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Abstract 
 
Flexible cystoscopy is an examination that allows physicians to look inside the bladder. In flexible 
cystoscopy, beginner physicians tend to lose track of the observation due to complex handling 
patterns of a flexible cystoscope and poor characteristics of the bladder. In this paper, as a 
diagnostic support tool for beginner physicians in flexible cystoscopy, we propose a system for 
tracking the observation using cystoscopic images. Our system discriminates three handling 
patterns of a flexible cystoscope, namely bending, rotation, or insertion. To discriminate the 
handling patterns accurately, we propose to use the degree of bending, rotation, or insertion as 
features for the discrimination as well as ZNCC-based optical flows. These features are learned 
by a Random Forest classifier. The classifier discriminates sequential handling patterns of the 
cystoscope by a time-series analysis. Experimental results on ten videos obtained in flexible 
cystoscopy show that each of the three handling patterns were correctly discriminated over 90% 
in average. In addition, we reproduced the observation in a virtual bladder we propose.    
 
Keywords: Flexible Cystoscopy, Position Tracking, Optical Flow, Zero-mean Normalized Cross-
Correlation, Handling Pattern. 

 
 
1. INTRODUCTION 

With increase of aged people in the world, incidents of bladder disease are gradually 
increasing[1]. Bladder disease can be detected in cystoscopy or non-invasive examinations such 
as blood test, MRI, CT, PET, and ultrasonography. The non-invasive examinations are painless 
and less stressful. However, it is still difficult to detect tiny legions in a non-invasive imaging 
examination[2]. Cystoscopy is conducted when a lesion found in a non-invasive imaging 
examination or sever symptoms are appeared in a patient. Cystoscopy enables physicians to look 
inside the bladder to confirm a patient's legion directly. There are two types of cystoscopes, 
namely rigid and flexible. The examination with the latter one is less painful and is used widely. In 
this paper, we deal the examination with flexible cystoscope. 
 
In flexible cystoscopy, images of the bladder are obtained from a camera embedded in the tip of 
flexible cystoscope and displayed in the monitor. However, there are three major difficulties for 
physicians to check the whole inner of the bladder completely.  First, since the bladder has similar 
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shape and color, sometimes beginner physicians lose track of the observation. Second, 
cystoscopic images are sometimes unclear due to halation. Third, it requires some experiments 
to control flexible cystoscope properly due to complex handling patterns of the equipment. 
 
As a diagnostic support tool for beginner physicians in flexible cystoscopy, this paper presents a 
system for tracking the observation. To achieve the objective, it is considered to attach 
acceleration sensors or location sensors to a flexible cystoscope. In that case, it is necessary to 
obtain an approval for usage of the cystoscope according to the pharmaceutical low, as well as to 
buy the cystoscope which would be at least 10,000$. Another approach to track the observation 
in cystoscopy is mapping observed regions in a 3D space. As a representative 3D tracking 
system, Choi et al. proposed a robust segment-based object tracking system that uses the 
backside of a car image[3]. Their system measures depth information by calculating the 
enlargement factor of a target region. Ramisa et al. proposed to measure the distance between a 
single camera and a person[4]. However, since cystoscopic images are significantly unclear than 
the car image and human image, existing algorithms for 3D tracking[3, 4] could not be applied to 
cystoscopic images.  
 
In this paper, we propose to discriminate the handling patterns of a flexible cystoscope. First, the 
proposed system extracts ZNCC-based optical flows[5] from cystoscopic images as features for 
estimating the handling patterns. Next, various features including the ZNCC-based optical flows 
are learned by a Random Forest classifier[6]. The classifier discriminates sequential handling 
patterns of the cystoscope by a time-series analysis. Finally, the observation in flexible 
cystoscopy is reproduced in a virtual 3D bladder we propose.   

 
In section 2, we will introduce the process of flexible cystoscopy. In section 3, we will explain the 
proposed system. In section 4, we will examine the performance of the proposed system 
regarding the accuracy in estimating the handling patterns and tracking the observation in the 
virtual bladder. 
 

2. FLEXIBLE CYSTOSCOPY 
The human bladder is a hollow and balloon shaped organ that is broadly distinguished into seven 
regions; trigone, neck, left side wall, right side wall, posterior wall, dome, and anterior wall. Figure 
1 shows images of the bladder. From the figure, we could perceive the images except neck are 
similar to each other. In addition, sometimes cystoscopic images are noisy due to halation which 
often occurs when the cystoscope is close to the bladder wall.  
 

The flexible cystoscopy is conducted by a physician as below.  

 

(1) The physician inserts a flexible cystoscope into a patient's urethra.  

 

(2) The physician pushes the cystoscope slowly to the bladder.  

 

(3) By adjusting the position of the cystoscope, the physician observes the whole inner of the  

bladder. 

 

(4) The physician pulls the cystoscope after checking all the regions.  

 

Figure 2 shows three handling patterns of the cystoscope to adjust the position of the cystoscope 
in step (3). The problem in this examination is that a beginner physician in the step (4) is 
sometimes unsure that all the regions were completely observed. Since oversight of severe 
legion would cause fatal case, diagnostic support tools for beginner physicians in flexible 
cystoscopy have been required. 
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3. PROPOSED SYSTEM 
3.1    Overview 
As mentioned in Sec. 2, the bladder can be distinguished into seven regions. However, the 
definitive region of each part is not defined. Considering a normal bladder, we construct a sphere 
bladder model which has seven regions. Figure 3 shows the virtual bladder we propose. And, 
Table 1 shows definitions of each region for the virtual bladder, which determined by an expert 
physician in flexible cystoscopy. 
 
3.2    Preprocessing 
Figure 4 shows the interface for a flexible cystoscopy. In the proposed system, first, ROI (Region 
of Interest) is set on the rectangle in the interface. The size of ROI is 300 pixel × 300 pixel. Next, 
Figure  5 (b) shows the cystoscopic image applied 8-bit gray scale transformation to Figure 5 (a). 
And,  
 

              
                                                 trigone                                      neck 

              
                                            left side wall                           right side wall 

                      
                      posterior wall                             dome                                anterior wall 

 
FIGURE 1: Example of Images Obtained from a Flexible Cystoscope. 
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FIGURE 2: Three Handling Patterns of a Flexible Cystoscope. 

 
Figure 5 (c) shows the image applied the histogram stretching to Figure 5 (b). Finally, Figure 5 (d) 
shows the image applied the selective local averaging to Figure 5 (c). Compared with Figure 5 
(b), we could perceive that blood vessels are enhanced in the images of Figure  5 (d). 
 
3.3    Extraction of Optical Flows 
Approaches of well-known object tracking can be distinguished into gradient method and block 
matching method. Gradient method  is effective on videos where target objects move slowly[7]. 

 
 

FIGURE 3: 3D Virtual Bladder We Propose. 
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TABLE 1: Definition of the Virtual Bladder Map. 

 
Meanwhile, block matching method is robust to quick movement of target objects, sudden 
illumination changes, and noises. Since cystoscopic images are often unclear due to noises such 
as halation and focus error, the proposed method applies the block matching[8]. As a robust 
method to measure the movements of a flexible cystoscope, the proposed method extracts 
ZNCC-based optical flows from consecutive cystoscopic images. In ZNCC (Zero-mean 

Normalized Cross-Correlation), an image is divided into A × B blocks and optical flows are 
extracted from each block by the following formula 
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where I (i, j) is the pixel value at ith row and jth column in the template image, T (i, j) is the pixel 
value at ith row and jth column in the target image, N is the search range towards x axis, and M is  
 

 
 

FIGURE 4: Interface for the Examination with a Flexible Cystoscope. 

 
 

Bladder region Definition 
Dome More than lat. 70 degrees S, excluding the trigone defined below. 
Bladder neck More than lat. 70 degrees S, excluding the trigone defined below. 
Trigone Triangle part is surrounded with lat. 45 degrees S, a parallel of lines of 

longitude of long. 60 degrees E / long. 60 degrees W. 
Posterior wall The quadrangle surrounded with a parallel of lat. 60 degrees N/ lat. 70 

degrees S, a line of longitude of long. 60 degrees E/ long. 60 degrees W. 
Anterior wall The quadrangle surrounded with a parallel of lat. 60 degrees N/ lat. 70 

degrees S, a line of longitude of long. 120 degrees E/ long. 120 degrees 
W. 

Right side wall The reminded region in the east side. 
Left side wall The reminded region in the west side. 
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                 (a)                                   (b)                                    (c)                                  (d)  
 

FIGURE 5: Preprocessing for the Enhancement of Blood Vessels. 

 
 
 
 
 

 
 

 

 
the search range towards y axis. As an algorithm of ZNCC, the proposed system uses the one 
proposed by Yoo and Han[5]. 
 
3.4    Discrimination of Handling Patterns for a Flexible Cystoscope 
Table 2 shows handling techniques of the flexible cystoscope. From the table, we can find that 
the combination of the handling techniques is up to 27 patterns. And, figure 6 shows an example 
of optical flows obtained by rotation (a) and insertion (b) when the cystoscope is 90 degrees down 
or zero degrees or 90 degrees up. From figure 6, we can find that the ZNCC-based optical flows 
are depended on the degree of rotation and insertion. 
 
We define three features that improve the discrimination of the handling patterns as below 

1

(2)
t
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i
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=∑ 　 　 　 　 　 　                  　 　  

1

(3)
t
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i
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=∑ 　 　 　 　 　 　                  　 　  

 
 

Handling pattern    

rotation left right neutral 
bending up down neutral 
insertion push pull neutral 

 
TABLE 2: Handling Patterns of Flexible Cystoscope. 
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FIGURE 6: Example of Optical Flows Obtained by Rotation (a) and Insertion (b). 

 

1

(4)
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where Rott is the degree of rotation at tth frame, Ri is the handling pattern of rotation at ith frame 
and returns 1 when Ri=left, -1 when Ri=right, and 0 when Ri=neutral. Similarly, Bendt is the 
degree of bending at tth frame, Bi is the handling pattern of bending at ith frame and returns 1 
when Bi=up, -1 when Bi=down, and 0 when Bi=neutral, and Inst is the degree of insertion at tth 
frame, Ii is the handling pattern of insertion at ith frame and returns 1 when Ii=push, -1 when 
Ii=pull, and 0 when Ii=neutral. 

 

Thus, the proposed system extracts features as A × B optical flows, Rott, Bendt, and Inst from a 
cystoscopic image. By feeding all the features, a RF (random forest) classifier discriminates the 
27 handling patterns frame by frame. RF is a noise-robust classification algorithm proposed by 
Breiman. 
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FIGURE 7: Selection of consecutive k frames whose prediction probabilities are similar to those of ft (k=5). 

 
3.5    Discrimination of Sequential Handling Patterns for a Flexible Cystoscope 
In flexible cystoscopy, the same handling pattern would last for several frames. Hence, in a case 
that the discriminate handling for a frame ft is different from the one for ft-1 and ft+1, ft is expected 
to be another handling pattern.  Considering the case, we propose to correct the handling pattern 
for ft. Figure 7 shows a process to discriminate sequential k frames, where k = 5 is configured in 
this case. The sequential k frames are determined by the following steps. 

 

(1) Select the sequential k frames from ft-k+α to ft-1+α (Initially, α = 0). 

 

(2) Calculate a similarity of the class prediction probabilities for each frame. 

 

(3) α = α + 1 if α < k and go back to step (1). 

 

(4) Determine the k frames when the similarity in step (2) is maximum. 

 

And then, the similarity Simt is calculated by the following formula 

27

1

[ ] | [ ] [ ] | (5)
t t t

j
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=

= −∑ 　 　                 　 　  

where probt[j] is the class prediction probability of ft for jth handling pattern, aprobt[j] is the 
average class prediction probability of selected k frames for jth handling pattern. Thus, the 
proposed method selects k frames whose average class prediction probability are similar to that 
of ft. And then, the discriminated handling pattern for ft is replaced by the jth handling pattern 
where aprobt[j] becomes maximal in k frames. 
 
Next, regarding fnum as the number of replaced handling patterns (fnum=1,2,3...,k-1), fnum is 
increased in 1 by 1 (fnum is 1 in the initial step above). Then, regarding k as k', k' is set as k-fnum+1. 
Note that the replacement of k' frames is conducted when the following term is fulfilled. 

(6)
B A

P > P 　　  　 　          　 　 　 　 　        　 　  

where PB is the average class prediction probability for a handling pattern B in k' frames and PA is 
the average class prediction probability for a handling pattern A in k' frames. These terms can 
prevent a case that the handling pattern of the correct sequential k' frames is replaced to 
incorrect one. The method above can be applied to frames before ft when the discrimination of 
the handling pattern for t+k frames is finished.    

 
4. PROPOSED SYSTEM 
4.1    Experimental Environment 
We applied the proposed system to ten videos of flexible cystoscopy at the Kanazawa University 
Hospital in Japan. All the examinations were conducted by an expect physician. The flexible 
cystoscope used in the examinations is OLYMPUS CYF TYPE VA2. Regarding the videos, the 
format is AVI (24-bit color), the frame rate is 29.97 fps, and the average length is 115 seconds. 
Each of the videos was cut manually as they start from the scene that the image of the bladder 
wall appears at the first time to the scene that the image of the urethra appears at the first time 
after the start scene. T evaluate the performance of the proposed system, by observing the 
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videos, the expert physician judged the handling patterns frame by frame. Then, a RF (Random 
Forest) classifier discriminated the handling patterns. The accuracy of estimating the handling 
patterns is evaluated by 10-fold cross validation[9] as below.  

 

(1) Choose the first 1000 frames in each of the ten videos.   

 

(2) Extract ZNCC-based optical flows and Rott, Bendt, and Inst (refer to Sec. 3.4) from each 
of the 1000 frames.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) Choose the 1000 frames in one of the videos as test data and the other 9000 frames as 
training data.  

 

(4) RF learns the training data.  

 

(5) RF discriminates the handling patterns frame by frame in the test data.  

 

(6) Sequential handling patterns of the cystoscope are discriminated by the time series 
analysis described in Sec. 3.5.  

 

(7) Repeat the procedure from (3) until all the 1000 frames are selected as test data.  
 

4.2    Results 
First, we discriminated the handling patterns of the flexible cystoscope in each of the 1000 frames. 
Table 3 shows the average correct rate in the discrimination. In this experiment, parameters for 
the Random Forest classifier were optimized, namely the number of the trees was configured as 
525. As the table shows, the proposed method outperforms base line. 
 
Next, we reproduced each of the cystoscopic examinations in the virtual bladder defined in Sec. 
3.1. In each examination, observed regions were painted on the virtual bladder. To evaluate the 
performance of reproducing the observation, we assume that the physician could not observe one 
of the whole regions. Such a region is called as target region in the rest of this paper. For 
example, suppose that the physician could not observe trigone, the region of trigone in the virtual 

Handling pattern Number of frames Base line proposed method 

neutral 877 70.6% 93.2% 
left 1049 81.0% 94.5% 
right 932 82.1% 93.4% 
up 741 83.3% 95.0% 
down 1214 82.0% 96.2% 
push 801 76.0% 94.6% 
right 932 82.1% 93.4% 

 
TABLE 3: Average correct rate for each of the handling patterns. base line is the case that only 

ZNCC-based optical flows were learned by the Random Forest classifier. 
 
 

No. 1 2 3 4 5 

Cr 54.9% 81.9% 91.6% 91.2% 62.5% 

Fr 6.4% 2.6% 1.2% 1.3% 5.4% 

No. 6 7 8 9 10 

Cr 83.5% 84.1% 82.9% 92.1% 90.4% 

Fr 2.4% 2.3% 2.4% 1.1% 1.4% 

 
TABLE 4: Parameter Cr and Fr obtained in the Experiment. 
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bladder is unpainted ideally and the other regions are painted. Here, we define Cr as the 
percentage of the unpainted area in the target region and Fr as the percentage of the painted 
area in the other region. Therefore, the ideal Cr is 100% and the ideal Fr is 0%. Table 4 shows 
the average Cr and Fr for each of the video. From the table, we can find that Cr has been more 
than 80% except the video No.1 and No.5. 
 
4.3    Failure Cases 
In Table 4, both of Cr and Fr for the video No.1 has been the worst among all the videos. 
Observing the video, we could find that bladder stones were floating around trigone. Figure 8 
shows the stones marked in circle. In 114 frames, although the camera was being stopped, the 
block-matching method detected movement of the stones and the proposed system incorrectly 
judged the handling patterns in the 114 frames as left or insertion. The bladder stones are 
sometimes observed in cystoscopy. Therefore, we need to detect the white stones as noise. In 
Figure 8, average density of the stones in areas of each circle has been 223.4 (standard 
deviation is 15.9) while average density of all the 64072 frames in ten videos is 124.9. The 
densities above were  
 

 
 

FIGURE 8: Bladder Stones Appeared Around Trigone in the Video No.1. 
 

 

 
 

FIGURE 9: One of the Images where Halation Observed in the Video No.5. 

 
 
measured from the original images obtained from the cystoscope. Hence, areas of the bladder 
stones in each image would be extracted using the density distributions of the whole image. 
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In Table 4, Cr and Fr for the video No.5 has been the second worst among all the videos. 
Observing the video No.5, we could find that halation lasted for 125 consecutive frames. Figure  9 
shows an image of the halation. Since the halation covered overall area in each image, the block-
matching method could not extract movement of the flexible cystoscope. Hence, in the case when 
handling patterns are judged incorrectly due to the halation, it is necessary to discriminate the 
handling patterns from handling patterns in other frames. 
  
4.4    Future Works 
From the experimental results shown in Sec. 4.2, this paper has indicated that our proposed 
system can be used as a trainer for beginner physicians. Although cystoscopic images are 
significantly unclear compared with images used in related works [3, 4, 10], it is seen that the 
proposed system works well on tracking the observation in a flexible cystoscopy. However, 
sometimes the tracking would fail due to the failure cases described in Sec. 4.3. In such case, it is 
necessary to estimate the actual position according to landmarks placed in the virtual bladder. 
One of the ways for generating landmarks is the use of HOG (Histogram of Oriented Gradients) 
which is robust against rotation and size difference. In addition, we would like to correct turbulent 
flows obtained from noisy images.  
 

5. CONCLUSION 
This paper has presented a system of tracking the observation in flexible cystoscopy. The 
proposed system discriminates three handling patterns of flexible cystoscope. To achieve this 
objective accurately, we proposed to extract ZNCC-based optical flows and three features that nd 
the represent the degree of the handling patterns from cystoscopic images. In addition, we 
proposed to discriminate sequential handling patterns of the flexible cystoscope. Experimental 
results using ten videos have shown the average correct ratio of the three handling patterns has 
been at least 90%. We also reproduced the observation in a flexible cystoscopy in a virtual 3D 
bladder we constructed.  
 
Considering the failure cases for tracking the observation, we need to estimate the actual position 
in case of the tracking failure and correct turbulent flows obtained from cystoscopic images where 
bladder stones are floating and halation is happened. Besides, we would like to estimate the 
shape and size of the bladder using CT or MRI images. 
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