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ABSTRACT 
 

The paper presents a methodology for detecting a virtual passive pointer. The 
passive pointer or device does not have any active energy source within it (as 
opposed to a laser pointer) and thus cannot easily be detected or identified. The 
modeling and simulation task is carried out by generating high resolution color 
images of a pointer viewing via two digital cameras with a popular three-
dimensional (3D) computer graphics and animation program, Studio 3D Max by 
Discreet. These images are then retrieved for analysis into a Microsoft’s Visual 
C++ program developed based on the theory of image triangulation. The program 
outputs a precise coordinates of the pointer in the 3D space in addition to it’s 
projection on a view screen located in a large display/presentation room. The 
computational results of the pointer projection are compared with the known 
locations specified by the Studio 3D Max for different simulated configurations. 
High pointing accuracy is achieved: a pointer kept 30 feet away correctly hits the 
target location within a few inches. Thus this technology can be used in 
presenter-audience applications. 
 
Keywords: Modeling and Simulation, Image Processing, Triangulation Technique, Virtual Pointer 
Detection, Interactive Large Display 
 

 
 

1. INTRODUCTION 
 
Pointing devices, namely laser pointers, are commonly used to indicate a specific position on a 
viewing screen to an audience. Laser pointers utilize an active energy source, a concentrated 
photon/energy beam that streams from the device to the nearest physical object, hopefully the 
slide/screen. Occasionally, accidental pointing is hazardous. This work demonstrates the use of a 
passive device, one that does not require any energy source. However, external detecting 
mechanisms to precisely identify where the pointer is pointing to are required. To achieve this 
requisite, two high resolution color cameras and image triangulation methodology for pointer 
detection analysis were employed. 
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Another limitation of laser pointers is that every audience member does not have one (or carries it 
around to every meeting!) and thus resort to hand gestures along with verbal cues (“No, not 
there, over there”) to instruct the presenter where to look when asking a question pertaining to a 
specific point in a slide/view screen. This ineffective communication method is exacerbated in a 
large room with a large audience. Similarly, a presenter pointing to information on the display by 
hand during the presentation cannot clearly be visualized and understood by the audience. The 
proposed technique overcomes these difficulties by allowing both parties to interact 
simultaneously with the use of many inexpensive passive pointers. And these multiple pointers 
can be tracked with the use of two cameras that view the room containing the audience and 
presenter. The monitoring computer outputs different color dots on the view screen for precise 
pointing direction by either party, resulting in intelligent and communicable interaction between 
audience and presenter. 
 

 
 
Furthermore, the long term thrust of the work is to explore gesture recognition technology 
applicable for an interactive large display environment (see Section 1.1). The method of tracking 
a passive pointer can easily be adopted for its use in gesture detection and control. Obviously the 
gesture grammar, a set of rules on which the gestures are interpreted, needs to be incorporated 
(refer Section 1.2 for details on gesture recognition). This work is also a stepping stone for 
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developing an intelligent non-touch computer screen interface. Let us visualize two web cameras 
mounted on top of a computer screen viewing the computer user. The camera can track a non-
touch passive pointer or user’s finger as it approaches the screen. Once the camera and 
associated interface identify the pointing location on the screen, it can zoom in or out showing 
details as the finger, respectively, move towards or away from the screen. A simple example 
would be to view a geographical map with zooming in and out capability. The interface can also 
pop out or display additional details/information, if needed, in another window of the pointing 
location. The example for this scenario would be its use in a tower simulator when a controller 
points at an aircraft; the necessary detail information regarding aircraft can appear on the large 
screen display, a personalized small screen display, or even on their own head worn display. The 
output information can thus be quickly accessed and utilized. 
 
 

 
 
 
 
1.1 Commercial Application 
 
This section briefly outlines the use of passive pointers in a large room setting. Figure 1 shows a 
few potential uses of adopting the present work: airport control centers, air traffic simulators, bank 
centers and the US Air Force interactive DataWall. These settings represent a large display area 
to address the problem of information management in the 21

st
 century. One can also incorporate 

several multimedia capabilities such as audio/visual, conventional computing, tractable laser 
pointers and wireless interactive technology. For additional information on interactive DataWall of 
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AFRL (multimedia display with combined resolution of 3840 x 1024 pixel across a 12’ x 3’ screen 
area), refer to the web pointer presented in Reference [1]. 
 
1.2 Gesture Recognition Technology 
 
Hand gestures provide a useful interface for humans to interact with not only other humans but 
also machines. For high degree-of-freedom manipulation tasks such as the operation of three-
dimensional (3D) objects in virtual scenes, the traditional interface composed of a keyboard and 
mouse is neither intuitive nor easy to operate. For such a task, we consider direct manipulation 
with hand gestures as an alternative method. This would allow a user to directly indicate 3D 
points and issue manipulation commands with his/her own hand.  
 
In the past, this idea has led to many gesture-based systems using glove-type sensing devices in 
the early days of virtual reality research. Such contact-type devices, however, are troublesome to 
put on and take off, and continuous use results in fatigue. To overcome these disadvantages, 
vision researchers tried to develop non-contact type systems to direct human hand motion [2, 3, 
4]. These works had some instability problems particular to vision based systems. The most 
significant problem is occlusion: vision systems conventionally require match of detected feature 
points between images to reconstructed 3D information. However, for moving non-rigid objects 
like a human hand, detection and matching of feature points is difficult to accomplish correctly. 
 
Providing a computer with the ability to interpret human hand is a step toward more natural 
human-machine interactions. Existing input systems augmented with this, as well as such other 
human-like modalities such as speech recognition and facial expression understanding, will add a 
powerful new dimension to the range of future, as well as current, computer applications. A wide 
spectrum of research is underway on the problem of gesture interpretation. The primary reason 
for the advancement is the continuously declining expenses of hardware and image grabbing and 
processing. Even color processing is now available and it is fast enough for pattern recognition. 
 

 
 

Currently there is no universal definition of what a gesture recognition system should do or even 
what is a gesture. Our definition of gesture from the perspective of a computer is simply a 
temporal sequence of hand images. An element from a finite set of static hand poses is the 
expected content with an image frame. A gesture is, therefore, a sequence of static hand poses. 
Poses are assumed to contain the identity of the hand shape and (possibly) the orientation, 
translation and distance from camera information. The spatio-temporal nature of the gesture data 
make the gesture state unmeasurable at a given instance in time, but for each time step we can 
determine the static hand pose. A general gesture recognition system is depicted in Figure 2. 
Visual images of gestures are acquired by one or more cameras. They are processed in the 



Naren Vira & Shaleen Vira 

International Journal of Image Processing (IJIP), Volume (3) : Issue (2) 59 

 

analysis stage where the gesture model parameters are estimated. Using the estimated 
parameters and some higher level knowledge, the observed gestures are inferred in the 
recognition stage. The grammar provides a set of rules on which the gestures are interpreted. 
 
 

2. METHODOLOGY  
 
This section outlines the modeling theory considered for detecting the passive pointer.  
 
2.1 Camera and Image Processing 
 
Consider a system with two cameras of focal length f and baseline distance b as shown in Figure 

3. The optical axes of the two cameras are converging with an angle θ and that all geometrical 

parameters (b, f, and θ) are a priori known or estimated using a camera calibration technique 
Refs. [5 - 8].  A feature in the scene depicted at the point P is viewed by the two cameras at 
different positions in the image planes (I1 and I2). The origins of each camera’s coordinate system 
are located at the camera’s center which is at a distance f away from the corresponding image 
planes I1 and I2, respectively. It is assumed, without loss of generality, that the world coordinate 
system (Cartesian coordinates X, Y, and Z) coincides with the coordinate system of camera 1 (left 
camera), while the coordinate system of camera 2  (right camera) is obtained from the former 
through rotation and translations.  
 
 

 
 
 
The plane passing through the camera centers and the feature point in the scene is called the 
epipolar plane. The intersection of the epipolar plane with the image plane defines the epipolar 
line as shown in Figure 4. For the model shown in the figure, every feature in one image will lie on 
the same row in the second image. In practice, there may be a vertical disparity due to 
misregistration of the epipolar lines. Many formulations of binocular stereo algorithms assume 
zero vertical disparity.  
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As illustrated in Figure 3, point P with the world coordinates (X, Y, and Z) is projected on image 
plane Il as point (x1, y1) and image plane I2 as point (x2, y2). Then, assuming a perspective 
projection scheme, a simple relation between the left camera coordinates (x1, y1) and world 
coordinates (X, Y, and Z) can be written as  

 
x1 = f  *X / Z        and      y1 = f *Y / Z       (1) 
 
Similarly, we can write for right camera as 
 

x2 = f   * x2
∧ 

 /  z2
∧    and      y2 = f  * y2

∧ 
/ z2

∧ 
     (2) 

 

Where, coordinate system of camera 2 (x2
∧, y2

∧ 
and z2

∧ 
) is related with respect to the world 

coordinate system by simply translation and rotation as  
 

x2
∧  = c X  + s Z – b c’  

y2
∧ 

 = Y           (3) 

z2
∧ = -s X + c Z + b s’ 

 

Here, symbols c = cos (θ) and s = sin (θ), c’ = cos (θ/2) and s’ = sin (θ/2) are used. Substituting 
Eq. (3) into Eq. (2), we can write 
 
x2 = f [(c X  + s Z – b c’) / (-s X + c Z + b s’)]       (4) 
y2 = f [Y/( -s X + c Z + b s’)] 
 
Combining Eq. (1) and Eq. (4), lead to 
 
x2 = f [(f s +x1 c )Z – f  b c’] / [(f c – x1 s )Z + f  b s’]     (5) 
y2 = (f  Z y1) / [(f c – x1 s)Z + f  b s’] 
 



Naren Vira & Shaleen Vira 

International Journal of Image Processing (IJIP), Volume (3) : Issue (2) 61 

 

It can be observed for Eq. (5) that the depth Z of the scene point P can be estimated if its 
projections (x1, y1) and (x2, y2) on image planes I1 and I2, respectively, are known. That is for a 
given point (x1, y1) on I1, its corresponding point (x2, y2) on I2 should be found. Hence, we can 
define a disparity vector d = [dx, dy]

T
 at location  (x2, y2) of camera 2 with respect to camera 1 as 

 
dx = x1 – x2             (6) 
 
          f b (f c’ + x1 s’) + [  x1(f c – x1s) - f (f s + x1c) ]Z  
     =  _____________________________________ 
                                ( f c – x1 s)Z + f b s’ 
 
dy = y1 – y2          (7) 
 
 
  f b s’ y1 +[  (f c – x1 s)  - f ] y1 Z  
     = _____________________________ 
         ( f c – x1 s)Z + f b s’ 
 
When the disparity vector d is known, equations 6 and 7 reduce to an over determined linear 
system of two equations with a single unknown, Z (the depth) and a least-squares solution can be 

obtained [9]. When cameras axes are parallel (i.e., θ = 0) these equations (Equations (6-7)) can 
be simplified to (see Reference [10] and Figure 5) 
 

 
 
 

 
dx = f  b / Z and   dy = 0         (8) 
 
Thus, the depth at various scene points may be recovered by knowing disparities of 
corresponding image points. 
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2.2 Color Representation and Pointer Modeling 
 
The intensity of each image pixel in RGB color space can be represented in a vector form as  
 
P (I, J) = R (I, J) e1 + G (I, J) e2 + B (I, J) e3      (9) 
 
The symbol I and J stand for pixel coordinates, and e1, e2 and e3 are unit vectors along R, G, and 
B color space, respectively. The terms R (I, J), G (I, J), and B (I, J), respectively, represent red, 
green and blue color intensities. As opposed to stereo matching algorithm (correspondence of 
every image pixel is found), here we are only interested in identifying those pixels that 
corresponds to the pointer in one image and respective matching pixels in another image viewed 
from a second camera. More precisely, if we marked the pointer’s ends with two distinct colors 
then only those pixels are required to be matched in both images. Without loss of generality, let 
us say that one end is marked with red color and other is with blue. Because we are only 
interested in matching the pointer’s red or blue color end pixels of each image, Equation (9) can 
be rewritten as  
 
P (I, J) = R (I, J)          (10) 
 
for the red color end pixels and  
 
P (I, J) = B (I, J)          (11) 
 
for the blue color end pixels. Alternatively, we scan the whole image to identify all pixel-
coordinates I and J that represent either red or blue color end of the pointer. From this 
information, we compute the centroid of each color end. That is P1 (I, J) centroid for the red color 
end as shown in Figure 6, image 1 (left), we have 
 

 
 
 
 
P1 (I, J) =  R1 (Imid, Jmid)        (12) 
 
Where, 
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Imid = Imin + (Imax – Imin)/2 
Jmid = Jmin + (Jmax – Jmin)/2 
 
The terms mid, min, and max correspond to the mid point, minimum location, and maximum 
location of the color within that particular color end. Note that the image has to be searched to 
find the min and max locations. The term centroid and mid point of the color end are 
interchangeable because of two dimensional coordinate system representation. Furthermore, the 
pointer size is very small in comparison to image size. Similarly, we can compute the centroid of 
the red color end in image 2 (right) as 
 
P2 (x, y) = R2 (Imid, Jmid)        (13) 
 
We assume that the centroid points P1 (I, J) and P2 (I, J) represent the matching points. This 
assumption is valid because the pointer dimensions are relatively small with respect to the 
physical dimension of the room (note the image size). Thus, the implication is that the process of 
disparity analysis needed for stereo matching is not required and the task of finding matching 
pixels is considerably simplified. The same analysis can be applied for finding the matching points 
corresponding to the blue color end of the pointer. It should be emphasized that we deliberately 
chosen two distinct color-ends to simplify and speed up the process of image scanning. One can 
choose other pixel matching methods depending upon the application.  
 
By knowing the x and y coordinates of each centroid point (after correlating image pixels with the 
space coordinates) of the pointer in a single image, we can mathematically pass a line through 
these two points to describe a pointer in a 2D space. Now the process of triangulation in required 
to compute the three-dimensional coordinates of the pointer from these two images (i.e., from 
four centroid points).  
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2.3 Three-dimensional Triangulation Technique 
 
We apply ray casting analysis to triangulate three-dimensional coordinates of each image pixel 
point in a space as it is viewed by two cameras with respect to a chosen reference frame. Without 
loss of generality, the reference fame could be at one of the cameras’ center. We have chosen 
the center location of camera 2 as the frame of reference. Each ray is cast from the viewpoint (in 
this case, center of the camera) through each pixel of the projection plane (in this case, image 
planes 1 and 2) into the volume dataset. The two rays wherever they intersect in a 3D space 
determine the coordinates of a point viewed by both cameras as shown in Figure 7. By 
connecting all intersecting points in the volume dataset, we can generate a 3D point cloud floating 
in a space. We utilize four points at a time (two in each image) to compute the three-dimensional 
coordinates of the pointer’s end. Thus, the location of the pointer can be identified in a 3D space 
from the knowledge of its two ends. 

 
2.3.1 Two Intersecting Line Problem 
 
The computation of a common point from two rays reduces to a problem of two-line intersection 
each radiating from the center of a camera. The ray line is generated by two points in each image 
as shown in Figure 8. One point on the line is defined by the camera center and the second point 
by the centroidal pixel of the pointer end in the image plane (i.e., P1 or P2 in Figures 6, 7 and 8). 
Note that P1 and P2 are image matched points.  
 

 
 
Considering a frame of reference (x, y, z), the point sets (C1, P1) and (C2, P2) are situated on the 
ray lines 1 and 2, respectively, as depicted in Figure 8. Since the points P1 (I, J) and P2 (I, J) are 
identified by the pixel coordinates, they need to be converted into the physical space. Thus, the 
following linear space transformation is used:  
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   f * tan (half view angle of camera) 
x distance per pixel =   ---------------------------------------     (14) 

        (Image width in pixel) / 2 
 

Similarly, y distance per pixel can be correlated. Note that f denotes camera focal length. 
Because we are interested in computing coordinates of the common point P, let us define each 
point on the line in x, y, and z reference frames as 
 
P = x i + y j + z k         (15) 
P1 = Px1 i + Py1 j + Pz1 k 
P2 = Px2 i + Py2 j + Pz2 k 
C1 = Cx1 i + Cy1 j + Cz1 k 
C2 = Cx2 i + Cy2 j + Cz2 k 
 
Where i, j, and k are unit vectors along x, y and z axes, respectively. With the condition that the 
four points must be coplanar (when the lines are not skewed), we can write 
 
(C2 – C1) • [(P1 – C1) x (P2 – C2)] = 0       (16) 
 
where symbols “•” and “x” represent vector dot and cross product respectively. If s and t are 
scalar quantities then the common point P can be expressed parametrically as  
 
P = C1 + s (P1 – C1) = C1 + s A        (17a)  
P = C2 + t (P2 – C2) = C2 + t B        (17b)  
 
Simultaneous solution of equations (17a) and (17b) yields the value of s as  
 
 [(C2 - C1) x B)] • (A x B) 
s =  -------------------------------        (17c) 
                      | A x B |

2
 

 
2.4 Accounting for Camera’s Rotations 
 
Six degrees-of-freedom are required to uniquely describe a point in three-dimensional space. 
One can choose three linear and three rotational coordinate axes. Determination of the pointer’s 
position defined by three linear coordinates (x, y, z) is presented above, whereas orientation of 
the pointer specified by three rotations (θ, φ, ψ) is given in this section. Thus the rotational motion 
of the camera is accounted for by the pointer’s position and orientation analysis. Define camera’s 
each axis of rotation as pitch, yaw and roll along x, y and z axes, respectively, as depicted in 
Figure 9. Hence, each axis transformation is given by 
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                         (18) 
 
 
 

    
   (19) 
 
 
 
 

    
   (20) 
 
 

 
Where, the notations S(angle) = sin (angle) and C(angle) = cos (angle) are used. The combined 
transformation pitch-yaw-roll can be written as PYR  
 

 
(21) 
 
 
 
 
 
 
 
 
 

The world coordinates (x, y, z) are, thus, related to camera’s view coordinates (x’, y’, z’) as 
 

 
 
(22) 
 
 
 
 

 
Note that inverse transformation is used to account for camera rotations. 
 
2.5 Point of Projection on a View Screen  
 
Knowing the three-dimensional coordinates of common point corresponding to each end of the 
pointer (after triangulation of red and blue centroids), we can represent the pointer in a 3D space 
by a line passing through these two points. Figure 10 depicts the pointer connecting red and blue 
centroidal points Pr and Pb respectively. The projection of this line on a plane described by the 
view screen is of our interest. Thus, the problem is now simplified to finding coordinates of 
intersecting point between line and a plane as shown by point Pi in Figure 10. 
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2.5.1 Equation of a Plane Describing the View Screen  

 
The standard equation of a plane in a 3D space is:  
 
Ax + By + Cz + D = 0             (23) 
 
Where, the normal to the plane is the vector (A,B,C). Let us define the plane representing view 
screen by three points D1 (x1,y1,z1), D2 (x2,y2,z2), and D3 (x3,y3,z3) in the camera 2 coordinate 
system (consistence with earlier calculations). The coefficients in Equation (23) are thus given by 
the following determinants.  
 
 

 (24) 

Further simplification to Equation (24) leads to  

 
A = y1 (z2 - z3) + y2 (z3 - z1) + y3 (z1 - z2)      (25) 
B = z1 (x2 - x3) + z2 (x3 - x1) + z3 (x1 - x2)  
C = x1 (y2 - y3) + x2 (y3 - y1) + x3 (y1 - y2)  
D =  - [x1 (y2 z3 - y3 z2) + x2 (y3 z1 - y1 z3) + x3 (y1 z2 - y2 z1)]  

Note that if the points are colinear then the normal (A,B,C) will be (0,0,0). The sign of s (which 
equals Ax + By + Cz + D) determines which side the point (x,y,z) lies with respect to the plane: if 
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s > 0 then the point lies on the same side as the normal (A,B,C); if s < 0 then it lies on the 
opposite side; if s = 0 then the point (x,y,z) lies on the plane.  

2.5.2 Intersection of a Line and a Plane 

The parametric representation of the equation of the line passing through points Pr (rx, ry, rz) and 
Pb (bx, by, bz) of the pointer is made as  

P = Pr + u (Pb - Pr)          (26) 
 
The point of intersection of the line and plane can be found by solving the system of equations 
represented by Eqs. (23) and (26). That is  
 
A [rx + u (bx - rx)] + B [ry + u (by - ry)] + C [rz + u (bz - rz)] + D = 0    (27) 
 
Hence value of u is 
 
  A * rx  + B * ry + C *  rz + D  
u =   ------------------------------------------      (28) 
  A (rx – bx) + B(ry – by) + C(rz – bz) 
 
Substituting u into the equation of a line given by Eq (26) results in the point of intersection 
between line and plane as Pi shown in Figure 10. This projected point is where the pointer is 
pointing towards the view screen. Remember, the denominator of u in Eq. (26) is 0, the normal to 
the plane is perpendicular to the line. Thus the line is either parallel to the plane and there are no 
solutions or the line is on the plane in which case there are infinite solutions.  
 

 
 
3. SIMULATION  
 
A virtual pointer of size 2.7 inches was modeled with red and blue color ends in a large 
presentation room setting using the popular three-dimensional computer graphics and animation 
program called Studio 3D Max by Discreet, a subsidiary of Autodesk Inc. The pointer was 
situated at a distance of around 30 feet away from the view/presentation screen of size 12 feet x 
3.5 feet. While the pointer was pointing towards view screen, two snap shots with high resolution 
(1920 x 1200 pixels) were taken form two cameras located near upper corner of the screen. 
Figure 11 depicts left- and right- camera static images clipped to reduce image size for 
presentation purpose.  
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Several configurations were simulated with different locations of the pointer in the room as well as 
various sizes of the pointer (small pointer: 2.7 in., medium pointer: 7 in. and large pointer: 21 in. in 
length). Furthermore, two pointers pointing towards screen as shown in Figure 12 were also 
investigated. Note that yellow and green colors of the second pointer were chosen primarily for 
purpose of image clarity. 
 

 
 
 
Based on the modeling theory described in Section 2 (Methodology), a Visual C

++
 program was 

written to test the proposed analysis. The program takes images of two cameras as an input and 
computes the three-dimensional coordinates of the pointer (both position and orientation). In 
addition, the pointer’s pointing projection on the view/presentation screen is outputted. These 
computed results were compared with the actual projections retrieved from Studio 3D Max. 
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4. RESULTS 
 
Figure 13 describes various reference frames used for the analysis. The output results of the C

++
 

program executions are grouped into three categories: one, the pointer’s pointing accuracy on the 
view screen without rotating any cameras; two, when camera rotations are included in the 
analysis; and three, when variation in the pointer’s sizes is included in the analysis. Table 1 
presents five different test cases for the group one. The highlighted pink area describes changes 
in the configuration with respect to the case # 1. The output of the algorithm (the pointer’s 
projection on the view screen) using triangulation method is compared to the corresponding 
retrieved values from the 3D Studio Max animation program. The worse case scenario is if it is of 
by 0.041 feet in y coordinate. The absolute average position accuracy for all five cases is 0.006 
and 0.034 feet in the x and y coordinates, respectively. Note that the pointer is in neighborhood of 
30 feet away from the screen. When the maximum absolute average accuracy (0.034 feet) is 
compared with 30 feet distance away from the screen, it is off by 0.11 % which is very small. 
Alternatively, compared to the size of the view screen (12 feet), it is off by around 0.28 %. 
However, it should be emphasized that the pointer’s projection accuracy on the view screen does 
not depend upon what size of the screen is chosen in the analysis. Rather, it merely gives relative 
judgment on the pointing direction.     
 

 
 
Table 2 presents the results when camera rotations are included. Note that case # 9 accounts for 
all three-axis camera rotations. These specific angles are considered in order to maximize view 
coverage of the presentation room. The accuracy in this category is relatively poor due to errors 
in rotational calibration of the camera. This can be considerably improved upon choosing 
appropriate calibration techniques. 
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Table 3 considers the variation in the pointer’s length. It is very encouraging to see that the 
smallest pointer of size 2.7 inches was detected with a high accuracy even with both cameras 
rotated. Also, the size of the pointer does not have much effect in the analysis. 
 
 
 

 

5. CONCLUSION 
 
The analysis reveals that the image triangulation method works reasonably well for locating the 
pointer in a relatively large three-dimensional room space. Furthermore, the pointer’s projections 
on the view screens are accurate well within many presenter-audience applications. The 
computational errors are considered to be small when one view the screen from the audience 
located in the neighborhood of 30 feet away where precise visualization of pointer’s direction is 
not that clear. Future investigation includes choosing actual hardware in the loop and 
incorporating most recent image enhancement/ detection schemes [Refs. 11 - 13]. 
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