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Abstract 

 
Vector quantization is an elementary technique for image compression; however, 
searching for the nearest codeword in a codebook is time-consuming. In this 
work, we propose a hardware-based scheme by adopting bit-parallelism to prune 
unnecessary codewords. The new scheme uses a “Bit-mapped Look-up Table” 
to represent the positional information of the codewords. The lookup procedure 
can simply refer to the bitmaps to find the candidate codewords. Our simulation 
results further confirm the effectiveness of the proposed scheme. 
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1. INTRODUCTION 

The use of images has become a common practice in computer communications. The sizes of 
images are usually huge and, therefore, need to be compressed for storage and transmission 
efficiency. Vector quantization (VQ) [1] is an important technique for image compression and has 
been proven to be simple and efficient [2]. VQ can be defined as a mapping from k-dimensional 
Euclidean space into a finite subset C. The finite set C is known as the codebook and 
C={ci|i=1,2,…,N}, where ci is a codeword and N is the codebook size. 
 
To compress an image, VQ comprises two functions: an encoder and a decoder. The VQ 

encoder first divides the image into Nw×Nh blocks (or vectors). Let the block size be k (k=w×h), 
and then each block is a k-dimensional vector. VQ selects a codeword cq=[cq(0),cq(1),…,cq(k-1)] for 
each image vector x=[x(0),x(1),…,x(k-1)] such that the distance between x and cq is the smallest, 
where cq is the closest codeword of x and cq(j) denotes the jth-dimensional value of the codeword 
cq. The distortion between the image vector x and each codeword ci is measured by their squared 
Euclidean distance, i.e., 
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After the selection of the closest codeword, VQ replaces the vector x by the index q of cq. The VQ 
decoder has the same codebook as that of the encoder. For each index, VQ decoder can easily 
fetch its corresponding codeword, and piece them together into the decoded image. 
 
The codebook search is one of the major bottlenecks in VQ. From Equation (1), the calculation of 
the squared Euclidean distance needs k subtractions and k multiplications to derive k[x(j)-ci(j)]

2
. 

Since the multiplication is a complex operation, it increases the total computational complexity of 
Equation (1). Therefore, speeding up the calculation of the squared Euclidean distance is a major 
hurdle.  
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Owing to the importance of vector quantization, a handful of methods have been proposed to 
shorten VQ encoding time [3,5–8,14,16,17]. The simplest one among them is the look-up table 
(LUT) method [6,17]. It suggests that the results of [x(j)-ci(j)]

2
 for all possible xj and yij should be 

pre-computed first and then stored into a huge matrix, the LUT. Suppose the values of x(j) and ci(j) 

are within [0,m-1]. Then the size of matrix LUT should be m×m and 
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Given any x(j) and ci(j), we can get the square of their difference directly from LUT[x(j), ci(j)]. 
Therefore, Equation (1) could be rewritten as follows:   
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LUT can be employed to avoid the subtraction and the multiplication in Equation (1). Hence, it is 
an efficient method. 
 
Rizvi et. al. proposed another LUT-based scheme in [8] to fasten the calculation of squared 
Euclidean distances which is called truncated look-up table (TLUT). In their method, Rizvi et. al. 
pre-computed the results of (x(j)-ci(j))

2
 for all possible |x(j)-ci(j)| and stored these results into the 

matrix TLUT, where  
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Since the calculation complexity of the absolute subtraction |x(j)-ci(j)| operation is much simpler 
and more efficient than multiplication operation, it could be derived before accessing the LUT. 
Hence, according to the matrix TLUT, Equation (1) can be expressed as follows: 
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The size of the matrix TLUT is m. Yet, it is still difficult for some special designs, such as VLSI 
implementations and systolic architectures [5,7], to be implemented. 
 
In short, the design criteria of LUT-based schemes emphasize computation speed, table storage 
and image quality. However, the number of the calculated codewords has not been investigated 
since these schemes did not use the geometrical information implied in the codewords. 
 
In this work, we propose a hardware-based scheme to represent the positional information. This 
scheme adopts bit-parallelism and constructs a “Bit-mapped Look-up Table” to prune feasible 
codewords. The lookup procedure simply involves the use of the bitmap information to prune 
candidate codewords. Moreover, the scheme is a plug-in, which can cooperate with other existing 
schemes to further tune up the search speed. An efficient hardware implementation is also 
presented in our simulation results.  
 
The rest of this paper is organized as follows. The proposed scheme is presented in Section 2. 
Section 3 addresses the performance evaluation. Section 4 concludes the work. 
 

2. BIT-PARALLEISM SCHEME 

As discussed in previous section, VQ matches a test vector to the codeword with the smallest 
Euclidean distance. The selected codeword could be treated as the nearest point in the k-
dimensional space. In the ideal case (with a well-trained codebook), the distance of each 
dimension between the test vector and the selected codeword should be very close. Hence, it is 
possible to filter out unfeasible codewords by referring to the positional information. 
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We use a codebook and five different images to show the effect of one-dimensional distances on 
andthe quality of the compressed images. The codebook is trained by using an image of “Lena” 
and five other images which are quantized by full search. The image quality is measured by peak 
signal-to-noise ratio (PSNR), which is defined as  

  
2

10
10 log (255 / ) dB.PSNR MSE= ×    (6) 

The mean-square error (MSE) is defined as  

 [ ]
21 1

0 0 ( , ) ( , )
(1/ ) (1/ )

H W

i j i j i j
MSE H W α β

− −

= =
= × −∑ ∑    (7) 

for an H×W image, where α(i,j) and β(i,j) denote the original and quantized gray levels of pixel (i,j) in 
the image, respectively. A larger PSNR value usually preserves the original image quality better. 
 

We shown the distribution of the maximal one-dimensional distance, max|x(j)-cM(i)|, where 0≤j≤k-1, 
between the test vectors and their matched codewords for each image in Fig. 1. For high-quality 
compressed images “Lena” and “Zelda”, about 98% of their maximum one-dimensional distances 
are less than 32. However, the ratio is reduced to 91%~96% for other compressed images with 
lower quality.  
 

 
 

FIGURE 1: Distribution of the Maximum One-dimensional Distances for Different Images. 

 
Figure 1 demonstrates that it is possible to prune feasible codewords by using only one-
dimensional distances, especially for those images with high compression quality. We further 
demonstrate how one-dimensional distances can improve the performance of VQ with an 
example in Fig. 2. There are two codewords, C1 (3, 1) and C2 (2, 3) in this example. To calculate 
the nearest codeword for the test vector, V1 (1, 2), the squared Euclidean distances to C1 and C2 
are 5 and 2, respectively, and C2 is chosen as the result. If we only consider the horizontal 
distances, only C2 would be selected without performing the calculation for the Euclidean 
distance. However, both codewords are chosen by taking only the vertical distances into 
consideration, and the Euclidean distances to these two vectors must be calculated in the same 
way as in the full search to decide the closest codeword. In addition, using one dimension to 
select the candidate codewords might cause false matches. Let’s consider a two-dimensional 
example in Fig. 2. In Fig. 2, C2 is closer to V2 than C1 in the first dimension. Yet, the Euclidean 
distance between C1 and V2 is smaller than that between C2 and V2. Comparing multiple 
codewords, which are within a certain range in the dimension, could alleviate this problem. 
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FIGURE 2: A Two-dimensional Example. 

 
In sum, when the codeword is positioned closer to the test vector in the Euclidean space, the 
distance in each dimension is likely to be shortened as well. To exploit this property, we adopt 
bitmaps to represent the positional information. For each codeword, there is a uni-codeword 

bitmap with m bits for each selected dimension j, where 0≤j≤k-1. Each bit in the uni-codeword 
bitmap corresponds to a position in dimension j. Assume that the pre-defined distance is D. The 
bits from ci(j)-D to ci(j)+D are set to one for codeword i. 
 
Figure 3 shows the resulting bitmaps for the example in Fig. 2. The distance D is defined as 1 for 
both dimensions. The set bits form a square in the two-dimensional case. If the test vector is 
located within the square of a certain codeword, the codeword would be one of the candidates in 
vector quantization. For example, V1 is within the square of C2, rather than C1. Thus C1 would not 
be considered in vector quantization. The bricks, (2,2) and (3,2), are shared by the squares of C1 
and C2. Therefore, the test vectors positing in these two bricks select C1 and C2 as the candidates. 
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(a) D=1                                                            (b) D=2 
 

FIGURE 3: Two-dimensional Uni-codeword Bitmaps. 

 
As seen in Fig. 3(a), there are several unoccupied bricks remaining. For the test vectors located 
within these bricks, e.g. V2, the bitmaps are useless since there is no candidate could be derived. 
As a result, each codeword has to be calculated to nail down the one with the smallest Euclidean 
distance. To ease the problem, a longer distance could be adopted, as shown in Fig. 3(b), where 
the renewed bitmaps for D=2 are presented. With the new distance, most bricks are occupied by 
at least one codeword’s square. However, the conjunct bricks are also increased due to the 
enlarged squares. A suitable distance is thus important to the performance of the proposed 
scheme since a wider range could increase the number of candidates, whereas a shorter 
distance might result in a null set. In our experiments, various distances are investigated to 
evaluate the performance and the image quality. Next, the construction/lookup procedure of the 
searchable data structure is introduced. 
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2.1 The Construction of the Searchable Data Structure - Positional Bitmaps 
Although our uni-codeword bitmaps could present the positional information of each codeword, 
they are not searchable. It is because accessing uni-codeword bitmaps for each codeword would 
be inefficient. To facilitate the lookup speed, the uni-codeword bitmaps are transformed to uni-
position bitmaps, which record the one-dimensional positions of related codewords. The 
relationships between the uni-codeword bitmaps and the uni-position bitmaps are illustrated in 
Fig. 4. The uni-position bitmap for position p at dimension j is defined as B

D
j,p, where D is the 

preset distance. The ith bit is defined as B
D

j,p(i) which is set to one if p-D≤ci(j)≤p+D. The pseudo 

code is given in Fig. 5. For each bitmap, the required storage is m×N per dimension. Since there 

are k dimensions, each bitmap requires m×N×k bits. Therefore, each bitmap consumes 8 
kilobytes for a typical 256-codeword codebook with 256 gray levels. 
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FIGURE 4: Relationships Between Uni-codeword Bitmaps and Uni-position Bitmaps. (D=1) 

 

Bitmap-Filling Algorithm 
For each uni-position bitmap B

D
j, p BEGIN 

For each bit B
D

j, p(i) BEGIN 

If p -D  ≤  c i ( j ) ≤p+D ,  B
D

j, p(i)=1. 
Otherwise, B

D
j, p(i)=0. 

END 
END 

 
FIGURE 5: The Bitmap-Filling Algorithm 

 
2.2 The Lookup Procedure 

Our scheme, bit-mapped look-up table (BLUT), combines bitmap pruning and TLUT to achieve 
fast processing. For a test vector in the BLUT scheme, the jth value xj is used to access the 

bitmap B
D

j, xj. Each set bit indicates that the corresponding codeword is within a distance D from 

the test vector at dimension j. Accordingly, the Euclidean distance is calculated by accessing 

TLUT. The pseudo code for the lookup procedure is listed in Fig. 6. To check whether the ith bit is 

set, the fetched bitmap B
D

j, xj is intersected to a pre-generated bitmap with only ith bit set 

(00…010…0) by performing “AND” operation. If the value is larger than zero, then the codeword i 

is the candidate.  
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Vector Quantization by BLUT Algorithm 
For each vector x BEGIN 

Fetch the B
D

j, xj. 

For each set bit B
D

j, xj(i) BEGIN 

Calculate Euclidean distance d(x,ci) where 
1

0 ( ) ( )
( , ) , .

k

i j j i j
d x c TLUT x c

−

=
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If d(x,ci) ≤  min_distance BEGIN 
min_distance_id= i 
min_dietance=d(x,ci) 

END 
END 
min_distance_id is the quantized index for x 

END 

 
FIGURE 6: Vector Quantization by BLUT Algorithm 

 
We use the previous example in Fig. 4 with D=1 to explain the lookup procedure. Assume that 
the horizontal dimension is used to prune the codebook. For the test vector V1 (1,2), the second 
uni-position bitmap (0,1) is fetched. Therefore, C1 is not considered in the vector quantization and 
C2 is the result of vector quantization. However, for another vector V2 (1,1), a false match is 
caused since only C2 is selected as the candidate but C1 is closer to V2 than C2. This is mainly 
due to bitmaps of only one dimension sometimes cover insufficient information. 
 
The first variation is to generate bitmaps for multiple dimensions. With more bitmaps, the effect 
on codebook-pruning is increased. Furthermore, the multi-dimensional BLUT algorithm can 
improve the accuracy of image compression since it can cover more information as compared 
with the one-dimensional scheme. However, the required storage is also increased 
proportionately. The lookup procedure for multiple bitmaps is shown in Fig. 7. The set dim 

records the selected dimensions where 1≤|dim|≤k. Before the set bits are checked, the multiple 
bitmaps are intersected by performing “AND” operation to derive the representative bitmap R

D
. 

 
Again, we use the previous example to explain the procedure. For the test vector V1 (1,2), the 

second uni-position bitmap (0,1) at the horizontal axis and third one (1,1) at the vertical axis are 
fetched. Consequently, the bitmap (0,1) is derived by intersecting two bitmaps, and C2 is selected 

as the result. To quantize V2, the resulting bitmap is (0,0), which means no candidates have been 

found. As a result, the Euclidean distance to C1 and C2 are calculated to decide the closest 

codeword. Although an extra step is required in the computation, false matches are eliminated. 

 
Multi-dimensional BLUT Algorithm 
For each vector x BEGIN 

Fetch the B
D

j, xj, where j∈dim 

R
D
=∩j∈dimB

D
j, xj 

For each set bit R
D
(i) BEGIN 

Calculate Euclidean distance d(x,ci) where 
1

0 ( ) ( )
( , ) , .

k

i j j i j
d x c TLUT x c

−

=
=∑  

If d(x,ci) ≤  min_distance BEGIN 
min_distance_id= i 
min_dietance=d(x,ci) 

END 
END 
min_distance_id is the quantized index for x 

END 

 
FIGURE 7: Multi-dimensional BLUT Algorithm 
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BLUT could also adopt multiple distances to derive a minimum set of candidates. The basic 
operation is to test the bitmaps with D=1. If there is no candidate, then the bitmaps for D=2 is 
tested and so forth. In the basic scheme, the time complexity for bitmap operation is O(m). Simple 
binary search on distance could further improve the performance. That is, the bitmaps for D=m/2 
are tested at first. If the candidate set is empty, then the bitmaps for D=m/4 are tested. Otherwise, 
the D=(m-1+m/2)/2 bitmaps are examined. The time complexity is thus reduced to O(log2m). 
However, such scheme requires huge memory space, thus further reduction of storage is 
necessary. 
 
2.3 Implementations 
In the one-dimensional version, BLUT is suitable for software implementation due to its simplicity. 
Nevertheless, hardware implementation is preferable for multi-dimensional BLUT since it requires 
memory bus with N-bit wide (typically N=256). In Fig. 8, we present a conceptual model for 
hardware implementation. This implementation includes independent RAM modules for uni-
position bitmaps. Bitmaps of a specific dimension are located in a storage. While performing 
lookup, the uni-position bitmaps are fetched from RAM modules simultaneously and perform the 
“AND” operation. Accordingly, the resulting bitmap R

D
 enables the codewords in the candidate 

set for calculating the Euclidean distance in ALU. 
 

Dimension 0Dimension K' Dimension 1

AND

operation

...

RD

D0 D1 D2 ...D0 D1 D2 ...D0 D1 D2 ...

Di N-bit Uni-Position Bitmap

CODEBOOK

ALU

C0 C1 C2 ...Ci Codeword

RD Resulted Bitmap  
 

FIGURE 8: Hardware Implementation for Multi-dimensional BLUT. 

 

3. SIMULATION RESULTS 

We have conducted several simulations to show the efficiency of BLUT. All images used in these 

experiments were 512×512 monochrome still images, with each pixel of these images containing 

256 gray levels. These images were then divided into 4×4 pixel blocks. Each block was a 16-
dimensional vector. We used image “Lena” as our training set and applied the Lindo-Buzo-Gray 
(LBG) algorithm to generate our codebook C. In the previous literature [1,3], the quality of an 
image compression method was usually estimated by the following five criteria: compression 
ratio, image quality, execution time, extra memory size, and the number of mathematical 
operations. All of our experimental images had the same compression ratio. Thus only the latter 
four criteria are employed to evaluate the performance. The quality of the images is estimated by 
PSNR. The extra memory denotes the storage needed to record the projected space and the 
projected values from codewords onto the projected space. As for the mathematical operations, 
the number of calculated codewords is considered since the operations for each codeword are 
identical. 
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      (a) D=16 (PSNR=31.329)           (b) D=32 (PSNR=32.374)           (c) D=64 (PSNR=32.554) 

 
FIGURE 9: The Lena Images of BLUT. 

 
In the first part, the performance of the software-based implementation with one bitmap was 
investigated. The experiments were performed on an IBM PC with a 500-MHz Pentium CPU. 
Table 1 shows the experimental results of BLUT based on image “Lena”. VQ indicates the vector 
quantization without any speedup. The distances for BLUT vary from 16 to 128. With a shorter 
distance, the image quality is degraded since the occurrence of false matches is increased. 
Nevertheless, the calculated codewords are reduced by using uni-position bitmap as well as the 
execution time. Full search requires no extra storage while TLUT needs 256 bytes. For BLUT, the 
extra storage of a bitmap is 8 kilobytes and 256 bytes for TLUT. The decompressed images are 
shown in Fig. 9. While BLUT’s distance is extended to 64, the image quality is almost identical to 
VQ and TLUT. 
 

BLUT Scheme 
Metrics 

Full  
Search 

TLUT 
D=16 D=32 D=48 D=64 D=128 

PSNR 32.56 32.56 31.329 32.374 32.53 32.554 32.56 
Execution 
Time (sec.) 

1.72 1.65 0.40 0.77 0.99 1.31 1.84 

Calculated 
Codewords 

256 256 50 93 131 165 243 

Memory Size 
(Bytes) 

0 256 
8192 (Uni-position Bitmap) +  

256 (TLUT) 

 
TABLE 1: The Performance of the Software-based BLUT. (Image: Lena) 

 
Next, we adopt multiple bitmaps to evaluate the performance of the proposed BLUT schemes. 
Since software platform cannot support wide memory bus, the proposed scheme with multiple 
bitmaps is based on hardware implementation. The bitwise operation could be parallelized and 
the time for calculating Euclidean distance is proportional to the number of calculated codewords. 
In our experiments, we examine the performance with 1, 2 and 4 bitmaps. The distance varies 
from 16 to 128. In addition, we also present the performance of BLUT with different codebook 
sizes (128, 256, 512 and 1024) in Tables 2~5. 
 
Table 2 lists the numerical results of vector quantization with 128 codewords. With distance D 

equals 16, the PSNR value degrades severely as the number of bitmaps increases to 4. This is 

because a smaller codebook would increase the resulted Euclidean distance of vector 

quantization as well as the maximal one-dimensional distance. Hence, the effect of BLUT is 

lessened since greater distance is required. If the distance extends to 32, the resulted image 

quality by using more than one bitmap is significantly improved. Moreover, only about one fifth of 

the codewords is calculated for Euclidean distance. BLUT with two bitmaps is usually superior to 

that with four bitmaps. However, as the number of codewords increases, the 4-bitmap BLUT 

could outperform the 2-bitmap BLUT by calculating fewer codewords while retaining similar image 
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quality, as demonstrated in Table 5. 

 
Images Airplane Gold Lena Pepper Zelda 

Metrics 
Code- 
words 

Time PSNR 
Code- 
words 

Time PSNR 
Code- 
words 

Time PSNR 
Code- 
words 

Time PSNR 
Code- 
words 

Time PSNR 

FS 128 0.54  28.97  128 0.54  28.54  128 0.53  31.46  128 0.55  28.89  128 0.54  32.31  

TLUT 128 0.43  28.97  128 0.42  28.54  128 0.42  31.46  128 0.42  28.89  128 0.42  32.31  
1 23 0.08  28.15  20 0.07  28.12  23 0.08  30.47  21 0.07  24.69  23 0.08  31.89  
2 7 0.02  26.02  5 0.02  27.09  7 0.02  28.30  7 0.02  19.58  7 0.02  29.85  16 

4 6 0.02  23.12  4 0.01  24.60  6 0.02  24.62  5 0.02  18.62  6 0.02  26.53  
1 43 0.14  28.78  39 0.13  28.50  43 0.14  31.32  42 0.14  28.49  44 0.14  32.22  
2 22 0.07  28.36  19 0.06  28.45  22 0.07  30.91  22 0.07  27.78  23 0.08  31.91  32 

4 19 0.06  27.09  16 0.05  28.08  19 0.06  29.81  19 0.06  27.03  20 0.07  31.56  
1 74 0.24  28.96  74 0.25  28.54  80 0.27  31.46  76 0.25  28.87  80 0.26  32.31  
2 51 0.17  28.96  55 0.18  28.54  59 0.20  31.45  56 0.18  28.85  61 0.20  32.30  64 

4 49 0.16  28.95  51 0.17  28.54  56 0.19  31.45  54 0.18  28.84  58 0.19  32.28  
1 114 0.37  28.97  118 0.40  28.54  120 0.40  31.46  117 0.38  28.89  121 0.40  32.31  
2 102 0.33  28.97  112 0.38  28.54  114 0.38  31.46  111 0.36  28.89  117 0.38  32.31  128 

4 101 0.33  28.97  110 0.37  28.54  113 0.38  31.46  110 0.36  28.89  116 0.38  32.31  

 
TABLE 2: The Performance of the Hardware-based BLUT. (N=128) 

 

Images Airplane Gold Lena Pepper Zelda 

Metrics 
Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

FS 256 1.30  29.53  256 1.30  29.48  256 1.30  32.56  256 1.29  30.07  256 1.30  33.35  

TLUT 256 1.11  29.53  256 1.10  29.48  256 1.09  32.56  256 1.10  30.07  256 1.09  33.35  

1 36 0.15  28.62  46 0.20  29.12  50 0.22  31.33  42 0.18  25.95  51 0.22  32.98  

2 11 0.05  26.86  15 0.07  28.27  19 0.08  29.13  15 0.06  21.09  20 0.09  31.39  16 

4 9 0.04  23.81  10 0.04  25.64  15 0.07  25.66  12 0.05  20.07  16 0.07  29.46  

1 66 0.28  29.30  88 0.38  29.45  93 0.40  32.37  84 0.36  29.73  97 0.42  33.27  

2 33 0.14  28.93  48 0.21  29.40  54 0.23  32.08  48 0.20  29.12  59 0.25  33.03  32 

4 29 0.12  28.03  40 0.17  29.21  47 0.20  31.04  42 0.18  28.16  52 0.22  32.59  

1 134 0.57  29.53  161 0.70  29.48  165 0.72  32.55  160 0.68  30.04  172 0.74  33.34  

2 98 0.42  29.52  128 0.56  29.48  132 0.57  32.55  127 0.54  30.01  141 0.61  33.30  64 

4 92 0.39  29.52  119 0.52  29.48  125 0.54  32.55  121 0.52  30.00  135 0.58  33.29  

1 224 0.95  29.53  240 1.04  29.48  243 1.05  32.56  239 1.02  30.07  247 1.06  33.35  

2 207 0.88  29.53  232 1.01  29.48  236 1.02  32.56  230 0.98  30.07  242 1.04  33.35  128 

4 206 0.88  29.53  230 1.00  29.48  234 1.02  32.56  227 0.97  30.07  240 1.03  33.35  

 
TABLE 3: The Performance of the Hardware-based BLUT. (N=256) 

 

Images Airplane Gold Lena Pepper Zelda 

Metrics 
Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

FS 512 2.39 30.00 512 2.41 30.18 512 2.39 33.63 512 2.42 30.57 512 2.41 34.08 

TLUT 512 2.15 30.00 512 2.16 30.18 512 2.16 33.63 512 2.14 30.57 512 2.14 34.08 

1 66 0.28 29.33 90 0.38 29.85 99 0.42 32.69 84 0.35 26.12 103 0.44 33.75 

2 25 0.11 27.70 34 0.14 29.22 42 0.18 30.61 34 0.14 21.53 46 0.19 32.19 16 

4 19 0.08 24.61 23 0.10 26.77 33 0.14 26.98 27 0.11 20.50 37 0.16 30.46 

1 126 0.53 29.85 175 0.74 30.15 182 0.77 33.45 167 0.70 30.32 193 0.82 34.05 

2 70 0.30 29.45 103 0.43 30.12 113 0.48 33.03 101 0.42 29.87 124 0.52 33.73 32 

4 60 0.25 28.43 86 0.36 29.95 100 0.42 31.63 89 0.37 29.12 112 0.47 33.09 

1 261 1.10 30.00 322 1.35 30.18 326 1.37 33.62 316 1.32 30.56 340 1.44 34.08 

2 197 0.83 29.99 262 1.10 30.18 266 1.12 33.62 258 1.08 30.51 285 1.20 34.08 64 

4 185 0.78 29.99 245 1.03 30.18 253 1.06 33.62 247 1.03 30.51 274 1.16 34.07 

1 437 1.85 30.00 479 2.01 30.18 485 2.04 33.63 475 1.99 30.57 495 2.09 34.08 

2 407 1.72 30.00 465 1.96 30.18 472 1.98 33.63 458 1.92 30.57 486 2.05 34.08 128 

4 402 1.70 30.00 461 1.94 30.18 468 1.97 33.63 454 1.90 30.57 482 2.04 34.08 
 

TABLE 4: The Performance of the Hardware-based BLUT. (N=512) 
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Images Airplane Gold Lena Pepper Zelda 

Metrics 
Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

Code- 

words 
Time PSNR 

FS 1,024  4.93  30.43  1,024  4.93  30.80  1,024  4.87  34.42  1,024  4.93  30.83  1,024  4.90  34.51  

TLUT 1,024  4.39  30.43  1,024  4.39  30.80  1,024  4.40  34.42  1,024  4.39  30.83  1,024  4.40  34.51  

1 146 0.63  29.79  178 0.76  30.55  199 0.85  33.59  171 0.73  26.63  205 0.88  34.26  

2 66 0.28  28.39  74 0.32  29.96  98 0.42  31.64  79 0.34  21.70  103 0.44  32.71  16 

4 51 0.22  25.28  50 0.21  27.56  78 0.33  27.80  62 0.27  20.74  83 0.36  31.17  

1 269 1.15  30.30  346 1.49  30.78  369 1.58  34.33  337 1.45  30.62  386 1.65  34.47  

2 164 0.70  30.01  218 0.94  30.75  248 1.06  34.05  221 0.95  30.30  269 1.15  34.08  32 

4 143 0.61  29.50  184 0.79  30.61  221 0.95  33.52  197 0.85  29.43  244 1.05  33.69  

1 551 2.37  30.43  638 2.74  30.80  658 2.82  34.42  637 2.73  30.80  682 2.92  34.51  

2 440 1.89  30.43  533 2.29  30.80  555 2.38  34.42  538 2.31  30.78  589 2.52  34.50  64 

4 415 1.78  30.43  500 2.15  30.80  530 2.27  34.42  516 2.22  30.77  567 2.43  34.49  

1 896 3.85  30.43  959 4.12  30.80  971 4.16  34.42  953 4.09  30.83  987 4.23  34.51  

2 848 3.64  30.43  934 4.01  30.80  948 4.06  34.42  923 3.96  30.83  971 4.16  34.51  128 

4 839 3.60  30.43  926 3.98  30.80  941 4.03  34.42  914 3.92  30.83  965 4.13  34.51  

 
TABLE 5: The Performance of the Hardware-based BLUT. (N=1K) 

 
We also observed that images with a larger codebook are particularly suitable for BLUT. For 

example, Table 3 shows that the 2-bitmap BLUT scheme could derive good image quality with D=32. In 

Tables 4 and 5, the image quality is further improved while the number of calculated codewords is 

proportional to the size of codebooks. 

 

From our experimental results, one can also notice that the images with better compression 

quality can benefit more from BLUT, since the maximum one-dimensional distance within these 

images could be smaller. For example, the compression quality of the images “Lena” and “Zelda” 

is better than other images. For these two images, the calculated codewords are more than those 

of other images at the same distance. Therefore, a well-trained codebook could improve the 

performance of the proposed scheme. 

 
In summary, the performance of BLUT ties to the size of codebooks and its quality. Thus, BLUT is 
suitable for compressing high-definition images. We also designed a codebook training algorithm 
for BLUT by minimizing the deviation of the one-dimensional distance between the image blocks 
and codewords. As compared with the existing schemes, using a feasible hardware 
implementation without complex computation makes the proposed scheme suitable for digital 
home entertainment. 
 

4. CONSLUSION & FUTURE WORK 

In this study, we propose a new algorithm BLUT for codebook search. BLUT adopts bitwise data 
structure to represent the geometrical information. The bitwise representation is simple and 
suitable for hardware implementation. By setting a given range, BLUT could screen any 
unfeasible codewords. With the software implementation, only one bitmap is required, thereby 
minimizing the required storage. On the other hand, the hardware implementation in BLUT could 
adopt multiple bitmaps to ensure accuracy. Since BLUT relies on an accurate geometrical relation 
to prune eligible codewords, it is suitable for high-definition image compression. In the future, we 
will gear toward the design of codebook training algorithms to further improve the lookup 
performance of schemes like BLUT. 
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