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Abstract 

 
High-resolution (HR) images play a vital role in all imaging applications as they offer more details. 
The images captured by the camera system are of degraded quality due to the imaging system 
and are low-resolution (LR) images. Image super-resolution (SR) is a process, where HR image 
is obtained from combining one or multiple LR images of same scene. In this paper, learning 
based single frame image super-resolution technique is proposed by using Fast Discrete Curvelet 
Transform (FDCT) coefficients. FDCT is an extension to Cartesian wavelets having anisotropic 
scaling with many directions and positions, which forms tight wedges. Such wedges allow FDCT 
to capture the smooth curves and fine edges at multiresolution level. The finer scale curvelet 
coefficients of LR image are learnt locally from a set of high-resolution training images. The 
super-resolved image is reconstructed by inverse Fast Discrete Curvelet Transform (IFDCT). This 
technique represents fine edges of reconstructed HR image by extrapolating the FDCT 
coefficients from the high-resolution training images. Experimentation based results show 
appropriate improvements in MSE and PSNR. 
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1. INTRODUCTION 

High resolution (HR) images are essential in almost all imaging applications.  HR images provide 
additional details that are essential, to the success of various applications that require accurate 
image analysis such as image/video resolution enhancement, medical imaging, remote sensing 
and video surveillance, etc.  The image captured by current camera system is of degraded quality 
because of the resolution of a digital imaging device which is mainly limited by the number of 
pixels on the sensor and the optical system. Such captured images are acknowledged as low-
resolution images (LR). The spatial resolution of the low resolution image can be improved by 
increasing the pixel density or by growing the chip-size. Both techniques enforce certain 
limitations. The spatial resolution of a single image (frame) can be enhanced by the traditional 
interpolation techniques. It has also limited application since aliasing is present. The inherent 
limitations of the current camera system are prevailed over by the technique known as Super-
resolution (SR) based on digital signal processing. SR is a technique where one or many low 
resolution images (frames) are combined to obtain a high spatial resolution image. In this process 
low resolution image is upsampled by recovering the missing high frequency details and 
degradations are impassive. Super-resolution reconstruction technique is basically classified in 
two categories as reconstruction based and learning based methods. In reconstruction based 
methods high–resolution image is obtained from several low-resolution observations by proper 
fusion of a series of accurately registered aliased images. Most of the literature available on 
super-resolution is for multi-frame and majority of them are based on the motion as cue. The 
super-resolution idea was introduced by Tsai and Hung, where a pure translation motion has 
been considered [1]. In such methods the quality of reconstructed SR image obtained from a set 
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of LR images depends upon the registration accuracy of the LR images and some prior 
knowledge of imaging system [2, 3]. The ideal sub-pixel displacement errors in the observation 
with noise can be used to obtain a high resolution image by constrained total least square 
algorithm [4] and their effect on the convergence rate of iterative approach is discussed by Ng 
and Bose [5]. All these iterative methods are computationally complex.  In many resolution 
enhancement applications the point spread function (PSF) of the imaging system is unknown 
which reflects in blur. Nguyen et al. propose a technique for parametric blur identification and 
regularization based on generalized cross-validation (GVC) theory where circulant block 
preconditioners are used to accelerate the conjugate gradient decent (CG) method for solving the 
Tikhonor-regularization super-resolution problem [6]. Single observed image expansion by 
interpolation or super-resolution smooth the image data at edge regions. A maximum a posteriori 
(MAP) estimator with Huber-Markove random field (MRF) prior can be used for image expansion 
[7]. In recent work blur, defocus, zoom are used as cues for super-resolving the low resolution 
image [8, 9]. The SR image problem can be solved by combining, maximum likelihood (ML) 
estimator, MAP estimator and projection onto convex sets (POCS) to find unified approach [10].                                 
Learning methods becomes more useful, when only a single observation is available and several 
other high resolution images are present in the data set. All high resolution images from data set 
will act as training images. In many realistic applications, such as in biometry, criminal 
surveillance a single observation is available. Nearly all SR reconstruction algorithms are based 
on the fundamental constraints that provide less useful information as the magnification factor 
increases. Baker and Kanade found these limitations and developed a SR algorithm by modifying 
the prior term in cost to include the result of a set of recognition called as recognition based 
super-resolution or hallucination [11]. A similar approach is used for multiple views using learned 
image models through use of principal component analysis (PCA) Capel and Zisserman [12].   A 
fast and simple one pass example based super-resolution algorithm is proposed by Freeman et 
al. which is resolution independent [13]. Zoomed observations have been used to reconstruct 
super-resolved image by learning the high resolution image model through most zoomed 
observations [14]. In SR, handling of data at different resolution level is tedious. The 
multiresolution technique can handle data well. In wavelet transform based learning technique 
high frequency coefficients of the unknown high-resolution image are learned locally from a set of 
training images based on best match by Jiji et al. [15]. Chang et. al. have proposed method 
where the generation of the high resolution image patch depends simultaneously on multiple 
nearest neighbors in the training set [16]. Face is represented by linear combination of prototypes 
of shapes and texture in top-down learning of LR facial images by Park and Lee [17]. An image 
hallucination approach based on primal sketch prior with reconstruction constraint to improve the 
quality is proposed by Sun et al. [18]. Multiscale, directional Contourlet transform is proposed by 
M.N.Do and M.Vetterli. It decomposes image in scales with directional subbands thus captures 
the smoothness along the contours [19].  Jiji and Chaudhuri have proposed a single frame image 
super-resolution through Contourlet learning which learns the best edge primitives from the HR 
training set in contourlet domain [20]. Recently a frame work to combine power of reconstruction 
and learning based methods is proposed, where redundancy within single image is used. It 
requires registration at subpixel accuracy and is computationally complex [24].  New learning 
based SR technique using DWT and IGMRF prior improves the quality of reconstructed image 
[23]. By introducing the statistics to learning-based super-resolution with global and local 
constraints to obtain high quality reconstructed image is proposed by Kim et al. [25].  A SR 
problem can be resolved by kernel ridge regression (KRR) with a prior model of a generic image 
class is suggested by Kim and Kown [26].  In this paper a geometric curvelet transform (FDCT) 
[21, 22] is proposed to learn the salient features from the data set while upsampling the input 

image. FDCT gives sparse representation of 
2

C function away from edges along piecewise 

smooth curves. The super-resolved image represents the learnt features of low resolution 
oriented edges from the high resolution data set. This leads to significant improvement in quality 
of the reconstructed image. 
 
This paper is organized as follows: imaging model is shown in section 2. Section 3 discusses the 
Fast discrete curvelet transform. Procedure to learn the fast discrete curvelet coefficients is 
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discussed in section 4. Experimentation results on different gray and color images are discussed 
in section 5. Paper concludes with section 6. 

 
2. THE IMAGING MODEL 

In this paper, the following linear image formation model is adapted to obtain observed low 
resolution image. 

                                                              nDBxy +=                                                                (1) 

where x  is a original high resolution image represented lexicographically ordered of 12 ×M pixel 

size, D is decimation matrix and B is the blur matrix. The size of the decimation matrix depends 
upon the decimation factor and is not invertible. y  is a low resolution observation obtained, and 

represented lexicographically in order of 12 ×N  pixel size and n is noise vector of size 12 ×M . 

Here noise is assumed to be zero mean independent identically distributed and blur to be an 
identity matrix. For a single observation y , high resolution image x  is estimated. The imaging 

model is illustrated in Figure 1. 
 
 
        High                                                                                                                      Low          
       resolution                                                                                                               resolution 
       image                                                                                                                     image  
 
                                                                                                                           
                                                                                                                    Noise 

 

 
FIGURE 1:  Illustration of low-resolution image formation model 

 
3. FAST DISCRETE CURVELET TRANSFORM 

Fast Discrete Curvelet transform (FDCT) gives local components at different frequencies for 
analysis and synthesis of digital image in multi-resolution analysis. FDCT is multi-scale geometric 
transform, which is a multi-scale pyramid with many directions and positions at each length scale. 
FDCT is basically 2D anisotropic extension to classical wavelet transform that has main direction 
associated with it. Analogous to wavelet, FDCT can be translated and dilated. The dilation is 
given by a scale index that controls the frequency content of the curvelet with the indexed 
position and direction can be changed through a rotation. This rotation is indexed by an angular 
index. Curvelet satisfy anisotropic scaling relation, which is generally referred as parabolic 
scaling. This anisotropic scaling relation associated with FDCT is a key ingredient to the proof 

that curvelet provides sparse representation of the 
2

C function away from edges along piecewise 

smooth curves. FDCT is constructed by a radial window W  and angular windowV . The radial 

window W is expressed as 

                             ( ) ( ) ( )wwwW jjj

22

1

~
φφ −= +     ,  0≥j                                                            (2) 

Where, j is scale and φ is defined as the product of low-pass one dimensional window and 

separate scales in Cartesian equivalents. The angular window V  is defined as 

                                     ( )  ( )12

2/
/2 wwVwV

j

j =                                                                        (3) 

where, 1W and 2W are low pass one dimensional windows. The Cartesian window ljU ,

~
 is 

constructed by combining radial window W and angular window V and is expressed as 

                                       ( ) ( ) ( )wSVwWwU ljjlj θ=,

~
                                                                    (4) 

Where, the angle lθ have same slope but are not equally spaced. θS is shear matrix, 

Blur Decimatio

n 
+ 
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







=

1

0

tan

1

θ
θS . Shear matrix θS is used to maintain the symmetry around the origin and 

rotation by 2/∏± radiance. The family ljU ,

~
 implies a concentric tiling whose geometry is shown 

in Figure 2. The shaded region represents a wedge. 
 

 
                                                                         

FIGURE 2:   Basic digital tiling. 

 
The above construction gives pseudopolar tiling, an alternative to ideal polar tiling. In FDCT via 
wrapping the curvelets at a wedge are wrapped for a given scale and angle by translating the 
curvelets on regular rectangular grid which is same for every angle within each quadrent with 
proper orientation. The frequency domain definition of digital curvelet is, 
 

                                             [ ] [ ] [ ]22112

2121,, ,ˆ,
tktki

j

D

klj ettUtt
+Π−=ϕ                                                (5) 

where, [ ]21 ,ˆ ttU j  is Cartesian window. Here the discrete localizing window [ ]21, ,ˆ nnU lj  does not 

fit in a rectangle, aligned with axes. At each scale j , there exist two constants 

j

jL 2,1 ≈ and
2/

,2 2 j

jL ≈ such that for every orientation lθ , one can tile the two-dimensional plane 

which  translates the respective rectangle by multiples of jL ,1 in the horizontal direction and 

jL ,2 in the vertical direction. The windowed data is wrapped around the origin. The 

correspondence between the wrapped and original indices is one to one where the wrapping 
transformation is reindexing of the data. Figure 3 illustrates the wrapping process.  
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FIGURE 3:  Illustrate the wrapping process 

 
Discrete Curvelet transform is expressed as                                                                    
                               
                                                                                                                                                       (6) 
 
                                                                                                                                  

where, ( )kljc D ,,  represents curvelet coefficients with j as scale parameter, l as orientation 

parameter and k as position parameter. [ ]21 , ttf  is an input of Cartesian arrays [16]. This 

transform is also invertible. To illustrate the FDCT decomposition, a standard Lena image is 
decomposed at three levels with eight orientations as shown in Figure 4. The coarser first level 
FDCT coefficients are low frequency components and are wavelet coefficients because they do 
not have orientation. Second finer scale gives eight different oriented wedges where as the third 
finest scale gives sixteen corresponding oriented wedges. The number of wedges in a subband 
increases by a factor of two only after every other scale. Here FDCT via wrapping is used as it is 
simple to implement.  
 
 

 
 

FIGURE 4:  Decomposition Lena image at two scale with eight directions in FDCT domain 
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4. LEARNING FAST DISCRETE CURVELET COEFFICIENTS 
The decomposition of input image in Fast Discrete Curvelet Transform (FDCT) domain gives 
coarser scale coefficients and finer scale coefficients. The coarser scale subband contains low 
frequency components which are wavelet components as they do not have orientation. The finer 
scale subbands contain directional high frequency components. The high frequency components 
at finer scale of low resolution test image are estimated by learning them from high resolution 
training images in dataset. The learning procedure is performed by finding the minimum 
Euclidean distance between coefficients of low-resolution test image and all high-resolution 
training images in particular subband. This gives best closeness of the coefficients. To represent 
an image fine edges are important. In this proposed work 4x4 pixel block is considered as edge 
primitive element localized in low-resolution test image and the corresponding 8x8 pixel block in 
the high resolution image. The low resolution test image is decomposed at two levels and all the 
training images in data set are decomposed at three levels in FDCT domain. The size of the test 
image is of MxM pixel where as all training images are of 2Mx2M size. Figure 5 illustrates the 
learning of fast discrete curvelet coefficients at the finer scale from a set of N training images.  

          

 
FIGURE 5:  Illustrates the learning process in FDCT domain 

 
The minimum Euclidean distance is computed by comparing low-resolution test image edge 
primitive element with corresponding high-resolution training images at second coarser scale. 
The minimum Euclidean distance gives best match of edge primitive element. The finer scale 
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coefficients of low-resolution test image at particular subband are learnt from the corresponding 
third scale coefficients of high-resolution training images in dataset. Zero tree concept is applied 
to learn the curvelet coefficients at finer scale of the low-resolution test image. To find the best 
match, minimum Euclidean distance of curvelet coefficients at I-VIII subbands of low-resolution 
test image and the corresponding subbands of the high-resolution training images are 

considered. The location ( )kl,  as ( )kld , at I-VIII subbands of the test image is searched for best 

match in all the training images in particular subband.  The best matched curvelet coefficients at 
the finest scale of a training image for the given location are copied to the corresponding 
subbands I-XVI of low-resolution test image. The formula used to calculate the minimum 
Euclidean distance is as follows: 
     
 
 
 

 
                                                                                                                                                                                    
 
 
 
 

      (7) 
 

Here ( )Smd J denotes the curvelet coefficients for the mth training image at the J th subband, at 

scale S and m=1, 2….K. The best match of the test image at ( )kl, th location is ( )qp ˆ,ˆ th location 

of m th training image at scale S . The best match of 8x8 pixel area is copied at the corresponding 

subbands of the test image. So the 8x8 pixel area in the low resolution test image is learnt from 
different training images independently. When 4x4 block at second level does not find a good 
match in the training data set minimum distance is too large. It shows that high resolution 
representation is not available in the dataset which introduces artifacts in the reconstructed 
image. Such artifacts can be avoided by choosing certain threshold for minimum distance. First 
scale curvelet coefficients are lowpass coefficients and are not considered while calculating 
minimum Euclidean distance. 
 
The learning algorithm is given in steps as below: 

1) Perform two-level FDCT decomposition on the low-resolution test image of size MxM. 
2) Perform three-level FDCT decomposition on all the training images each of size 2Mx2M. 
3) Find minimum Euclidean distance by considering 4x4 pixel block of curvelet coefficients 

in subbands I-VIII at second level of low resolution test image and all high resolution 
images in training data set. 

4) If minimum Euclidean distance < threshold, copy 8x8 block of curvelet coefficients in 
subband I-XVI of  high resolution training image at third level to the corresponding I-XVI 
subband of low-resolution test image else set them zero. 

5) Repeat steps 3-4 for every 4x4 block of curvelet coefficients in I-VIII subbands at second 
level of low resolution image. 

6) Perform inverse FDCT transform to obtain the high-resolution image of the given test 
image. 
 

In post processing histogram specification technique is used for image enhancement. The finest 
level curvelet coefficients of the low resolution test image are learnt from the high-resolution 
training images in dataset. In SR, during upsampling process edges get blurred. The edge 
primitive element is used to learn the LR edge from its HR representation locally. Here 4x4 pixel 
block is selected as edge primitive element in the LR image and the corresponding 8x8 pixel area 
in the HR image. Each local region is learned independently from HR data set. This edge 
primitive gives the localization in the particular subband of the image. Large edge primitive gives 
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poor localization and better matching where as small edge primitive gives better localization but 
more fails matching.  
 

5. EXPERIMENTAL RESULTS 
Experiments are carried out on different types of images to find the efficiency of the proposed 
algorithm. Arbitrary high resolution gray images of different objects are downloaded from the 
internet to form the training data set. The training images in the data set considered are of 100. A 
high resolution gray image which does not belong to training data set is considered to obtain a 
low resolution image. This low resolution image is obtained through imaging model and 
upsampled to obtain a super-resolution image. Figure 6 (a) shows a low-resolution image of old 
man and Figure 6 (b) is high resolution image. Bicubic interpolated image is shown in Figure 6(c). 
The interpolated image is blurred one and cannot get the details of eye and lines on the forehead. 
The image shown in Figure 6 (d) is super-resolved by using Contourlet transform. The image 
shows the fine details of the eye and the lines on the forehead face. Image shown in Figure 6(e) 
is super-resolved by proposed method. The super-resolved image shows every detail of the eyes, 
lines on the forehead and face. The details of the eye brows can be visualized in the image and 
image is sharp.   
 

 
(a)                       (b)                                   (c)                  

                     
                                                                   (d)                                 (e) 

 
FIGURE 6:  a) Low resolution image b) Original High resolution image  c) Bicubic interpolated image d) 

Super-resolved image by using Contourlet transform e) Super-resolved image by using proposed method. 
 

Image shown in Figure 7 (a) is low resolution image of a girl and original high resolution image is 
shown in figure 7(b). Image shown in figure 7(c) is bicubic interpolated image which is blurred 
one. The details of texture on the transparent hat and, the shadow on the face appear to be 
blurred. The details of eye have lost and the hairs found to be total undistinguishable. Figure 7 (d) 
shows the super-resolved image by using Contourlet transform. The texture on hat, shadow on 
face and the details of eyes are sharp and details have been retained. Image shown in figure 7(e) 
is of the proposed method. The particulars of the texture on hat have been reconstructed without 
blur. Black Strips on the hat have been reconstructed without blur and edge of hat is artifact free. 
The details of the eye balls and eye brow can be observed clearly. The hair strands can be 
distinguishable. Image looks sharper.Image shown in figure 8(a) is of low resolution Barbara 
image, cropped from the original image and figure 8(b) is the high resolution version of it. Bicubic 
interpolated image is shown in figure 8(c) where the blurred image have been observed at edges. 
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Strips on scarf appeared to be blurred. Image shown in figure 8(d) is super-resolved by using the 
Contourlet transform. Image shows sharp strips on the scarf with minor details on palm and, 
image is not blurred. The image shown in figure 8(e) is of proposed method. Here every strip on 
the scarf is distinguishable and has been reconstructed well. The texture is retained in the 
reconstructed image without blur. Details on palm are visible and image is sharper.  
 

 
(a)                              (b)                                       (c) 

                     
                                                                      (d)                                (e) 

 
FIGURE 7:   a) Low resolution image b) Original High resolution image  c) Bicubic interpolated image d) 

Super-resolved image by using Contourlet transform e) Super-resolved image by using proposed method 

 

 
(a)                    (b)                                   (c)          

                     
                                                               (d)                                  (e) 

FIGURE 8:   a) Low resolution image b) Original High resolution image  c) Bicubic interpolated image d) 
Super-resolved image by using Contourlet transform e) Super-resolved image by using proposed method. 
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The reconstructed image is analyzed by computing mean squared error (MSE), peak signal-to-
noise ratio (PSNR) in db and correlation coefficient (CC). Table 1 shows the comparison of the 
proposed method over bicubic interpolation and Contourlet learning algorithm for gray images.  

 
 

Image MSE PSNR Correlation 

Bicubi
c 
 

Contourlet  
Learning 

Proposed 
Method 

Bicubic 
 

Contourlet 
Learning 

Proposed 
Method 

Bicubic 
 

Contourlet  
learning 

Proposed 
method 

Old 
Man 

0.036
1 

0.0026 0.0016 20.3618 31.8079 33.7574 0.8950 0.9815 0.9882 

Girl 0.047
2 

0.0151 0.0137 18.2783 23.2210 23.6505 0.9333 0.9630 0.9675 

Barbara 0.044
3 

0.0113 0.0095 19.9407 26.3643 27.1431 0.9283 0.9677 0.9729 

 
TABLE 1:   Comparison of MSE, PSNR in db and correlation coefficient.  

 
Experiments on color images also have been conducted to recognize the performance of the 
proposed method. The training data set of high quality 100 color images is considered for the 
experimentation. The low resolution image is obtained from the same imaging model and it does 
not belong to data set. The input low resolution and all the high resolution images from data set 

are converted into rb CCY −− format. The Y  plane which represents luminance is used to learn 

the curvelet coefficients of low resolution image. The other two planes bC and rC are interpolated 

with bicubic interpolation. The high resolution image is then reconstructed by combining these 
three planes.  

 
(a)                         (b)                                   (c)           

                     
                                                                   (d)                                 (e) 
 

FIGURE 9:   a) Low resolution image b) Original High resolution image  c) Bicubic interpolated image d) 
Super-resolved image by using Contourlet transform e) Super-resolved image by using proposed technique 

 
Figure 9 (a) shows the low resolution image of a child and figure 9(b) is its high resolution 
version. The image shown in figure 9(c) is bicubic interpolated image. The result shows blurred 
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image with less details. Figure shown in 9(d) is super-resolved image by using Contourlet 
transform. The reconstructed image shows more details such as eyes, eye balls and eye brows. 
The image shown in figure 9(e) is super-resolved by the proposed method. All the details of eye 
and eye brow have been preserved in the reconstructed image without blur.Figure 10 (a) shows 
the low resolution image of face and figure 10(b) is original high resolution image. The image 
shown in figure 10(c) is bicubic interpolated image. The result shows blurred image with few 
details. Image shown in figure 10(d) is super-resolved by using Contourlet transform. Almost all 
the details are visible and the image is sharp. The image shown in figure 10 (e) is super-resolved 
by proposed method. The result shows sharp image with all details such as eye balls, eye brow. 
The eyelids are also visible clearly. 
 

 
(a)                          (b)                                   (c)          

                      
                                                                     (d)                                  (e)        
 

FIGURE 10:   a) Low resolution image b) Original High resolution image  c) Bicubic interpolated image d) 
Super-resolved image by using Contourlet transform e) Super-resolved image by using proposed technique 

 

 
Table 2 shows the comparison of the proposed method over bicubic interpolation and Contourlet 
transform algorithm for color images in terms of MSE and PSNR in db. The mean squared error 
between the original image and reconstructed super-resolved image is expressed as: 
 

                                               

( ) ( )( )

( )( )∑

∑ −

=
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                                                   (8)                                       

                                                  

 

Where ( )baS , original high resolution image and ( )baS ,ˆ is reconstructed super resolved image. 

The peak signal to noise ratio in db is defined as: 
 

                                                






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log10

                                                          (9) 
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Correlation coefficient between original high-resolution image and reconstructed super-resolved 
image is computed as 
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                                                 (10)

 

where ( )AmeanA = , and ( )BmeanB =    

 
 

Image MSE PSNR 

Bicubic Contourlet 
Learning 

Proposed 
method 

Bicubic 
 

Contourlet 
Learning 

Proposed 
Method 

Child 0.0225 0.0053 0.0049 19.2070 25.5049 25.8248 
 

Face 0.0213 0.0038 0.0030 20.0667 27.5502 28.5381 
 

 
TABLE 2:   Comparison of MSE and PSNR in db 

 
For all the images there is appropriate improvement in the MSE, PSNR and correlation 
coefficient. The PSNR of the proposed method for the textured image has been improved almost 
by 6 db over bicubic interpolation and almost 1% improvement over the Contourlet learning 
method has been observed. An appropriate improvement in correlation coefficient is also 
observed with the proposed method. 

 
6. CONCLUSION 
The super-resolved image is reconstructed by estimating the finer scale FDCT coefficients of low-
resolution test image by learning them from a set of high resolution training images. In this 
proposed method, FDCT captures the smoothness along the curves and high-resolution edges 
are learned from a training set at multiresolution level. This technique is useful when a single 
observation is available. The reconstructed result depends upon the high-resolution training 
images in dataset and the method is resolution dependent. Bicubic interpolation technique gives 
blurred reconstructed images whereas compatible results have been observed for Contourlet 
learning method. The appropriate improvement in MSE, PSNR and correlation coefficient is 
observed with the proposed method. Computational complexity is less than Contourlet learning 
method.    

 

7. REFERENCES 
[1]   R.Y.Tsai and T.S.Hung, ”Multiframe image restoration and registration,” in Advances in 

Computer Vision and Image Processing,vol.1,chapter 7,pp.317-339.JAI 
press,greenwich,Conn,USA,1984. 

 
[2]    M.Irani and S. Peleg.” Improving resolution by image registration,” CVGIP: Graphical Models 

and Image Processing, vol. 53, no. 3 pp. 231-239, 1991. 
 
[3]    M. Irani and S. Peleg,” Motion analysis for image enhancement: resolution, occlusion, and 

transparency,” Journal of Visual Communication and Image Representation, vol. 4, no. 4, 
pp. 324-335,1993.  

 
[4]    M. K. Ng, J. Koo, and N. K. Bose.” Constraintet total least-sqeuare nsorcomputations for 

high-resolution image reconstruction with multisensors,” International Journal Of Imaging 
Systems and Technology, vol. 12, no. 1, pp. 35-42, 2002. 

 



Anil  A. Patil & Jyoti Singhai 

International Journal of Image Processing (IJIP), Volume (6) : Issue (5) : 2012 295 

[5]   M. K. Ng and N. K. Bose,” Analysis of displacement errors in high-resolution image 
reconstruction with multisensors,” IEEE Transactions on Circuits and Systems Part I, vol. 
49, no. 6, pp. 806-813,2002. 

 
[6]   N. Nguyen, P. Milanfar, and G. Golub,” A computationally efficient super-resolution image 

reconstruction algorithm,” IEEE transaction on Image Processing, vol. 10, no. 4, pp. 573-
583, 2001 

 
[7]    R.R. Schuitz and R. L. Stevenson,” A Bayesian approach to image expansion for improved 

definition,” IEEE Transactions on Image Processing, vol. 3, no. 3, pp. 233-242,1994 
 
[8]   D. Rajan and S.Chaudhuri,” An MRF-based approach to generation of super-resolution 

images from blurred observations,” Journal of mathematical Imaging and Vision, vol. 16, 
no. 1, pp. 5-15, 2002. 

 
[9]   D. Rajan and S. Chaudhuri,” Simultaneous estimation of super-resolved scene and depth 

map from low resolution defocused observations,” IEEE transctions on Pattern Analysis 
and Machine Intelligance, vol. 25,no. 9, pp. 1102-1117, 2003 

 
[10]   M. Elad and A. Feuer,” Restoration of a single super-resolution image from several blurred, 

noisy and under sampled measured images,” IEEE transactions on Image Processing, vol. 
6. no.12. pp. 1646-1658, 1997 

 
[11]  S. Baker and T. Kanade,” Limits on super-resolution and how to break them,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1167-1183, 
2002 

 
[12]  D. Capel and A. Zisserman,” Super-resolution from multiple views using learnt image 

models,” In Proceedings of IEEE Computer Society Conference on Computer Vision and 
pattern Recognition (CVPR’01), vol. 2, pp. II-627-II-634, Kauai, Hawaii, USA, December 
2001 

 
[13]  W. T. Freeman, T. R. Jones, and E. C. pasztor,” Example-based super-resolution,” IEEE 

Computer Graphics and Applications, vol. 22, no. 2, pp. 56-65, 2002 
 
[14]  M.V. Joshi and S. Chaudhuri,” Alearning-based method for image super-resolution from 

zoomed observations,” In Proceedings of 5
th
 International Conference on Advances In 

Pattern Recognition (ICAPR’03), pp. 179-182, Culcutta, India, December 2003 
 
[15]  C.V. Jiji, M. V. Joshi, and S. Chaudhuri,” Single –frame image super-resolution using 

learned wavelet coefficients,” International Journal of Imaging Systems and Technology, 
vol. 14, no. 3, pp. 105-112,2004 

 
[16]  H. Chang, D. Y. Yeung, and Y. Xiong,” Super-resolution trough neighbor embedding,” in 

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR’04), vol.1, pp. I-275-I-282, Washington, DC, USA, June-July 2004. 

 
[17]  J. S. Park and S. W. Lee.” Enhancing low-resolution facial images using error back-

projection for human identification at a distance,” in Proceedings of 17
th
 IEEE International 

Conference on Pattern Recognition (ICPR’04), vol.1, pp. 346-349, Cambridge, UK, August 
2004 

 
[18]  J.Sun, N. N. Zheng, H. Tao, and H. Y. Shum,” image hallucination with primal sketch priors,” 

In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR’03), vol. 2, pp. II-729-II-736, Madison, Wis, USA, June 2003 

 



Anil  A. Patil & Jyoti Singhai 

International Journal of Image Processing (IJIP), Volume (6) : Issue (5) : 2012 296 

[19]  M.N. Do and M. Vetterli,” The contourlet transform: an efficient directional multiresolution 
image representation,” IEEE transactions on Image Processing, vol. 14, no. 12, pp. 2091-
2106, 2005 

 
[20] C.V.Jiji and S.Chaudhuri, ”Single-frame image Super-resolution through Contourlet 

Learning,”EURASIP Jounal on Applied Signal Processing ,vol.2006, Article ID 73767,pp.1-
11,2006 

 
[21]  D. Glasner, S. Bagon, and M. Irani,” Super-resolution from a single image,” IEEE 

International Conference on Computer Vision (ICCV), pp. 349-356,2009 
 
[22]   P. P. Gajjar and M. V. Joshi,” New learning based super-resolution use of DWT and IGMRF 

prior,” IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1201-1213, May 2010. 
 
[23]  C. Kim, K. Choi,  H. Lee, K. Hwang, and J. B. Ra,” Robust Learning-Based Supre-

resolution,” in Proceedings of International Conference on Image Processing (ICIP’10), pp. 
2017-2020, Hong Kong, Sept. 2010. 

 
[24]  K. I. Kim and Y. Kwon,” Sinlge-image Super-Resolution Using Spsrse regression and 

Natural Image prior,” IEEE Transcation on Pattern Analysis and Machine Intelligence, vol. 
32, no. 6, pp. 1127-1133, 2010.  

 
[25] E. J. Candes and D. L. Donoho,” New tight frames of curvelets and optimal representations 

of objects with piecewise-C
2
 singularities,” Comm. on Pure and Appl. Math. Vol.57, pp. 

219–266, 2004. 
 
[26] E.J.Candes, D.L.Donoho and L.Ying,” Fast Discrete Curvelet Transform.,” Journal of 

Multiscale modeling & simulation, vol.5, no.3, pp.861—899, 2006. 
 
 
 
 
 
 


