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Abstract 

This paper discusses the application of complex discrete wavelet transform 
(CDWT) which has significant advantages over real wavelet transform for certain 
signal processing problems. CDWT is a form of discrete wavelet transform, which 
generates complex coefficients by using a dual tree of wavelet filters to obtain 
their real and imaginary parts. The paper is divided into three sections. The first 
section deals with the disadvantage of Discrete Wavelet Transform (DWT) and 
method to overcome it. The second section of the paper is devoted to the 
theoretical analysis of complex wavelet transform and the last section deals with 
its verification using the simulated images. 
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1. INTRODUCTION 

The application of wavelets to signal and image compression and to denoising is well researched. 
Orthogonal wavelet decompositions, based on separable, multirate filtering systems have been 
widely used in image and signal processing, largely for data compression. Kingsbury introduced a 
very elegant computational structure, the dual - tree complex wavelet transform [5], which 
displays near-shift invariant properties. Other constructions can be found such as in [11] and [9]. 
As pointed out by Kingsbury [5], one of the problems of mallat-type algorithms is the lack of shift 
invariance in such decompositions. A manifestation of this is that coefficient power may 
dramatically re –distribute itself throughout subbands when the input signal is shifted in time or in 
space. 

Complex wavelets have not been used widely in image processing due to the difficulty in 
designing complex filters which satisfy a perfect reconstruction property. To overcome this, 
Kingsbury proposed a dual-tree implementation of the CWT (DT CWT) [7], which uses two trees 
of real filters to generate the real and imaginary parts of the wavelet coefficients separately. The 
two trees are shown in Fig. 3 for 1D signal. Even though the outputs of each tree are 
downsampled by summing the outputs of the two trees during reconstruction, the aliased 
components of the signal can be suppressed and approximate shift invariance can be achieved. 
In this paper CDWT, which is an alternative to the basic DWT the outputs of each tree are 
downsampled by summing the outputs of the two trees during reconstruction and the aliased 
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components of the signal are suppressed and approximate shift invariance is achieved. The DWT 
suffers from the following two problems. 

• Lack of shift invariance - this results from the down sampling operation at each level. 
When the input signal is shifted slightly, the amplitude of the wavelet coefficients varies 
so much. 

• Lack of directional selectivity - as the DWT filters are real and separable the DWT cannot 
distinguish between the opposing diagonal directions. 
 

These problems hinder the use of wavelets in other areas of image processing. The first problem 
can be avoided if the filter outputs from each level are not down sampled but this increases the 
computational costs significantly and the resulting undecimated wavelet transform still cannot 
distinguish between opposing diagonals since the transform is still separable. To distinguish 
opposing diagonals with separable filters the filter frequency responses are required to be 
asymmetric for positive and negative frequencies. A good way to achieve this is to use complex 
wavelet filters which can be made to suppress negative frequency components. The CDWT has 
improved shift-invariance and directional selectivity than the separable DWT. 
 
The work described here contains several points of departure in both the construction and 
application of dual tree complex wavelet transform to feature detection and denoising. 
 

2. DESIGN OVERVIEW 

The dual-tree CWT comprises of two parallel wavelet filter bank trees that contain carefully 
designed filters of different delays that minimize the aliasing effects due to downsampling[5]. The 
dual-tree CDWT of a signal x(n) is implemented using two critically-sampled DWTs in parallel on 
the same data, as shown in Fig. 3. The transform is two times expansive because for an N-point 
signal it gives 2N DWT coefficients. If the filters in the upper and lower DWTs are the same, then 
no advantage is gained. So the filters are designed in a specific way such that the subband 
signals of the upper DWT can be interpreted as the real part of a complex wavelet transform and 
subband signals of the lower DWT can be interpreted as the imaginary part. When designed in 
this way the DT CDWT is nearly shift invariant, in contrast to the classic DWT. 

 

3. TRANSLATION INVARIANCE BY PARALLEL FILTER BANKS 

The orthogonal [8] two-channel filter banks with analysis low-pass filter given by the z-transform 
H0(z), analysis highpass filter H1(z) and with synthesis filters G0(z) and G1(z) is shown in figure.1 

 

 

 

 

 

 

 

 

Figure 1: DWT Filter Bank 

For an input signal X(z), the analysis part of the filter bank followed by upsampling produces the 
low-pass and the high-pass coefficients respectively, and decomposes the input signal into a low 
frequency part Xl
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        (2) 

                                           (3) 

Where 

 

              (4) 

 

             (5) 

This decomposition is not shift invariant due to the terms in X(−z) of eqn 4 and eqn 5, 
respectively, which are introduced by the downsampling operators. If the input signal is shifted, 
for example z

−1
X(z), the application of the filter bank results in the decomposition  

                  (6) 

For an input signal  we have 

   (7) 

and 

   (8) 

and similarly for the high-pass part, which of course is not the same as z
−1

Xl
1
(z) if we substitute 

for z
−1

 in eqn 4. From this calculation it can be seen that the shift dependence is caused by the 
terms containing X(−z), the aliasing terms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: One level complex dual tree. 

One possibility to obtain a shift invariant decomposition can be achieved by the addition of a filter 
bank to figure 1 with shifted analysis filters z

−1
H0(z), z

−1
H1(z) and synthesis filters zG0(z), zG1(z) 

and subsequently taking the average of the lowpass and the highpass branches of both filter 
banks as shown in figure 2. 

If we denote the first filter bank by index a and the second one by index b then this procedure 
implies the following decomposition  
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                                                 (9) 

 

where for the lowpass channels of tree a and tree b we have 

 

                                                  (10) 

and similarly for the high-pass part. The aliasing term containing X(-z) in Xl
1 

 has vanished and  
the decomposition becomes indeed shift invariant. 

Using the same principle for the design of shift invariant filter decomposition, Kingsbury 
suggested in [4] to apply a ’dual-tree’ of two parallel filter banks are constructed and their 
bandpass outputs are combined. The structure of a resulting analysis filter bank is shown in Fig. 
3, where index a stands for the original filter bank and the index b is for the additional one. The 
dual-tree complex DWT of a signal x(n) is implemented using two critically-sampled DWTs in 
parallel on the same data. 

 

 

 

 

 

 

 

 

 

Figure 3: Three level Complex dual tree 

In one dimension, the so-called dual-tree complex wavelet transform provides a representation of 
a signal x(n) in terms of complex wavelets, composed of real and imaginary parts which are in 
turn wavelets themselves. In fact, these real and imaginary parts essentially form a quadrature 
pair. 

H0a H1a H0b H1b 

0 0 0.01122679 0 

-0.08838834 -0.01122679 0.01122679 0 

0.08838834 0.01122679 -0.08838834 -0.08838834 

0.69587998 0.08838834 0.08838834 -0.08838834 

0.69587998 0.08838834 0.69587998 0.69587998 

0.08838834 -0.69587998 0.69587998 -0.69587998 

-0.08838834 0.69587998 0.08838834 0.08838834 

0.01122679 -0.08838834 -0.08838834 0.08838834 

0.01122679 -0.08838834 0 0.01122679 

0 0 0 -0.01122679 

TABLE 1: First Level DWT Coefficients 

The dual-tree CDWT uses length-10 filters [6], the table of coefficients of the analyzing filters in 
the first stage is shown in table 1 and the remaining levels are shown in table 2. The 
reconstruction filters are obtained by simply reversing the alternate coefficients of the analysis 
filters. 

x(n) 

H0a 

H00

H00

H0a 

H00a 

H00a 

2 

2 

2 

2 

2 

2 

H0a 

H00

H00

H0a 

H00a 

H00a 

2 

2 

2 

2 

2 

2 



Sathesh & Samuel Manoharan 

International Journal of Image Processing (IJIP) Volume(3), Issue(6) 297 

To extend the transform to higher-dimensional signals, a filter bank is usually applied separably in 
all dimensions. To compute the 2D CWT of images these two trees are applied to the rows and 
then the columns of the image as in the basic DWT. 

 

 

Tree a Tree b 

H00a H01a H00b H01b 

0.03516384 0 0 -0.03516384 

0 0 0 0 

-0.08832942 -0.11430184 -0.11430184 0.08832942 

0.23389032 0 0 0.23389032 

0.76027237 0.58751830 0.58751830 -0.76027237 

0.58751830 -0.76027237 0.76027237 0.58751830 

0 0.23389032 0.23389032 0 

-0.11430184 0.08832942 -0.08832942 -0.11430184 

0 0 0 0 

0 -0.03516384 0.03516384 0 

TABLE 2: Remaining Levels DWT Coefficients 

This operation results in six complex high-pass subbands at each level and two complex low-
pass subbands on which subsequent stages iterate in contrast to three real high-pass and one 
real low-pass subband for the real 2D transform. This shows that the complex transform has a 
coefficient redundancy of 4:1 or 2m : 1 in m dimensions. In case of real 2D filter banks the three 
highpass filters have orientations of 0

θ
, 45

θ
 and 90

θ
, for the complex filters the six subband filters 

are oriented at angles ±15
θ
,±45

θ
,±75

θ
. This is shown in figure 4. 

 

 

            75               45               15                -75              -45             -15 

Figure 4: Complex filter response showing the orientations of the complex wavelets 

The CDWT decomposes an image into a pyramid of complex subimages, with each level 
containing six oriented subimages resulting from evenly spaced directional filtering and 
subsampling, such directional filters are not obtainable by a separable DWT using a real filter pair 
but complex coefficients makes this selectivity possible. 

 

4. RESULTS AND DISCUSSION 

The shift invariance and directionality of the CWT may be applied in many areas of image 
processing like denoising, feature extraction, object segmentation and image classification. Here 
we shall consider the denoising example. For denoising a soft thresholding method is used. The 
choice of threshold limits σ for each decomposition level and modification of the coefficients is 
defined in the following equation. 

  

                                 
 (11)                

To compare the efficiency of the DWT with the basic DWT the quantitative mean square error 
(MSE) is used. In all cases the optimal thresholds points σ were selected to give the minimum 
square error from the original image, showing a great effectiveness in removing the noise 
compared to the classical DWT as shown in table 3. 

 



Sathesh & Samuel Manoharan 

International Journal of Image Processing (IJIP) Volume(3), Issue(6) 298 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: (a) Input Image, (b) Denoised with real CWT,(c) Denoised with dual tree CWT 

From figure 5(b) it may be seen that DWT introduces prominent worse artifacts, while the DT 
CWT provides a qualitatively restoration with a better optimal minimum MSE error. 
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Figure 6: Optimal threshold points for the three different methods 

 
The table 3 gives the comparison between the various methods in terms of their Mean Square 
Error (MSE) and Signal-to-Noise Ratio (SNR) Values.  

 

Type of method MSE SNR [dB] 
noisy image 0.0418 20.8347 

DWT 0.0262 25.4986 

Complex 2-D dual-tree DWTSeparable 2D DWT
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real CWT 0.0255 25.7601 

CWT 0.0240 26.3751 

TABLE 3:  Mean Square Error (MSE) and Signal – to – Noise Ratio (SNR) Values 

The DT CWT is shift invariant and forms directionally selective diagonal filters. These properties 
are important for many applications in image processing including denoising, deblurring, 
segmentation and classification. In this paper we have illustrated the example of the application of 
complex wavelets for the denoising of Lena images. To obtain further improvements, it is also 
necessary to develop principled statistical models for the behavior of features under addition of 
noise, and their relationship to the uncorrupted wavelet coefficients. This remains to be done. 
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