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Abstract 

 
The stereo matching problem, which obtains the correspondence between left 
and right images, can be cast as a search problem. The matching of all 
candidates in the same line forms a 2D optimization task, which is an NP-hard 
problem in nature. Two characteristics are often utilized to enhance the 
performance of stereo matching, i.e. concurrent optimization of several scan-
lines and correlations among adjacent scan-lines. Such correlations are 
considered to be posterior, which require several trails for their discovery. In this 
paper, a Multiple Ant Colony based approach is proposed for stereo matching 
because of the Ant Colony optimization’s inherent capability of relation discovery 
through parallel searching. The Multiple Ant Colony Optimization (MACO) is 
efficient to solve large scale problems. For stereo matching, it evaluates sub-
solutions and propagates the discovered information by pheromone, taking into 
account the ordering and uniqueness constraints of candidates in images. The 
proposed algorithm is proved to be able to find the optimal matched pairs 
theoretically and verified by experiments. 
 
Keywords: Multiple Ant Colony Optimizations, Stereo Matching, Iteration, Constraints. 

 
 

1. INTRODUCTION 

The purpose of computer stereo vision is to obtain depth information of objects with the help of 
two or more cameras. Generally speaking, there are four steps to accomplish it, which are image 
pre-processing, matching primitive defining & extracting, feature matching and disparity refining. 
The image pre-processing includes image enhancement and epipolar rectification; the second 
step includes the definition of feature and its extraction; disparity refining is to get a smooth depth 
map in which sub-pixel interpolation is involved for example. Feature matching has been one of 
the most challenging research topics in computer vision. 
The stereo matching problem [1-7], that is to obtain a correspondence between right and left 
images, can be cast as a search problem. When a pair of stereo images is rectified, 
corresponding points can be searched within the same scanline, this is a two dimensional (2D) 
optimization, which can be shown as a NP-hard problem [3]. An optimization method, such as 
Dynamic Programming (DP)[2,8-16], Simulated Annealing(SA) [17], Genetic Algorithm(GA)[18], 
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max-flow[19], graph-cut [3,20], etc., can be used to find the optimal or sub-optimal solutions with 
different efficiency.  
Baker [1] describes a fast, robust, and parallel implementable edge-based line-by-line stereo 
correlation scheme. Based on the fact that a connected sequence of edges in one image should 
be a connected sequence of edges in the other, a cooperative procedure to deal with edge 
correspondences is proposed. The dynamic programming algorithm performs a local optimization 
for the correlation of individual lines in the image, and the edge connectivity is used to remove 
miscorrelations. 
Ohta [8] defines two different searches, intra-scanline and intera-scanline search. The intra-
scanline search can be treated as finding a matching path on 2D search plane whose axes are 
the right and left scanlines. Vertically connected edges in the images provide consistency 
constraints across the 2D search planes. Inter-scanline search in a 3D search space, with a stack 
of the 2D search planes, needs to utilize the vertically connected edge information. Dynamic 
programming is used in both searches. 
Birchfield [2] proposes a new algorithm based on three heuristic functions. During the matching 
the occluded pixels are allowed to remain unmatched, the information between scanlines is 
propagated by a postprocessor. The global post-process propagates reliable disparities to the 
regions with unreliable disparities.  
Bobick [4] develops a stereo algorithm that integrates matching and occlusion analysis into a 
single process. After highly-reliable matches, the ground control points (GCPs) are introduced. 
The matching sensitivity to occlusion-cost and algorithmic complexity can be significantly 
reduced. The use of ground control points eliminates both the need for biasing the process 
towards a smooth solution and the task of selecting critical prior probabilities describing image 
formation. 
Raymond [10] proposes the use of a multi-level dynamic programming method to solve the 
matching problem of stereo vision. At level 1, the line segment pairs that have a very high local 
similarity measure are selected for the matching process. By considering the geometric properties 
between the matched and the unmatched line segments, a global similarity measure is calculated 
for each unmatched line segments pair, and then the second level starts.  
In [Kim 13], first, a new generalized ground control points (GGCPs) scheme is introduced, where 
one or more disparity candidates for the true disparity of each pixel are assigned by local 
matching using the oriented spatial filters. Second, it performs optimization both along and across 
the scanlines by employing a two-pass dynamic programming technique. Combined with the 
GGCPs, the stability and efficiency of the optimization are improved significantly. 
[Sorgi 15] presents a symmetric stereo matching algorithm, based on the bidirectional dynamic 
programming scanline optimization. The Sum of the Squared Differences (SSD) map is treated as 
a decoding trellis and inspected twice: the forward optimization produces the optimal path from 
the upper left to the lower right corner, and the backward optimization produces the optimal path 
from the lower right back to the upper left corner. The final operation, a consistency check 
between the selected forward and backward optimal paths, can produce an occlusion-robust 
matcher without defining an empirical occlusion cost. 
[Sung 16] proposes a stereo matching algorithm which employs an adaptive multi-directional 
dynamic programming scheme using edge orientations. Chain codes are introduced to find the 
accurate edge orientations which provide the DP scheme with optimal multidirectional paths. The 
proposed algorithm eliminates the streaking problem of conventional DP based algorithms, and 
estimates more accurate disparity information in boundary areas.  
On the assumption that the neighboring elements have consistent match values, in [Zitnick 5], 
local support area that determines which and to what extent neighboring elements should 
contribute to averaging is introduced. An iterative algorithm updating the match values by 
diffusing support among neighboring values and inhibiting others along similar lines of sight is 
proposed. After the match values have converged, occluded areas are explicitly identified and the 
final results are obtained. 
Marr and Poggio [9] present two basic assumptions for a stereo vision algorithm. The first 
assumption, uniqueness assumption, states that at most a single unique match exists for each 
pixel if surfaces are opaque; The second one, continuity assumption, states that disparity values 
are generally continuous, i.e., smooth within a local neighborhood.  
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[Scharstein 6, Brown 7] reviews the development in decades. In [Leung 12, Selzer 14], the 
process is speeded up with special data structure. All the articles mentioned above have the 
following common characteristics. 1) There are two kinds or levels of optimization, the local one 
which accomplishes the optimization in the corresponding scanline and the global one which finds 
the best solution among all scanlines. 2) Based on the Marr’s assumptions, many constraints 
must be obeyed, for example, ordering constraint, uniqueness constraint and bi-directional 
monotonicity constraint. 3) To get the global optimal solution, the reliability should be propagated.  
How to propagate the reliability is skillful. In [8], the optimization function is update by the inter-
scanline information; in [4, 13], the preprocessed GCPs are introduced; in [5, 10], the iteration is 
used to remove the wrong matches or enhance the correct matches; in [2], a postprocessor is 
employed to remove wrong matches after the optimization.  
In this paper, the expected merits of a good algorithm for stereo matching are analyzed. Then a 
new multiple ant colony optimization (MACO) method is proposed to solve the stereo matching 
problem, and the convergence of the proposed algorithm is also discussed. In the last part the 
experiments show the results of the algorithm. 

2. PRELIMINARIES 

Stereo matching is still an open task to be investigated. The following two questions are argued 
firstly in this paper.  

� Marr’s assumptions is correct, but dose it need to be obeyed during the optimizing 
process?  
� The reliability propagation is necessary, but how to get more reliable one and how to do? 

 

 
 (a) Left Image (b) Right Image 

FIGURE 1: Tsukuba Pairs 
 

One pair of standard test images for stereo algorithm is shown in Fig.1. Supposed the size of 
epipolar rectified image is K by L, there are N features (the features can be point, line, curve and 
area) on the k

th
 (k=1...K) scanline of left image and M features on the k

th 
scanline of right image. 

A matrix L×L, named as similarity matrix, stores all possible matches on the k
th
 scan line. The 

element at (n
th 

, m
th
)
 
is the Sum of Absolute Differences (SAD) similarity of the feature on (k

th
,n

th
) 

in left image and the feature on (k
th
, m

th
) in right image. In the similarity matrix, only N by M 

elements are meaningful, the others are zero. If minimum & maximum parallax restraint is 
considered, define vn as the search space of the n

th
 feature in the left image, all vn (n=1…L) form 

a banded region (actually, n should be from 1 to N, to simplify statement and not loss of the 
generality, in this paper n=1…L ), as the white banded region shown in Fig.2 , marked with 
notation Ω (including Ω’, in which every element is zero, marked as the black area) in this paper. 

The
min

d and
max

d  represent the minimum and maximum parallax respectively. The parallax on the 

dot black line is zero. One similarity matrix corresponds to a specific scan line, and then K 
similarity matrixes are available, That is to say there are K tasks to be optimized in the stereo 
matching (every one is a sub-task). 
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 FIGURE 2: Similarity Region FIGURE 3: Constraints in Matching Process 
 

2.1 Constraints during the Optimization  
The dynamic programming algorithm requires the uniqueness and ordering constraints [11]. The 
current state is undoubtedly decided by the state of the previous result, when the matching error 
occurs in the previous stage, it will directly affect the current stage of the match. There is no 
opportunity to rectify this error in the later match if the simple DP is used.  
In the matching process what’s happened if the ordering and uniqueness constraints are exerted? 
In the k

th
 scanline, suppose there are 3 features at n-2

th
, n

th
, n+1

th
 columns of left image and 5 

features from m-2
th
 to m+2

th
 columns of right image. The matching process is illustrated by Fig.3, 

in which 
min max

d m n d≤ −  ≤  is satisfied. Set the features at n-2
th 

is the best match with one at m-2
th
, 

then the possible matchers with n
th
 can be found from m

th
 to m+dmax 

th
 as marked with a dark 

black line. If there is no match with n-1
th
 features and the n

th
 is matched with m+2

th
, considering 

the ordering constraint, the match with the n+1 can only be found from m+3 to m+1+dmax. If there 
is a wrong math between the n

th 
and m+2

th
, the abuse of such constraints will miss the correct 

math between the n+1
th
 and m+1

th
! Clearly we cannot trust the ordering constraint based on 

maybe false assumptions, the same as the uniqueness constraint.  
� In this paper, during the procedure of matching, the only constraint is the minimum & 

maximum parallax constraint.  
Such strategy is good for finding more real matches, simplifying the computation and promoting 
the parallelism greatly. That is to say the sub-optimization can start from random position instead 
of the rigid left-top or right-bottom corner.  
 
2.2 Reliability Propagation 
In literature[4,13], GCPs are used to increase the real match probability, GCPs not only generate 
a sufficient number of seed pixels for guiding the subsequent matching process, but also 
remarkably reduce the risk of false match. It is known that the false matches in GCPs could 
severely degrade the final matching results. In practice, the reliability of GCPs/GGCPs is far away 
from expectation. The ordering and uniqueness constraints may propagate the error and make 
the result worse, additionally, the GCPs must be identified before the DP optimization process, 
but how to automatically get more reliable GCPs?  
The vertical edges information among scanlines may be the most frequently considered one. 
Vertical edges, especially the edges with high threshold, are robust features, that is to say the 
possibility of an edge which finds the correct match is high. There is no any priori-knowledge 
about which edge of the right image is matched with one of the left image. Every vertical edge are 
discretized by sacnlines, so many features are fomed. According to the large probability 
hypothesis, most of the features on the vertical edge in the left image will be matched with the 
features in the same edge in the right image. That is to say after the optimization of features 
sharing the same vertical edge, if the matching results are voted, the matched edge in the right 
image can be identified. This information is posterior, means that this information only can 
be obtained after every sub-optimization. Such automatically obtained knowledge is relative 
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reliable and should be propagated to the sub-matching process, so the feedback or iterative idea 
should be introduced into the whole optimizing procedure. The confirmed matching edges after 
voting can serve as the GCPs for the next optimization. The first contribution of this paper is 
that such voted GCPs are obtained automatically during the optimization procedure. 

3. PARALLEL ACO Based STEREO MATCHING 

An ideal stereo matching algorithm should have three merits, first the ordering and uniqueness 
constraints are ignored during the optimizing process but the result must satisfy such constraints; 
second the optimizing process of every line is relatively independent, so every process can be 
done concurrently; third if two scanlines share the same vertical edge, the hint of vertical edge 
should be exploited to enhance the certainty of every line’s optimization next time, That is to say 
the reliability should be propagated. To sum up, a parallel, iterative and feedback algorithm is 
proposed in this paper.  
Ant-based system is recently developed for the solution of combinatorial optimization problems 
[21]. After this the Ant Colony Optimization (ACO) emerged. In ACO, an ant builds a solution to a 
combinatorial optimization problem by exploiting pheromone trails and heuristic information. The 
main characteristics of the ACO are inherent parallelism, stochastic nature, adaptability, and the 
use of positive feedback. Paper [22] shows that ACO is always better than Genetic Algorithm 
(GA) and Simulated Annealing (SA), if the parameters are selected properly.  
When dealing with complex and large-scale issues, a single-group ant colony optimization 
algorithm is prone to be slow and premature. The parallel multiple Ant Colony Optimization 
(MACO) algorithms can be exploited through the acceleration of the construction procedure. 
Various parallel approaches [23-28] are proposed to promote the efficiency with the help of 
communication and parallelism. Most parallelization models can be classified into fine-grained, in 
which the population of ants is separated into a large number of very small sub-populations, and 
coarse-grained models, in which the population of ants is divided into few sub-populations. 
[Bullnheimer 23] introduces two parallel implementations called the Synchronous Parallel 
Implementation (SPI) and the Partially Asynchronous Parallel Implementation (PAPI). SPI is 
based on a master–slave paradigm in which every ant finds a solution in the slaves and sends 
the result to the master. When the solutions are available the master updates the pheromone 
information and sends the updated information back to all slaves. PAPI is based on the coarse-
grained model in which information is exchanged among colonies every fixed number of 
iterations. The simulation indicates that PAPI performs better than SPI in terms of running time 
and speedup. [Talbi 24] presents a parallel model for ant colonies to solve the Quadratic 
Assignment Problem. The programming style used is a synchronous master/workers paradigm. 
During every iteration, the master broadcasts the pheromone matrix to all the workers. Each 
worker receives the pheromone matrix, constructs a complete solution, and sends the found 
solution to the master. When the master receives all the solutions, it updates the pheromone, and 
then the process is iterated. In [Rahoual 25], the Set Covering Problem is solved by master/slaver 
colonies. Each ant process is set on an independent processor. The master process sends the 
necessary information (pheromone) to each ant. In [Randall 26], several parallel decomposition 
strategies, Parallel Independent Ant Colonies, Parallel Interacting Ant Colonies, Parallel Ants, 
Parallel Evaluation of Solution Elements, Parallel Combination of Ants and Evaluation of Solution 
Elements, are examined. These techniques are applied to Traveling Salesman Problem (TSP). In 
[Chu SC 27], the artificial ants are partitioned into several groups. Seven communication methods 
for updating the pheromone between groups are proposed. In [Ellabib 28], a performance study is 
carried out to evaluate the effectiveness of the exchange strategies and demonstrate the potential 
of applying MACO to solve the Vehicle Routing Problem with Time Windows. Experiments using 
the proposed assessment technique demonstrate that the exchange strategies have a 
considerable influence on the search diversity. The results indicate that the multiple colony 
system approach outperforms the single colony. 
As mentioned above, the total stereo matching consists of many sub-optimization problems, and 
every sub-task can be optimized at the same time. So in this paper single ACO is employed to 
solve a sub-task. As mentioned above there are some relationship among sub-optimizations if the 
scanlines share the same vertical edge. Based on the large probability assumption voting can be 
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used to decide the correctness of all sub-solutions after the optimization of all sub-tasks are 
finished. This posterior knowledge requires a master to gather the results of slavers and get the 
best one by evaluation. When a good result is obtained by voting, it is propagated iteratively to 
enhance reliability. In this paper, a parallel MACO is employed. It is based on the master-salver 
mode that the parallel slaver optimizes every sub-problems and the master broadcasts the 
pheromone formed according to the results from slavers. 
 
3.1 Construction of MACO 
The constructed MACO for stereo matching is introduced in this section by means of the following 
definitions. 

� Definition of Pheromone 
It is a 2D optimization for every sub-task to find the best matchers. In literature [33], the 2D 
optimization can be cast as a path finding problem. All possible paths in a search space should 
be stored at a pheromone matrix. The search space of sub-optimization task is Ω, which consists 
of vn (n=1,…K). Suppose that in some iteration, the best matched pair is the n

th
 and m

th
 features. 

All possible match feature with the n+1
th 

feature is in vn+1 if there is. It means there are dmax－dmin 

possible choices, so as every element in vn. Actually without the ordering and uniqueness 
constraint, the number of all possible choices is independent with the position in vn. The 

pheromone matrix 
ijp

τ  is defined, Where i=1,…L-1, j,p =1…dmax-dmin. The size of pheromone field 

matrix is with a dimension of (L-1)×(dmax-dmin)×(dmax-dmin). 

� Definition of Heuristic Information 
Heuristic information is used for an ant to choose the correct match, the bigger value of similarity 
the higher possibility of a match. If the best match pair is the n

th
 and m

th
 features, all possible 

match with the n+1
th 

feature is all elements in vn+1. Which one is the most likely match with the 
n+1

th
 feature depends on whose SAD is the smallest one from m+1+dmin to m+1+dmax. In this 

paper, the heuristic Information is defined as the SAD if all SAD values in vn+1 are not equal to 

zero, clearly heuristic information satisfies
min

0 η< .  

� Probability Decision 

In search domain Ω, set the ant at the position
j

i i
x v∈ . According to the following probability, it 

will select 
1 1

p

i i
x v+ +∈  according to Equation (1). 

1

1 1
1

1 1

( , , ) ( )
, max( )

( , , ) ( )

0 ,

i

j p p

li i i
ij l l

i i i
jp

l x

i x x x
x

i x x xp

others

α β

α β

τ η
θ

τ η
+

+ +
+

+ +
∈


   >   ⋅= 


                                         

∑   (1)  

where i=1,…L-1; j= i+dmin,…i+dmax; l, p= i+1+dmin,…i+1+dmax. 0α β , >  are the weight parameters 

for pheromone and heuristic information; 1( , , )
j p

i i
i x xτ +  , simply note as 

ijp
τ , is the pheromone 

value between 
j

i i
x v∈  and 1 1

p

i i
x v+ +∈ ; 1( )

l

i
xη +  is the heuristic information of 1

l

i
x + ; 1max( )

l

i
x +  is 

the maximum value in 1i
v + ;θ  is the threshold for occlusion, refer to section 5.1 .  

� Definition of Exchanged Information 

The images are shown in Fig.4 with Canny operator, the 26
th、30

th、37
th
 row are marked as 

white solid line, dotted line, stippling line respectively. There are two edges named B、E as 

marked in Fig.4 (a), and β, ε in Fig. 4 (b). The 26
th
, 30

th
 scanlines pass through the B、E edge 

and the 37
th
 doesn’t. In the similarity matrix corresponding to the 26

th
 scan line, if the B feature in 

left image matches with β in the right image, and so as the left E with the right ε feature, then in 

the 30
th
 similarity matrix, the same match should exist, while the phenomena do not exist 
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between the 30
th
 and 37

th
 similarity matrix. Clearly the relationship among sub-optimization relies 

on whether the scan lines share the same vertical edge. It means that there are some uncertain 
relationships among every sub task. 

 B E εβ

 
 (a) Edges of Left Image (b) Edges of Right Image 

FIGURE 4:  Edges Images 
 

The master collects all solutions of every sub-task and votes to get the most probably matched 
vertical edge. In order to broadcast this possibly existed information to impact the process of the 
next iteration, the pheromone, corresponding to these voted edges, is selected as the exchange 
information between master and slavers. We know that the behavior of an ant is indirectly and 
possibly influenced by pheromone. The exchanged information (constructed pheromone) acts as 
a kind of soft GCPs indeed, avoiding the shortcomings of the hard one. The second 
contribution of this paper is that the soft GCPs  (pheromone) are used. 
In order that the optimization of the next generation can be induced by the master, the 
pheromone corresponding to the same edge decided by voting should be increased. Take the 
edge named B of left image for example, assume it crosses with the 11

th
 to 40

th
 scanlines, that is 

to say there are 30 features, among which there are 26 features matched with the same edge β 
of the right image. According to the big probability assumption, β edge of the right image should 
be the real matched edge with left B. In order to propagate this information, the pheromone matrix 

max
( 1,..., )k

T k K = is constructed in which the values corresponding to matched edge are maxτ  and 

the others are 0. Take the 11
th
, 12

th
 scan line for example, the 99

th
, 100

th
 column crossed with B 

edge, the 119
th 

,120
th 

column with β, That is to say the best matched pairs are (99
th
,119

th 
) and 

(100
th
,120

th 
). So in 11

max
T , all pheromone recording the connection with (99

th
, 119

th 
) are maxτ , and 

the others are zero, as well as (100
th
,120

th 
) in 12

max
T . The exchanged pheromone is re-

constructed instead of directly getting from one of the best solutions of sub-task, which is 
the third discrimination with the past articles.  

� Pheromone Updating 
Every isolated ant colony fulfilling every sub-task has its own pheromone updating strategy. While 
in MACO, the pheromone updating process consists of two parts, local and global updating. The 
local updating, the same as the single ACO, is done after every generation is finished, shown as 
Equation (2). The global updating, which reflects the influence of the master, is done after all 
colonies are finished, shown as Equation (3). That is to say that the pheromone of every colony 
must be influenced not only by itself but also the master when each iteration is finished.  
The Local pheromone updating procedure can be described as follows after a generation is 
finished.  

( , , ) : ( ) (1 ) ( )
ijp ijp

i j p n nτ ρ τ∀  ← − ⋅
 (2) 

ˆ ˆ( ) ( )
a a

if J R J R then R R <       ←    

ˆ ˆ( , , ) ( 1) ( ) ( )
ijp ijp

i j p R n n g Rτ τ ρ∀ ∈   + ← + ⋅  
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where 0 1ρ< <  is the evaporation rate; ( )
a

J R  is the energy of path belonging to the a
th
 ant; R̂ is 

the best matched pairs at present; the boundary function ˆ( )g R  returns the pheromone matrix 

corresponding to R̂ . Every element after update must obey
min

0 ( 1)
ijp

nτ τ <  ≤ +  . 

The global pheromone updating procedure is executed in two phases, an evaporation phase 
where a fraction of the all sub-task’s pheromone evaporates, and a reinforcement phase where 
the pheromone is increased corresponding to a better solution which the master thinks. Take the 
k

th
 colony for example, the update rule is: 

( , , ) : ( ) (1 ) ( )
ijp ijp

i j p n nτ µ τ∀  ← − ⋅
 (3) 

max
1

k

ijp ijp
n n Tτ τ µ ( + ) =  ( ) + ⋅

 
Where k = 1,…K; 0 1µ< <  is the evaporation rate, 0µ =  means the new pheromone totally 

comes form the master, and 1µ =  means the new pheromone ignored the information form 

master; Every element must obey 
min

( 1)
ijp

nτ τ ≤ +  . The new global updated pheromone works as 

the initial value of every sub-task, means one iteration is finished; 
max

k
T  is the reconstructed 

pheromone for the k
th
 colony by master. 

 
3.2 Flow Chart 
The flow chart of MACO is illustrated as Fig.5, the slavers and the master are marked as different 

shading respectively, where 0

minijk
τ τ=  is the initial pheromone matrix to all sub-tasks. At the 

beginning, set 
max

0k
T = , firstly every sub-task gets initial pheromone matrix of this iteration 

according to Equation (3), and then the isolated colonies start its own optimization (inner loop), in 
which the local pheromone updating is done according to Equation (2) after every generation is 
finished. After all sub-tasks are finished, the master evaluates all solutions and constructs 

every
max

k
T , the outer loop starts again. This process is iterated until a stopping criterion is met. 
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FIGURE 5:  Flow Chart of MACO 

4. CONVERGENCE PROOF 

The convergence proof of single colony can refer to literature [29, 30, 31]. The MACO is based on 
the single colony, and with the help of mutual communication. The convergence has dealings with 
not only how every colony is defined but also how the information is interacted. Based on 
literature [33], the convergence proof of this paper is the following.  
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Set ( )
ijp

nτ  represent the pheromone after iterated n  times, ˆ( )R n  represent the optimal path 

iterated n  times later, and ˆ( )J n  be the energy function value. A stochastic process 

ˆ ˆ( ) { ( ), ( ), ( )}
ijp

X n n R n J nτ= (n = 1,…) is defined. It can be deduced that ( )X n depends on new status 

and current status merely. Therefore, ( )X n is an inhomogeneous Markov chain in discrete time. 

Lemma 1: let 
0

T be the initial pheromone value of every sub-task. Supposing that pheromone 

evaporation coefficient obeys 0 1ρ< < , for arbitrary pheromone
ijp

τ , it 

holds *

min
lim ( ) ( 1) ( )

ijp
x

n g Rτ τ ρ
→∞

≤ ≤ + ⋅ , where
min

τ and 
*( 1) ( )g Rρ + ⋅ is the lower and upper bound of 

pheromone. 

Proof：  

Let *
R  be the best matched pairs, after n generations the arbitrary 

ijp
τ  meets 

1
*

0

11 1

( ) (1 ) (1 ) ( )
n nn

ijp

in j i

n T g Rτ ρ ρ
−

== = +

  
≤ − ⋅  + − ⋅    
   

∑∏ ∏  

When n → ∞ , we get 
1

*

0

11 1

lim ( ) lim (1 ) lim (1 ) ( )
n nn

ijp
n n n

in j i

n T g Rτ ρ ρ ρ
−

→∞ →∞ →∞
== = +

   
≤ − ⋅ + − ⋅          

∑∏ ∏  

The first factor is 
1

lim (1 ) lim(1 ) 0ρ ρ
→∞ →∞

=

 
− = − = 

 
∏

n
n

n n
i

 

The second factor is 
1 1

1

1 11

lim (1 ) lim (1 ) 1
nn n

n i

n n
i ij i

ρ ρ ρ ρ ρ ρ ρ
− −

− −

→∞ →∞
= == +

    
− + = + − = +    

    
∑ ∑∏ , then we have 

*

maxlim ( ) ( 1) ( )ijp
n

n g Rτ τ ρ
→∞

≤ = + ⋅ . 

Function ( )g x  has bound, so 
ijp

τ  is limited by *( 1) ( )g Rρ + ⋅  after n interactions. 

Set the initial value of some elements 
ijp

τ to be minτ  , and its value is not increased, after a 

generation although we have
min min

(1 )
ijp

τ ρ τ τ = −  < , actually it is obliged to lower bound
min

τ .  

Finally, we get *

min
( ) ( 1) ( )

ijp
n g Rτ τ ρ≤  ≤ + ⋅ .□ 

Lemma 2: Set the initial value of every sub-task as the exchanged pheromone according to the 

master, for arbitrary pheromone
ijp

τ , it also holds *

min
lim ( ) ( 1) ( )

ijp
x

n g Rτ τ ρ
→∞

≤ ≤ + ⋅   

Proof： 

At the end of generation optimization of sub-task, the arbitrary 
ijp

τ  

meets *

min
lim ( ) ( 1) ( )

ijp
x

n g Rτ τ ρ
→∞

≤ ≤ + ⋅ . Set the max value of pheromone from master is *( 1) ( )g Rρ + ⋅ , 

the initial value of next generation is the result according to Equation (3), after evaporation we get 
new

ijp
τ  

*

min (1 ) ( 1) ( )
new

ijp g Rτ τ µ ρ≤ ≤ − ⋅ + ⋅ , if the pheromone 
min

τ  is enhanced, then it meets 

* * *

min ( 1) ( ) (1 ) ( 1) ( ) ( 1) ( )
new

ijpg R g R g Rτ µ ρ τ µ ρ µ ρ+ ⋅ + ⋅  ≤      ≤ − ⋅ + ⋅  + ⋅ + ⋅   , if the pheromone which is 
min

τ  is not 

enhanced, then it meets  
*

min ( 1) ( )
new

ijp g Rτ τ ρ≤  ≤ + ⋅   

Set new

ijp
τ as initial value, according to Lemma 1, after n steps, arbitrary 

ijp
τ  holds 

*

min
lim ( ) ( 1) ( )

ijp
x

n g Rτ τ ρ
→∞

≤      ≤ + ⋅ . That is to say the new initial value has the lower and upper bound.□ 

Lemma 3: Heuristic informationη  has a bound, that is, 
min max

η η η≤ ≤ . 



XiaoNian Wang & Ping Jiang 

International Journal of Image Processing (IJIP) Volume(3), Issue(5) 212 

Proof：：：： According to the definition of heuristic information, firstly, the minimum value of η  is 

above zero , and set the search windows to be R by T, then the maximum value of SAD is 
R×T×255. □ 

Theorem 1: Set W Z
+∈ , for an arbitrary n W≥ , if there exists 0)(min >nτ  to guarantee 

min( ) ( ) 0
ijp

n nτ τ≥ > , the inhomogeneous Markov process in discrete time 

ˆ ˆ( ) { ( ), ( ), ( )}
ijp

X n n R n J nτ=  will be convergent at the optimal status * * *( [ ], , )ijp R R Jτ  with probability 

one when n → +∞ , where *
R represents the optimal path; *

J  the minimal energy function value, 

and *
[ ]

ijp
Rτ  is defined as follows: 

*

*

max ( , , )
|

0
ijp R

i j p R

others

τ
τ

 ∈
= 

        
 

Proof： According to Equation (1), there exists

1

1 1

1 1

( , , ) ( )

( , , ) ( )
i

j p p

i i i

jp j l l

i i i

l x

i x x x
p

i x x x

α β

α β

τ η

τ η
+

+ +

+ +
∈

=
⋅∑

.  Set N=dmax-dmin. 

According to lemma 1, lemma2, lemma3 and min( ) ( ) 0
ijp

n nτ τ≥ > , the following holds: 

min min

max max

( )
( )

jp

n
p n

N

α β
τ η

τ η

   
≥ ⋅   

⋅   

 

Then, the probability of an artificial ant producing a solution (including the optimal solution *
R  ) 

after n  steps iterations is min min

min

max max

( )
ˆ ˆ 0

M M

M n
p p

N

α β
τ η

τ η

⋅ ⋅
   

≥ = ⋅ >   
⋅   

, where M < +∞  is the maximal length 

of the sequence. The minimal probability of Markov chain nX  being convergent at the optimal 

solution *

nX  after n steps iterations can be given by [11]: 

* min min

max max

( )ˆ ˆ( ) 1 (1 ) 1 1

n
M M

n n
P n p

N

α β
τ η

τ η

⋅ ⋅    
 = − − ≥ − − ⋅    ⋅    

      

When n → +∞ ，considering the second term of *ˆ ( )P n  , min min

max max

( )
1

n
M M

n

N

α β
τ η

τ η

⋅ ⋅    
 − ⋅    ⋅    

and taking  the 

logarithm and limit of this product we obtain  

min min

max max

min min

max max

( )
lim log 1

( )
log 1

n
M M

n

M M

n W

n

N

n

N

α β

α β

τ η

τ η

τ η

τ η

⋅ ⋅
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⋅ ⋅
∞

=

    
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    
 = − ⋅    ⋅    

∑

     

min min

max max

( )
M M

n W

n

N

α β
τ η

τ η

⋅ ⋅
∞

=

   
≤ − ⋅ = −∞   

⋅   
∑   

Therefore, min min

max max

( )
lim 1 0

n
M M

n

n

N

α β
τ η

τ η

⋅ ⋅

→∞

    
 − ⋅ =    ⋅    

.Then *ˆlim ( ) 1
n

P n
→∞

= ， that is, when n → +∞ ,
n

X  will be 

convergent at the optimal status * * *( [ ], , )ijp R R Jτ with probability one. □ 

Reasoning 1. For every colony of multi colonies, after information exchange, in the worst case, 
the probability of finding the best solution is bigger than that of the single colony. 

Proof： Due to the pheromone and heuristic information limits
min

τ , 
max

τ , 
min

η , 
max

η , and set 

N=dmax-dmin. A trivial lower bound
[29]

 can be given as 

min min
min 0

max max min min( 1)
p p

N

α β

α β α β

τ η

τ η τ η
≥ =

− +
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For the derivation of this bound we consider the following “worst case” situation: the pheromone 

trail associated with the desired decision is 
min

τ , 
min

η , while all the other feasible choices (there 

are at most N -1) have an associated pheromone trail of
max

τ ,
max

η . 

When the pheromone is updated by the master, in “worst case”, the elements whose value is 
max

τ  

is increased, according to the Equation (1), a new lower bound can be given as 

min min
min 0

max max max max max min min

' '
(1 )( 2)( ) ((1 ) )

p p
N u

α β

α β α β α β

τ η

µ τ η µ τ τ η τ η
≥ =

− − + − + +
 

The denominator of 
0
'p  is  

max max max max max min min

max max max max min min

(1 )( 2)( ) ((1 ) )

(1 )( 2)( )

N u

N

α β α β α β

α β α β α β

µ τ η µ τ τ η τ η

µ τ η τ η τ η

− − + − + +

= − − + +
 

Clearly, it is smaller than the denominator of 
0

p . That is to say the probability of finding best 

solution is bigger than the single colony.□ 

Reasoning 2. The colony in MACO can find better solutions after information exchanged. 
Proof:  Heuristic information is unchanged with iteration. In order to simplify the description, and 

don not lose generality, set 
1

( ) 1p

i
xη + = , in the i

th
 colony, the pheromone of the j

th
 and p

th
 feature is 

1 m
( , , )j p

i i
i x xτ τ+  = , and they are true match pair. In current generation, the actual matched feature is 

the j
th
 and s

th
 feature, its corresponding pheromone is 

max

'

1( , , )
j s

i i mi x x tτ τ+  =  > , v p ≠ , then the 

probability of selecting the p
th
 feature is 

'

max

m

jp

m

p
sum t

α

α α

τ

τ
=

+ +
, where sum is the summary of pheromone of the others dmax-dmin-2. 

After voting, suppose the master thinks the j
th
 feature should be matched with s

th
 feature, then its 

will increase the pheromone being 
1 m max

( , , ) (1 )j p

i i
i x xτ µ τ µ τ+  = −  ⋅ + ⋅ , then the probability of 

selecting p
th
 feature is  

m max

'

max m max

((1 )
'

(1 ) ( ) (1 ) ((1 )
jp

t
p

sum t t

α

α α α α

µ τ µ

µ µ µ τ µ

−  + )
=

− + − + −  + )  
, simplify the equation, we get 

m max

'

max m max

( (1/(1 ) 1)
'

( (1/(1 ) 1)
jp

t
p

sum t t

α

α α

τ µ

τ µ

 + − − )
=

+ + + − − )  
, because 

m max
( (1/(1 ) 1)

m
t

α ατ µ τ + − − )  >  and 

'

max
sum t

α+  > 0 , so '
jp jp

p p >  .  

The probability is bigger after master influenced, that is to say the colony in MACO can find better 
solutions after information exchanged.□ 
Every sub-optimization is a not-convex and the total optimization target is consistent, the master 
broadcasts the better pheromone to induce the optimizing process of every sub-task. Every sub-
task is convergent, so the algorithm proposed in this paper can find the global best solution with 
probability one.  

5. SIMULATION 

 
5.1 Optimization Target 
Given energy function, the proposed algorithm can be used to find the best match in every Ω 
space. Just as what’s said above, every sub-task finishes optimization according to its own 
energy function and master’s guidance, and the master gathers all solutions from sub-tasks and 
evaluates them to get exchanged information. The local and global energy functions are defined 
in this section. 
The function must have the following two traits. Firstly, because of the change of viewpoint, some 
features in left image cannot match with any one in right image, so the occlusion should also be 
considered. If the maximum similarity with n

th
 feature is 'θ  and 'θ  is smaller than thresholdθ , 

then we can conclude that the counter feature with n
th
 is occluded. Secondly, the ordering and 
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uniqueness constraint are all ignored during the optimization procedure. So there is a special 
phenomenon that one feature of left image may be matched with many features of right image, 
called collision in this paper and it must be forbidden. 
Suppose there are N features on k

th
 (k=1...K) line of left image and M features on k

th 
line of right 

image. Because of occlusion and collision, there are L real matches. Refer to literature [2], local 
energy function for the k

th 
sub-task is defined as Equation (4). 

1

min ( )
L

j

k i occ occ coll coll

i

J D x k N k N
=

 
 = − −  −  

 
∑

 (4) 

where *j

i
x R ∈ , *

R  represent the best path; 
occ

N  is the number of occlusion; 
occ

k  is the penalty 

coefficient of occlusion; Ncoll is the number of collision ;
coll

k  is the  penalty coefficient of collision; 

function D  is the similarity of SAD. It is clear such definition is to encourage more match and 
punish the unmatched and the collided case.   
The vertical edge is discretized by every sub-task. Based on large probability, most of features 
matched with discretized point of left edge will lie on the same edge of right image. After voting 
the corresponding edges are decided, the pheromone is reconstructed according to the voting 
results. The target of master is to get the most consistent voting results. Set Li > Ri , the energy 
function for the master is: 

1

1
min ( )

N

i i
global

i i

L R
J

N L=

 − 
 = ∑

 (5) 
where, N is the number of vertical edges of left image; Li is the length of i

th
 edge in left image; Ri 

is the quantity of matched features in right edge which corresponds to the i
th
 left edge

 
after voting. 

 
5.2 Depth Restoration 
The MACO is implemented by the multi-thread technology on PC. The resources are limited, so 
the quantity of sub-groups is limited. Set 10 colonies in a group (the maximum length of Li is 10), 
5 ants in every colony, information exchange every 10 generation. When globalJ  is smaller than 0.2 

the whole optimization procedure is stopped. The matching primitive is the intensity and window 
size of the SAD is 9×9. 
 

α  β  ρ  
occ

k  
coll

k  µ  θ  

2 0.5 0.6 1 1 0.6 0.2 
TABLE 1:  Parameters for depth Restoration 

 
To obey the ordering and uniqueness constraint, after the whole procedure is finished, such 
constraints is obliged to the final results. 
 Because of the exhaustive parallelism (there are no any constraints among sub task optimization 
but minimum & maximum parallax restraint), the start point can be at arbitrary n

th
 feature (if the 

ordering or uniqueness constraints are exerted, such merits will no longer exist). So during the 
sub-task, the start position can be variable at every generation, this manner can eliminate the 
collision. 
In Fig.6, the tests and comparisons are shown. Clearly, the result is better than DP, but there are 
big step to improve. 

 



XiaoNian Wang & Ping Jiang 

International Journal of Image Processing (IJIP) Volume(3), Issue(5) 215 

a) True Depth Map of Tsukuba、Teddy 

 
b ) Results of DP 

 
c) Results of this paper 

FIGURE 6:  the Results of Depth Map 

6. CONCLUSIONS 

This paper presented a parallel, iterative and feedback MACO method for stereo matching. In this 
method the slaver optimizes every sub-task, which is the target to find the best matchers along 
every scan-line. During the iterative process, the master gathers and analyzes the results from 
sub-groups the results, decides the matched edge based on voting, and then reconstructs the 
pheromone corresponding to the matched edges, feeds the pheromone field back to the sub-task. 
Each sub-optimization problem starts a new matching process under the reconstructed 
pheromones until the stopping criterion is met. The proposed method haves two outstanding 
merits. Firstly, this method makes full use of the matching problem of parallelism, that each 
relatively independent sub-task can be solved in parallel. Secondly, also makes full use of a 
posteriori information. Besides, the reconstructed pheromones which reflects the result of voting 
plays the role of soft GCPs, avoiding the misleading of hard GCPs, theory and experiments show 
that this idea is better than the dynamic programming algorithm with hard GCPs. The 
convergence proof of the proposed method gives the strong support for its application. Finally, 
there are problems, such as the efficiency, parameter tuning and other issues should be resolved. 
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