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Abstract 

 
The proposed work investigates the effectiveness of coarse measures of the Chaos Game 
Representation (CGR) images in differentiating genomes of various organisms. Major work in this 
area is seen to focus on feature extraction using Frequency Chaos Game Representation 
(FCGR) matrices. Although it is biologically significant, FCGR matrix has an inherent error which 
is associated with the insufficient computing as well as the screen resolutions. Hence the CGR 
image is converted to a texture image and corresponding feature vectors extracted. Features 
such as the texture properties and the subsequent wavelet coefficients of the texture image are 
used. Our work suggests that texture features characterize genomes well further; their wavelet 
coefficients yield better distinguishing capabilities. 
 
Keywords: Chaos Game Representation, Texture analysis, Wavelet decomposition, Support 
Vector Machines. 

 
 
1. INTRODUCTION 

Chaos Game Representation (CGR) has been used in genomics and proteomics for various 
applications. Major work focuses on using Frequency Chaos Game Representation (FCGR) 
matrix for analysis. FCGR values though biologically relevant, has an inherent drawback due to 
insufficient screen as well as computing resolutions. In this work, attempt is made to investigate 
the effectiveness of coarse features such as texture properties and wavelet decomposition matrix 
of the texture image obtained from the gray scale equivalent of the corresponding FCGR. The 
results show that the coarse features of CGR extracted from the image in the form of texture as 

well as their wavelet coefficients can characterize genomes effectively. 
 
Chaos game representation (CGR), the method used in this paper, for feature extraction, 
constructs a 2D image of the sequence data, which offers a visual understanding of the structure 
of the sequence. The differences between the various categories of sequences are evident from 
their respective CGR images. The CGR can be mapped into a numeric matrix by obtaining a 
Frequency CGR (FCGR) [1], [2]. A combined technique for genome classification using one 
probabilistic technique and two machine learning techniques based on FCGR features was 
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reported [3].  Hurst CGR a method using Hurst exponent to extract features from CGR is 
presented in [4]. 
 
This work maps the CGR image into its texture equivalent and corresponding properties are 
taken as features. The wavelet decomposition matrix of the texture image is also used as a 
feature vector for discriminating genome sequences. 
 

2. MATERIALS AND METHODS 

2.1 Dataset 
Mitochondrial genomes are considered here. They are the sites of aerobic respiration, and are 
the major energy production center in eukaryotes. The low mutation rate in metazoan 
mitochondrial genome sequence makes these genomes useful for scientists assessing genetic 
relationships of individuals or groups within a species and for the study of evolutionary 
relationships [5]. Mitochondrial genomes were downloaded from the NCBI Organelle database 
[5]. Table 1 shows the data used for classification. The number of organisms shown is as listed in 
NCBI on 01/12/2012 
 

Table 1: Dataset Used for Classification. 

 
Serial  
number 

Name of   
category 

Number of 
organisms 

1 Acoelomata 39 

2 Cnidaria 48 

3 Fungi 102 

4 Plant 63 

5 Porifera 44 

6 Protostomia 582 

7 Pseudocoelomata 63 

8 Vertebrata 1729 

 Total 2670 

 
 
2.2 Methodology 
2.2.1 Chaos Game Representation. The scope of CGRs as useful signature images of bio-
sequences such as DNA has been investigated since early 1990s. CGR of genome sequences 
was first proposed by H. Joel Jeffrey [6]. To derive a chaos game representation of a genome, a 
square is first drawn to any desired scale and corners marked A, T, G and C. The first point is 
plotted halfway between the center of the square and the corner corresponding to the first 
nucleotide of the sequence, and successive points are plotted halfway between the previous 
point, and the corner corresponding to the base of each successive nucleotide. Mathematically, 
co-ordinates of the successive points in the chaos game representation of a DNA sequence is 
described by an iterated function system defined in Eq. 1 and Eq. 2 
 

( )ixii gXX += − 15.0                              (1) 

( )iyii gYY += − 15.0
                             (2) 

            
gix and giy are the X and Y co-ordinates respectively of the corners corresponding to the 
nucleotide at position i in the sequence [7]. The CGR of a random sequence gives a uniformly 
filled square. The CGR of DNA sequences plotted for various species gives images illustrating 
the non-randomness of genome sequences, which indeed means that the sequence has a 
structure, indirectly captured by the signature image. Features of CGRs include marked double 
scoops, diagonals, varying vertical intensities, absence of diagonals etc. signifying corresponding 
sequence characteristics. The CGR is thus found to be unique for every species. Hence CGR of 
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genomic sequences are expected to furnish features of discriminative nature which could 
subsequently be presented to classifiers. 
 
2.2.2 Texture Analysis. Texture analysis refers to the branch of imaging science that is 
concerned with the description of characteristic image properties by textural features. Texture 
analysis provides unique information on the texture, or spatial variation of pixel [8]. In texture 
analysis, a pixel occurrence probability matrix and a gray co-matrix, both obtained from the 
grayscale image is considered. The gray scale image is obtained by converting the FCGR matrix 
values into equivalent gray values. A feature vector is formulated which is an eight element 
matrix, which are actually eight properties of the image. Out of these eight properties, four - 
variance, skewness, kurtosis and entropy are obtained from pixel occurrence probability matrix 
and the other four - contrast, correlation, energy and homogeneity are obtained from gray co-
matrix. Thus a feature vector having eight elements corresponding to the eight properties of the 
texture image characterizing the organism is extracted. Fig. 1 gives the CGR image of 
NC_000928Echinococcus multilocularis and Fig. 2 the corresponding gray image, 
 

 
FIGURE 1: CGR Image of NC_000928 Echinococcus 

Multilocularis. 

 
FIGURE 2: Grayscale Equivalent of CGR Image 

Shown in Figure 1. 

 
2.2.3 Pixel occurrence probability matrix. First-order texture analysis measures use the image 
histogram, or pixel occurrence probability, to calculate texture. The main advantage of this 
approach is its simplicity through the use of standard descriptors (e.g. mean and variance) to 
characterize the data [9]. 
 
Assume the image is a function f(x,y) of two space variables x and y, x=0,1…L-1 and y=0, 1... M-
1. The function f(x,y) can take discrete values i = 0, 1….G-1, where G is the total number of 
number of intensity levels in the image. The intensity-level histogram is a function showing (for 
each intensity level) the number of pixels in the whole image. The histogram contains the first-
order statistical information about the image (or its fragment). Dividing the number of pixels 
having a given intensity value by the total number of pixels in the image gives the approximate 
probability density of occurrence of the intensity levels [10].If N(i) is the number of pixels with 
intensity i and M is the total number of pixels in an image, it follows that the histogram, or pixel 
occurrence probability, is given by  

                                                      P(i)=N(i)/M  (3) 
Out of several properties of the texture image, 4 were selected which showed maximum variation 
in values for different organisms under different classes. The four  properties are variance, 
skewness, kurtosis, and entropy. For a random variable X with mean µ and standard deviation σ 
and expectation value E, the different properties are: 
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Variance: ( ) ( )[ ]µ−= XEX
2

var
                                                (4) 

Skewness:

 

( )
σ

µ
3

3
−XE

                                                              (5) 

Kurtosis:  
( )

σ

µ
4

4
−XE

                                                               (6) 

Entropy: ( )( )ppsum 2log*.−
                                                (7) 

p is the histogram counts returned from histogram image. 
 

The variance is a measure of the amount of variation of the values of that variable from its 
expected value or mean. The skewness is a measure of asymmetry of the data around the 
sample mean. The skewness is zero if the histogram is symmetrical about the mean, and is 
otherwise either positive or negative depending whether it has been skewed above or below the 
mean.. The kurtosis is a measure of flatness of the histogram. For a normal distribution the 
kurtosis is three and for other cases it will be greater than or less than three. Entropy is a 
statistical measure of randomness that can be used to characterize the texture of the input image 
[11]. These four properties constitute the four elements of the feature vector obtained from the 
texture analysis of the image. 
 
2.2.4 Graycomatrix 
The different properties of the graycomatrix are known as the graycoprops. There are four 
properties for this matrix. The graycomatrix creates a gray-level co-occurrence matrix (GLCM) 
from an image. Graycomatrix creates the GLCM by calculating how often a pixel with gray-level 
(grayscale intensity) value i occurs horizontally adjacent to a pixel with the value j. Each element 
(i, j) in the GLCM specifies, the number of times that the pixel with value i occurred horizontally 
adjacent to a pixel with value j. The graycomatrix calculates the GLCM from a scaled version of 
the image. By default, if ‘I’ is a binary image, graycomatrix scales the image to two gray-levels. If 
‘I’ is an intensity image, graycomatrix scales the image to eight gray-levels [10]. 
 
Graycoprops normalizes the gray-level co-occurrence matrix (GLCM) so that the sum of its 
elements is equal to 1. Each element (r,c) in the normalized GLCM is the joint probability 
occurrence of pixel pairs with a defined spatial relationship having gray level values r and c in the 
image. Graycoprops uses the normalized GLCM to calculate properties. The four properties are: 
 
Contrast: It returns a measure of the intensity contrast between a pixel and its neighbor over the 
whole image.Contrast is 0 for a constant image. 
 
Correlation: It returns a measure of how correlated a pixel is to its neighbor over the whole 
image. Its range is between -1 and +1.Correlation is 1 or -1 for a perfectly positively or negatively 
correlated image. Correlation is ‘NaN’ (not a number) for a constant image. 
 
Energy: It returns the sum of squared elements in the GLCM. Its range is between 0 and 1. 
Energy is 1 for a constant image. 
 
Homogeneity: It returns a value that measures the closeness of the distribution of elements in 
the GLCM to the GLCM diagonal. Its range is between 0 and 1.Homogeneity is 1 for a diagonal 
GLCM [10], [12]. 
 
2.2.5 Wavelet decomposition. The wavelet decomposition of a signal f(x) is performed by a 
convolution of the signal with a family of basis functions. In the case of two-dimensional images, 
the wavelet decomposition is obtained with separable filtering along the rows and along the 
columns of an image.  The wavelet analysis can thus be interpreted as image decomposition in a 
set of independent, spatially oriented frequency channels. The HH sub image represents diagonal 
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details (high frequencies in both directions – the corners), HL gives horizontal high frequencies 
(vertical edges), LH gives vertical high frequencies (horizontal edges), and the image LL 
corresponds to the lowest frequencies. At the subsequent scale of analysis, the image LL 
undergoes the decomposition using the same g and h filters, having always the lowest frequency 
component located in the upper left corner of the image [13]. In the case of a 3-scale analysis, 10 
frequency channels can be identified. The size of the wavelet representation is the same as the 
size of the original image. As there is a choice of particular wavelet function for image analysis, 
symmetric wavelet functions appear superior to non-symmetric one, which is attributed to the 
linear-property of symmetric filters. 
 
2.2.6 Support Vector Machines. Support Vector Machine classifier. Support Vector Machine 
was introduced to solve dichotomic classification problems [14] & [15]. Given a training set in a 
vector space, SVMs find the best decision hyper plane that separates two classes. The quality of 
a decision hyper plane is determined by the distance between two hyper planes defined by 
support vectors. The best decision hyper plane is the one that maximizes this margin. SVM 
extends its applicability on the linearly non-separable data sets by either using soft margin hyper 
planes or by mapping the original data vectors into a higher dimensional space in which the data 
points are linearly separable. There are several typical kernel functions. In this work, Support 
Vector Machine with Radial Basis kernel function and Polynomial kernel functions are used. 
 

3. RESULTS AND DISCUSSION 
The work aims to investigate the quality of features derived from the texture analysis and wavelet 
decomposition of a grey scale image of CGR (Chaos Game Representation) plot of each 
organism, evaluated through classification. The data set used was mitochondrial DNA 
sequences. The mitochondrial DNA sequences(DNA in mitochondria of a cell) of 2670 eukaryotic 
organisms belonging to eight categories of taxonomical hierarchy were obtained from National 
Centre for Biotechnology Information (NCBI) organelle database.  
 
The total number of organisms in each class is first divided in 1:1 ratio to get two data sets as test 
and train. The Chaos game representation (CGR) of each sequence is obtained. Subsequently 
the FCGR matrix is computed and the corresponding gray scale images plotted. The feature 
vector, which corresponds to different properties of the grey image, is obtained for the different 
organisms in eight classes. These feature vectors are given as the input to the SVM classifier 
which is trained using the training set and tested using the test set. Using wavelets, 3 levels of 
decompositions were considered. 
 
Previous works report using FCGR matrix elements as features for analysis of genomes [1], [2], 
[3], [7]. For huge sequences, since the screen resolution and computing resolution is limited, 
there will be error while computing the FCGR matrix. Hence this method is a novel attempt to 
provide an alternative to FCGR in such cases where huge sequences are involved. The work 
proves that the texture features as well the wavelet coefficients could be potential elements 
representing features of genomes. Other image transform coefficients as well as other image 
features can also be subjected to investigation in future, which may prove to be better 
representatives of genome sequences. 
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FIGURE 3: Percentage Accuracy of Classification Using Texture Analysis. 
 

 
 

FIGURE 4: Percentage Accuracy of Classification Using 3 Level Wavelet Decomposition. 
 

 
 

FIGURE 5: Texture Features and Wavelet Coefficient of The Texture Image – A Comparison of Feature 
Vectors Based on Classification Accuracy. 
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4. CONCLUSION 
This work  is an investigation into the quality of features derived from the texture analysis and 
wavelet decomposition of a grey scale image of CGR(Chaos Game Representation) plot of 
genomes evaluated through classification of organisms. The feature vectors were used to classify 
organisms with the help of an SVM classifier. The accuracy of classification stands testimony to 
the possibility of deriving feature vectors from the texture equivalent of CGR  or more precisely – 
the FCGR matrix thus overcoming the inherent resolution error in FCGR matrices when 
considered quantitatively. It is thus  concluded that coarse features such as texture and wavelet 
coefficients thereof characterise the genome sequences effectively. 
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