70 

   31.15 

   31.48 

   30.52 

   30.72    

   30.70 

   30.60 

   30.61 

   30.62 

   30.54 

   30.47 

   30.64 

   30.34 

   30.57 

   27.87 

   30.17 

   27.94 

   30.80 

   30.44 

 
 

TABLE 7: Average in PSNR for Wavelet Packet and Discrete Wavelet Transform of three video 
sequences of Miss America, Foreman, and Carphone , using the best nine types 

filters and Global threshold of 45 
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FIGURE 15:  The Plot for Average PSNR for Wavelet Packet and Discrete Wavelet Transform of 
using the best nine types of wavelet filters and Global threshold of 45 

 
 
 
 
 

Thr=85 
Miss America 

 
Foreman 

 
Carphone 

 
Average  

PSNR [dB] 
Filter 
Name

DWT WP DWT WP DWT WP DWT WP 

bior-2.2 

bior-2.6 

bior-4.4 

bior-6.8 

coif-2 

coif-3 

sym-4 

sym-5 

sym-7 

   32.10 

   32.46 

   31.41 

   31.76   

   31.51 

   31.45 

   31.60 

   31.65 

   31.35 

   32.09 

   32.44 

   31.40 

   31.74 

   31.37 

   31.54 

   31.30 

   31.68 

   31.44 

   26.35 

   26.73 

   25.56 

   25.91 

   25.75 

   25.80 

   25.58 

   25.81 

   25.82 

   25.83 

   26.04 

   25.41 

   25.75 

   23.00 

   24.99 

   25.05 

   25.77 

   25.84 

   26.58 

   26.99 

   25.93 

   26.20 

   26.26 

   26.11 

   26.08 

   26.27 

   26.22 

   26.48 

   26.08 

   26.09 

   26.36 

   23.79 

   25.77 

   25.37 

   26.41 

   25.82 

   28.34 

   28.72 

   27.63 

   27.96 

   27.84 

   27.79 

   27.75 

   27.91 

   27.80 

   28.13 

   28.19 

   27.64 

   27.95 

   26.05 

   27.43  

   27.24  

   27.95 

   27.70 

 
TABLE 8: Average in PSNR for Wavelet Packet and Discrete Wavelet Transform of three video 

sequences of Miss America, Foreman, and Carphone, using the best nine types 
filters and Global threshold of 85 
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FIGURE 16:  The Plot for Average PSNR for Wavelet Packet and Discrete Wavelet Transform of 

using the best nine types of wavelet filters and Global threshold of 85 
 
 
 

Thr=125 
Miss America 

 
Foreman 

 
Carphone 

 
Average  

PSNR [dB] 
Filter 
Name

DWT WP DWT WP DWT WP DWT WP 

bior-2.2 

bior-2.6 

bior-4.4 

bior-6.8 

coif-2 

coif-3 

sym-4 

sym-5 

sym-7 

   30.95 

   31.34 

   30.15 

   30.40   

   30.31 

   30.36 

   30.34 

   30.62 

   30.40 

   30.85 

   31.30 

   30.38 

   30.65   

   30.29 

   30.40 

   30.40 

   30.69 

   30.47 

   24.71 

   25.04 

   23.86 

   24.17    

   24.15 

   24.19 

   24.08 

   24.04 

   24.07 

   24.48 

   24.83 

   23.87 

   24.20   

   22.01 

   23.89 

   24.09 

   24.26 

   24.34 

   24.58 

   24.91 

   23.91 

   24.13 

   24.42 

   24.27 

   24.18 

   24.55 

   24.39 

   24.48 

   24.82 

   24.26 

   24.27 

   23.05 

   24.54 

   24.56 

   24.72 

   24.70 

   26.75 

   27.10 

   25.98 

   26.24 

   26.30 

   26.27 

   26.20 

   26.40 

   26.29 

   26.60 

   26.98 

   26.17 

   26.37 

   25.12 

   26.28 

   26.35 

   26.56 

   26.50 

 
TABLE 9: Average in PSNR for Wavelet Packet and Discrete Wavelet Transform of three video 

sequences of Miss America, Foreman and Carphone, using the best nine types of 
filters and Global threshold of 125 
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FIGURE 17:  The Plot for Average PSNR for Wavelet Packet and Discrete Wavelet Transform of 
using the best nine types of wavelet filters and Global threshold of 125 

 
 
 

 
No. Video Sequences (WP) dB (DWT)  dB Difference 

(WP-DWT) - dB 

1 Miss America    38.09 38.03 0.05 

2 Suzie    34.59 34.58 0.01 

3 Claire    37.21 37.26 -0.05 

4 Mother & Daughter    33.77 33.69 0.07 

5 Grandma    33.86 33.80 0.05 

6 Carphone    34.88 34.53 0.34 

7 Foreman    33.22 33.02 0.19 

8 Salesman    32.38 32.19 0.18 

 
TABLE 10: Average and difference in PSNR for Wavelet Packet and Discrete Wavelet Transform 

of eight video sequences, using Sym5 Filter  for Low-Pass-Temporal and Haar Filter 
for High-Pass-Temporal Frequencies, at two Decomposition Levels, and Global 

threshold of 20 
 
 

6. DISCUSSION 
 
The choice of decomposition strategy between dyadic transformation of Discrete Wavelet 
Transform (DWT) and Wavelet Packet (WP) Transform has been examined and found that DWT 
decomposition is preferred over the WP due to the superior values of PSNR generated 
throughout the simulations for all the lower values of global threshold from thr=10 and thr=20. For 
thr=45, wavelet filter of sym-5 resulted the WP outperforms DWT, and further for thr=85 and 
thr=125. At thr=85, bior-4.4 and sym-5 resulted the WP to outperform DWT. Only for higher value 
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of global threshold of 125, the WP shows better PSNR values compared to DWT. However for 
the results of Table 10, the average difference of WP and DWT is only marginal when global 
threshold value of 20 and wavelet filter bank of sym-5 is used. 

 
7. CONCLUSION 
 
This paper has addressed a number of challenges identified in 3D video compression based on 
wavelet transformation technique. The challenges appear when having to develop the coding 
scheme of 3D wavelet video coding, the question arises whether to transform the inter-frame 
followed by spatial filtering or vice versa. The substantial contribution on 3D wavelet coding is 
utilizing the spatio-temporal t-2D scheme, which has successfully exploited the wavelet transform 
technology and the best parameter strategies produces video output of high performance 
evaluated objectively using PSNR. It has shown that the selection of the parameters within the 
wavelet transform of periodic symmetric extension as the border distortion strategy, dyadic DWT, 
and level dependent thresholds have resulted to produce resulted in superior quality of the 
decoded video sequences.  These parameters has been identified and further used in the 
proposed wavelet video compression (WVC) for the overall objective performance of the decoded 
video sequences. The spatio-temporal inter-frame temporal analysis of video sequences has 
been extended using Birge-Massaart strategy of wavelet shrinkage employing level-dependent 
quantization threshold. The objective evaluation pointed out that the PSNR values correlates 
better to different types of motion of the test video sequences especially to the Carphone 
sequence and using newly found Sym-5 filter-bank. 
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