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Abstract

This paper presents theoretically proved Agile CBS algorithm, an extension of the traditional
Conflict-Based Search which is customized to support bounded-suboptimal solutions for Multi-
Agent Pathfinding problems. The method uses flexible assignment of intermediate targets and
adaptive resolution of constraints, focusing to improve scalability, especially in environments with
high agent density. Unlike conventional CBS, which resolves conflicts reactively, Agile CBS
decomposes long-term objectives into incremental sub-goals, enabling progressive planning
while maintaining bounded suboptimality guarantees. The algorithm utilizes a constraint tree for
high-level search and A* for low-level path computation, thereby reducing planning overhead in
scenarios where optimal solvers encounter computational challenges. While theoretical in nature,
this framework provides a foundation for developing scalable classical Al-based MAPF solvers.

Keywords: Conflict-Based Search, Heuristic Search, Multi-Agent Pathfinding, Bounded
Suboptimality, Collision Avoidance.

1. INTRODUCTION
In robotics, logistics, and traffic systems, where multiple agents must navigate shared spaces
without colliding while maximizing goals like travel time or distance, Multi-Agent Pathfinding
(MAPF) tackles coordination issues (Stern et al., 2021). Complex conflict resolution techniques
that strike a balance between computational effectiveness and solution quality are necessary for
the best MAPF solutions.

The primary distinction between single-agent and multi-agent pathfinding is how each shapes the
problem formulation and the solution approaches. Single-Agent Pathfinding (SAPF) determines
optimal routes between graph nodes using algorithms like A* (Hart et al., 1968), where the
evaluation function f(n) = g(n) + h(n) guides search efficiently. When the heuristic h is
admissible, A* guarantees optimal solutions (Dechter & Pearl, 1985).

MAPF extends this model to multiple agents, each agent has its own start and goal locations. The
objective is computing collision-free paths that minimize aggregate cost, typically the sum of
individual path costs. This problem is NP-hard (Yu & LaValle, 2013), with state space complexity
growing exponentially with agent count. Direct application of A* to the joint state space yields
branching factors of b* for k agents, making pure search-based approaches computationally
prohibitive for large-scale instances.

1.1 Collision Types in MAPF
MAPF solutions must address multiple collision types:
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- Vertex collisions: Multiple agents occupying the same location simultaneously
- Edge collisions: Agents traversing the same edge in opposite directions

- Following collisions: An agent entering a recently vacated cell

- Wait collisions: Conflicts arising from stationary agents

These collision patterns necessitate specialized detection and resolution strategies (Bing Ai et al.,
2021).

1.2 Research Methodology

The methodology adopted in this paper is deductive and conceptual. It involves the theoretical
proposal of the Agile CBS framework by extending the known architecture of Conflict-Based
Search (CBS) with novel components—dynamic sub-goal decomposition and bounded-
suboptimal guarantees. The paper proceeds by formalizing the framework's definitions (Section
3.2), outlining its two-level architecture (Section 3.3), and theoretically deriving its complexity
analysis (Section 3.4), without relying on empirical data collection or analysis in this initial phase.

2. RELATED WORK

MAPF algorithms are categorized into optimal, bounded-suboptimal, and suboptimal solvers
based on solution quality guarantees and computational requirements.

2.1 Optimal Algorithms

Conflict-Based Search (CBS) (Sharon et al., 2014) employs a two-level architecture: the high-
level maintains a Constraint Tree (CT) where nodes represent constraint sets, while the low-level
computes individual agent paths using A* under current constraints. When conflicts arise (vertex
conflict m;(t) = m;(t) or edge conflict), CBS branches the CT by adding constraints that prevent
agents from occupying conflicting locations. This process continues until a conflict-free solution
emerges. CBS achieves optimality regarding sum-of-costs but exhibits exponential time
complexity 0(2¢ - n log n) where ¢ represents conflict count and n is agent count.

Increasing Cost Tree Search (ICTS) (Sharon et al., 2012) operates over cost vectors C =
(c1,¢2-..,ck) Where each ¢; represents agent a;'s individual path cost. ICTS explores solution
space incrementally from minimal sum-of-costs, expanding nodes through single-agent cost
increments while checking path combinations for conflicts. This enables effective pruning but
incurs exponential complexity in agent count.

A* with Independence Detection (A* + ID) (Ryan, 2008) initially plans paths independently, then
progressively merges conflicting agents into meta-agents that plan over joint state spaces 0(b™)
where m is merged agent count. This achieves 0(k - n log n) complexity in low-conflict scenarios
but degrades exponentially as conflicts increase.

Modified A* (M*) (Wagner & Choset, 2011) employs locality-aware planning, expanding joint
configuration space only for conflicting agents using dynamic collision sets. With worst-case
complexity O(|V|I!) where |C| is collision set size, M* performs efficiently in sparse-conflict
environments but struggles with dense agent populations.

2.2 Bounded-Suboptimal Algorithms
Bounded-suboptimal algorithms guarantee solutions within a factor w of optimal cost (Cost <
w - OPT), trading optimality for computational efficiency.

Enhanced CBS (ECBS)(Barer et al., 2021) extends CBS using focal search at the high level,
prioritizing nodes within factor w of minimum cost in OPEN. Low-level search employs suboptimal
A* with inflated heuristics f = g + w-h. ECBS maintains 0(2° - nlog n) complexity while
ensuring w-suboptimality. Unlike ECBS, which optimizes node selection in the existing constraint
tree, Agile CBS introduces a mechanical change via dynamic sub-goal decomposition, aiming to
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structurally reduce the number of conflicts (c) itself, thus addressing a fundamental scalability
bottleneck of CBS in dense environments.

Explicit Estimation CBS (EECBS)(Li et al., 2021) incorporates heuristic estimates for both
individual agents and joint interactions, explicitly estimating total solution cost including potential
conflicts:

f(n) = X cost(a;) + h_conflict(n)

This improved cost estimation changes the order of node expansion. It cuts down on the
computational load while keeping the bounded-suboptimality guarantees intact. While EECBS
improves search effectiveness by better estimating the total cost, Agile CBS focuses on reducing
the length of the paths being considered at any one time through incremental sub-goals, leading
to localized and potentially fewer conflicts to resolve, a distinct approach to managing conflict
density in dense settings.

Anytime Algorithms, including Anytime Weighted A* (AWA*) (Stern et al., 2014) and Anytime
Repairing A* (ARA*) (Chan et al., 2023), quickly give initial suboptimal solutions and then refine
them over time to get closer to optimality. AWA™ uses a fixed inflation weight w, while ARA*
gradually lowers € from high starting values. It reuses previous search information using repair
methods. Agile CBS's decomposition of long-term objectives into incremental sub-goals enables
a form of progressive refinement, conceptually aligning with the anytime behavior of these
algorithms. The use of parameter w is also directly derived from bounded-suboptimal and anytime
search principles.

2.3 Suboptimal Algorithms

Priority-Based Search (PBS) (Barer et al., 2021) plans sequentially, assigning total priority
ordering over agents, with lower-priority agents being constrained by higher-priority paths. In
sparse settings, this achieves O0(k - nlog n) complexity, but depending on priority ordering, it
may result in deadlocks or less-than-ideal solutions.

By using fixed planning windows with reservation tables for local coordination, Windowed
Hierarchical Cooperative A* (WHCA*) (Silver, 2021) significantly reduces computation while
sacrificing completeness outside of planning horizons.

Using local push and swap operations, Push and Swap (De Wilde et al., 2013, Luna & Bekris,
2011, Sajid et al., 2021) sequentially moves agents to goals in 0(n?) time, but frequently
produces extremely suboptimal paths because of a lack of global coordination.

With velocity-based decentralized planning and O(1) complexity per agent per frame, Optimal
Reciprocal Collision Avoidance (ORCA) (Van Den Berg et al., 2011) allows for real-time
navigation but may result in deadlocks in confined spaces without global planning.

Recent innovations include HiIMAP (Tang et al.,, 2024) that incorporates learned heuristics,
MAPF-LNS2 (Huang et al., 2022) that uses machine learning-guided large neighborhood search,
and LaCAM (Okumura, 2023) for quick pathfinding. Dynamic environment adaptability is
addressed by real-time replanning techniques (Zhang et al., 2024).

3. AGILE CBS: CONCEPTUAL FRAMEWORK

3.1 Motivation

Existing CBS variants face scalability challenges in dense environments due to extensive conflict
resolution. Agile CBS addresses this through dynamic sub-goal decomposition, enabling localized
planning that reduces conflict density while maintaining bounded-suboptimality guarantees.
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3.2 Formal Definition

Let G = (V,E) be a graph and A = {ai,a,,...,ax} be k agents, where each agent a; € 4 is
defined by tuple (s;, g;) with s;,g; € V denoting start and goal vertices. Each agent seeks path
ni:N -V such that m;(0) =s;, 3T, €N where w(T) = g;,andm;(t+1) € {m;(t)} U
neighbors(m;(t)).

Agile CBS operates over a Constraint Tree (CT) t where each node N contains:

- Constraint set Cy (vertex/edge constraints per agent)

- Sub-goal set Sy = {gi1, 92+ Gix}

- Solutionmy = (my,m,,..., m,) consistent with Cy

- Cost cost(N) = % len(1r_i)

- Heuristic h(N) estimating remaining conflict resolution cost

3.3 Two-Level Architecture

High-Level Search: Best-first search over CT using evaluation function f(N) = cost(N) + w -
h(N) where w = 1 is the suboptimality bound. Node expansion proceeds by conflict detection
and constraint branching.

Low-Level Search: For each agenta;, A* computes shortest path from current position to current
sub-goal g; under constraints C,. Upon conflict detection in 7, the high-level creates child nodes
with disjoint constraints for conflicting agents, potentially reassigning local sub-goals to avoid
repetitive conflict patterns.

3.4 Complexity Analysis

Agile CBS introduces sub-goal planning phases, trading single large searches for multiple smaller
searches over fewer agents. Let m be sub-goals per agent and g be goal advancement phases.

Time Complexity: 0(g - b*") where k' < k is agents per sub-goal phase, resulting from spatial
partitioning that reduces conflict scope compared to standard CBS complexity 0(2¢ - n log n).

Space Complexity: O(g - k - |V| - T) where paths may be discarded between sub-goal phases
for memory efficiency.

3.5 Algorithm

Algorithm 1: Agile Conflict-Based Search (ACBS)

Input:
e Graph G = (V,E),
e Agents A = {ai,a,,...,a} with start vertices s; € V and goal vertices g; € V

e Boundw = 1.
Output:

e Conflict-free paths Ty = (m,,7,,...,T;), One path per agent.

Algorithm:
1. Initialize the root Conflict Tree (CT) node:

o Constraints €y = @

o Sub-goals Sy = {gi1, gizs---» Gurc}- S .
2. For each agent a;, assign an initial sub-goal g;; minimizing distance to final goal g;:

gin = arg 1gréniquist(si,v)

3. Compute initial paths for all agents using A* considering constraints Cy:
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root.paths[i] « A" (s;, gi1, Cn)
4. Set root cost:

k
root.cost « Z len(r;)
i=1
5. Initialize OPEN priority queue ordered by:
f(N) = cost(N) +w - h(N)
where h(N) is a heuristic estimate of the remaining cost.
6. Insert the root node into OPEN.
7. While OPEN # ¢:

o Popnode P < pop(OPEN).
o If P.paths is conflict-free:
= If all agents reached their final goals g;, return P.paths.

» Else, update sub-goals S, with next sub-goals for agents
and:P.paths[i] « A*(current_posi,new 9 Cy)

k
P.cost « Z len(m;)
i=1

= |Insert P into OPEN.

o Else, detect a conflict:(a;, a;, v, t)indicating agents a; and a; collide at vertex v at time
t.

= Foreach agentin {q;, a;}:
A. Create a child node new_node as a copy of P.
B. Add constraint forbidding the agent from being at vertexv at time t:
new_node. Cy < new_node.Cy U {(agent, v, t)}
C. Recompute the path respecting the new constraints:
new_node.paths[agent] « A" (current_posagm, JagenssNEW_N0deE. Cy)
D. If a valid path exists:
- Update new_node.cost « XX, len(w;)
- Insert new _node into OPEN.

4. DISCUSSION

Agile CBS presents a conceptual framework combining hierarchical planning with dynamic sub-
goal assignment. By breaking down agent objectives into smaller targets, ACBS allows for
localized conflict resolution. This reduces the computational load compared to handling conflicts
on a global scale. The bounded-suboptimality guarantee through parameter w offers a solid
theoretical foundation while providing practical flexibility.

The suggested architecture naturally supports parallel processes through independent sub-goal
planning phases and step-by-step path refinement. This setup may improve scalability in
warehouse robotics, coordination of autonomous vehicles, and air traffic management, where
real-time performance is essential.

4.1 Theoretical Advantages
Agile CBS presents a theoretical solution to the scalability challenges of traditional CBS in dense
environments through several key advantages:
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Reduced Conflict Density: By breaking long-term goals into smaller, localized sub-goals, the
planning horizon and the spatial scope of potential conflicts are significantly reduced. This is
expected to lower the critical conflict count (c), addressing the exponential complexity 0(2¢ -
n log n) that hinders CBS in dense scenarios.

Progressive Refinement: The decomposition enables the generation of intermediate, non-final
path segments, which supports an anytime behavior where initial, coarse solutions can be
progressively refined.

Bounded Guarantees: The integration of the suboptimality bound w (used in the high-level
search function f(N) = cost(N) + w - h(N) maintains a theoretical guarantee on solution
quality relative to the optimal cost.

Adaptive Replanning: The framework's ability to reassign local sub-goals upon conflict detection
allows it to adaptively target and resolve conflicts in congested regions.

4.2 Limitations
As a conceptual framework, ACBS requires empirical validation to confirm theoretical
advantages. Key challenges include:

- Sub-goal selection strategies affecting performance
- Overhead from multiple planning phases

- Heuristic design for conflict estimation

- Scalability limits in extremely dense scenarios

5. FUTURE WORK

Empirical validation will test ACBS on standard MAPF benchmarks including Sturtevant's 4-
connected grid maps (Sturtevant, 2012) with 50-100 agents in dense scenarios such as Dragon
Age maps and urban layouts. Evaluation metrics include:

Runtime performance

Solution cost X Cost(r;)

Suboptimality ratio Cost_ACBS / Cost_OPT
Scalability with agent count k

Comparative analysis against CBS, ECBS, LaCAM (Okumura, 2023), MAPF-LNS2 (Huang et al.,
2022), HIMAP (Tang et al., 2024), and real-time replanning methods (Zhang et al., 2024) will
assess efficiency in reducing conflict density and planning overhead. Implementation will
formalize sub-goal assignment strategies and integrate with existing CBS variants to enable
comprehensive performance evaluation.

6. CONCLUSION

The research question addressed by this paper is: "How can the Conflict-Based Search
framework be adapted to achieve scalable Multi-Agent Pathfinding solutions in dense
environments while maintaining bounded-suboptimality guarantees?"

Agile CBS introduces a bounded-suboptimal MAPF framework employing dynamic sub-goal
decomposition and adaptive constraint resolution. By combining hierarchical planning with
localized conflict handling, ACBS offers potential computational advantages in dense
environments. The theoretical foundation balances solution quality through bounded
suboptimality with efficiency through progressive refinement. While empirical validation remains
necessary, this conceptual approach demonstrates promising directions for scalable classical Al-
based MAPF solving. The framework's emphasis on sub-goal-driven, plan-merging strategies
represents a viable path toward addressing real-world multi-agent coordination challenges
requiring both optimality guarantees and computational efficiency.
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