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Abstract 
 
This paper presents theoretically proved Agile CBS algorithm, an extension of the traditional 
Conflict-Based Search which is customized to support bounded-suboptimal solutions for Multi-
Agent Pathfinding problems. The method uses flexible assignment of intermediate targets and 
adaptive resolution of constraints, focusing to improve scalability, especially in environments with 
high agent density. Unlike conventional CBS, which resolves conflicts reactively, Agile CBS 
decomposes long-term objectives into incremental sub-goals, enabling progressive planning 
while maintaining bounded suboptimality guarantees. The algorithm utilizes a constraint tree for 
high-level search and A* for low-level path computation, thereby reducing planning overhead in 
scenarios where optimal solvers encounter computational challenges. While theoretical in nature, 
this framework provides a foundation for developing scalable classical AI-based MAPF solvers. 
 
Keywords: Conflict-Based Search, Heuristic Search, Multi-Agent Pathfinding, Bounded 
Suboptimality, Collision Avoidance. 

 
 
1. INTRODUCTION 

In robotics, logistics, and traffic systems, where multiple agents must navigate shared spaces 
without colliding while maximizing goals like travel time or distance, Multi-Agent Pathfinding 
(MAPF) tackles coordination issues (Stern et al., 2021). Complex conflict resolution techniques 
that strike a balance between computational effectiveness and solution quality are necessary for 
the best MAPF solutions. 
 
The primary distinction between single-agent and multi-agent pathfinding is how each shapes the 
problem formulation and the solution approaches. Single-Agent Pathfinding (SAPF) determines 
optimal routes between graph nodes using algorithms like A* (Hart et al., 1968), where the 
evaluation function �(�)  =  �(�)  +  ℎ(�) guides search efficiently. When the heuristic h is 
admissible, A* guarantees optimal solutions (Dechter & Pearl, 1985). 
 
MAPF extends this model to multiple agents, each agent has its own start and goal locations. The 
objective is computing collision-free paths that minimize aggregate cost, typically the sum of 
individual path costs. This problem is NP-hard (Yu & LaValle, 2013), with state space complexity 
growing exponentially with agent count. Direct application of A* to the joint state space yields 

branching factors of 
� for � agents, making pure search-based approaches computationally 
prohibitive for large-scale instances. 
 
1.1 Collision Types in MAPF 
MAPF solutions must address multiple collision types: 
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- Vertex collisions: Multiple agents occupying the same location simultaneously 
- Edge collisions: Agents traversing the same edge in opposite directions 
- Following collisions: An agent entering a recently vacated cell 
- Wait collisions: Conflicts arising from stationary agents 

 
These collision patterns necessitate specialized detection and resolution strategies (Bing Ai et al., 
2021). 
 
1.2 Research Methodology 
The methodology adopted in this paper is deductive and conceptual. It involves the theoretical 
proposal of the Agile CBS framework by extending the known architecture of Conflict-Based 
Search (CBS) with novel components—dynamic sub-goal decomposition and bounded-
suboptimal guarantees. The paper proceeds by formalizing the framework's definitions (Section 
3.2), outlining its two-level architecture (Section 3.3), and theoretically deriving its complexity 
analysis (Section 3.4), without relying on empirical data collection or analysis in this initial phase. 

 
2. RELATED WORK 
MAPF algorithms are categorized into optimal, bounded-suboptimal, and suboptimal solvers 
based on solution quality guarantees and computational requirements. 
 
2.1 Optimal Algorithms 
Conflict-Based Search (CBS) (Sharon et al., 2014) employs a two-level architecture: the high-
level maintains a Constraint Tree (CT) where nodes represent constraint sets, while the low-level 
computes individual agent paths using A* under current constraints. When conflicts arise (vertex 
conflict 
�(�)  =  
�(�) or edge conflict), CBS branches the CT by adding constraints that prevent 

agents from occupying conflicting locations. This process continues until a conflict-free solution 
emerges. CBS achieves optimality regarding sum-of-costs but exhibits exponential time 
complexity �(2�  ·  � ��� �) where c represents conflict count and n is agent count. 
 
Increasing Cost Tree Search (ICTS) (Sharon et al., 2012) operates over cost vectors � =
 ⟨�₁, �₂, . . . , �ₖ⟩ where each �� represents agent  �′" individual path cost. ICTS explores solution 
space incrementally from minimal sum-of-costs, expanding nodes through single-agent cost 
increments while checking path combinations for conflicts. This enables effective pruning but 
incurs exponential complexity in agent count. 
 
A* with Independence Detection (A* + ID) (Ryan, 2008) initially plans paths independently, then 
progressively merges conflicting agents into meta-agents that plan over joint state spaces �(
#) 
where m is merged agent count. This achieves �(� ·  � ��� �) complexity in low-conflict scenarios 
but degrades exponentially as conflicts increase. 
 
Modified A* (M*) (Wagner & Choset, 2011) employs locality-aware planning, expanding joint 
configuration space only for conflicting agents using dynamic collision sets. With worst-case 
complexity �(|%||&|) where |�| is collision set size, M* performs efficiently in sparse-conflict 
environments but struggles with dense agent populations. 
 
2.2 Bounded-Suboptimal Algorithms 
Bounded-suboptimal algorithms guarantee solutions within a factor ' of optimal cost (��"� ≤
 ' ·  �)*), trading optimality for computational efficiency. 
 
Enhanced CBS (ECBS)(Barer et al., 2021) extends CBS using focal search at the high level, 
prioritizing nodes within factor ' of minimum cost in OPEN. Low-level search employs suboptimal 
A* with inflated heuristics � =  � +  ' · ℎ. ECBS maintains �(2�  ·  � ��� �) complexity while 
ensuring '-suboptimality. Unlike ECBS, which optimizes node selection in the existing constraint 
tree, Agile CBS introduces a mechanical change via dynamic sub-goal decomposition, aiming to 
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structurally reduce the number of conflicts (�) itself, thus addressing a fundamental scalability 
bottleneck of CBS in dense environments. 
 
Explicit Estimation CBS (EECBS)(Li et al., 2021) incorporates heuristic estimates for both 
individual agents and joint interactions, explicitly estimating total solution cost including potential 
conflicts: 

�(�)  =  + ��"�( �)  +  ℎ_�����-��(�) 
 
This improved cost estimation changes the order of node expansion. It cuts down on the 
computational load while keeping the bounded-suboptimality guarantees intact. While EECBS 
improves search effectiveness by better estimating the total cost, Agile CBS focuses on reducing 
the length of the paths being considered at any one time through incremental sub-goals, leading 
to localized and potentially fewer conflicts to resolve, a distinct approach to managing conflict 
density in dense settings. 
 
Anytime Algorithms, including Anytime Weighted A* (AWA*) (Stern et al., 2014) and Anytime 
Repairing A* (ARA*) (Chan et al., 2023), quickly give initial suboptimal solutions and then refine 
them over time to get closer to optimality. AWA* uses a fixed inflation weight ', while ARA* 
gradually lowers ε from high starting values. It reuses previous search information using repair 
methods. Agile CBS's decomposition of long-term objectives into incremental sub-goals enables 
a form of progressive refinement, conceptually aligning with the anytime behavior of these 
algorithms. The use of parameter w is also directly derived from bounded-suboptimal and anytime 
search principles. 
 
2.3 Suboptimal Algorithms 
Priority-Based Search (PBS) (Barer et al., 2021) plans sequentially, assigning total priority 
ordering over agents, with lower-priority agents being constrained by higher-priority paths. In 
sparse settings, this achieves �(� ·  � ��� �) complexity, but depending on priority ordering, it 
may result in deadlocks or less-than-ideal solutions. 
 
By using fixed planning windows with reservation tables for local coordination, Windowed 
Hierarchical Cooperative A* (WHCA*) (Silver, 2021) significantly reduces computation while 
sacrificing completeness outside of planning horizons. 
 
Using local push and swap operations, Push and Swap (De Wilde et al., 2013, Luna & Bekris, 
2011, Sajid et al., 2021) sequentially moves agents to goals in �(�²) time, but frequently 
produces extremely suboptimal paths because of a lack of global coordination. 
 
With velocity-based decentralized planning and O(1) complexity per agent per frame, Optimal 
Reciprocal Collision Avoidance (ORCA) (Van Den Berg et al., 2011) allows for real-time 
navigation but may result in deadlocks in confined spaces without global planning. 
 
Recent innovations include HiMAP (Tang et al., 2024) that incorporates learned heuristics, 
MAPF-LNS2 (Huang et al., 2022) that uses machine learning-guided large neighborhood search, 
and LaCAM (Okumura, 2023) for quick pathfinding. Dynamic environment adaptability is 
addressed by real-time replanning techniques (Zhang et al., 2024). 

 
3. AGILE CBS: CONCEPTUAL FRAMEWORK 
3.1 Motivation 
Existing CBS variants face scalability challenges in dense environments due to extensive conflict 
resolution. Agile CBS addresses this through dynamic sub-goal decomposition, enabling localized 
planning that reduces conflict density while maintaining bounded-suboptimality guarantees. 
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3.2 Formal Definition 
Let / =  (%, 0) be a graph and 1 =  { ₁,  ₂, . . . ,  ₖ} be � agents, where each agent  � ∈  1 is 
defined by tuple ⟨"� , ��⟩ with "� , �� ∈  % denoting start and goal vertices. Each agent seeks path 

�: ℕ →  % such that 
�(0)  =  "� , ∃ *� ∈ ℕ where 
�(*�)  =  �� ,  �: 
�(� + 1)  ∈  {
�(�)}  ∪
 �=-�ℎ
�>"(
�(�)). 
 
Agile CBS operates over a Constraint Tree (CT) ? where each node @ contains: 
 

- Constraint set �A (vertex/edge constraints per agent) 
- Sub-goal set BA  = {��C, ��D, . . . , ���} 
- Solution 
A  =  ⟨
C, 
D, . . . , 
�⟩ consistent with �A 
- Cost cost(N) = Σ len(π_i) 
- Heuristic ℎ(@) estimating remaining conflict resolution cost 

 
3.3 Two-Level Architecture 
High-Level Search: Best-first search over CT using evaluation function �(@)  =  ��"�(@)  +  ' ·
 ℎ(@) where ' ≥  1 is the suboptimality bound. Node expansion proceeds by conflict detection 
and constraint branching. 
 
Low-Level Search: For each agent �, A* computes shortest path from current position to current 
sub-goal �� under constraints �A. Upon conflict detection in 
A, the high-level creates child nodes 
with disjoint constraints for conflicting agents, potentially reassigning local sub-goals to avoid 
repetitive conflict patterns. 
 
3.4 Complexity Analysis 
Agile CBS introduces sub-goal planning phases, trading single large searches for multiple smaller 
searches over fewer agents. Let F be sub-goals per agent and � be goal advancement phases. 
 
Time Complexity: �(� ·  
�G) where �′ <  � is agents per sub-goal phase, resulting from spatial 
partitioning that reduces conflict scope compared to standard CBS complexity �(2�  ·  � ��� �). 
 
Space Complexity: �(� ·  � ·  |%| ·  *) where paths may be discarded between sub-goal phases 
for memory efficiency. 
 
3.5 Algorithm 

Algorithm 1: Agile Conflict-Based Search (ACBS) 

Input: 

• Graph / =  (%, 0), 

• Agents 1 =  { ₁,  ₂, . . . ,  ₖ}  with start vertices "� ∈  % and goal vertices �� ∈  % 

• Bound ' ≥  1. 
Output: 

• Conflict-free paths 
A  =  ⟨
C, 
D, . . . , 
�⟩, one path per agent. 

Algorithm: 
1. Initialize the root Conflict Tree (CT) node: 

o Constraints �A =  ∅ 

o Sub-goals BA  = {��C, ��D, . . . , ���}. 
2. For each agent  �, assign an initial sub-goal ��C minimizing distance to final goal ��: ��C = arg minP∈QR

 dist("� , T) 

3. Compute initial paths for all agents using A* considering constraints �A: 
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root.paths[-] ← A
∗("� , ��C, �A) 

4. Set root cost: 

root.cost ← Y  
�

�ZC
len(
�) 

5. Initialize OPEN priority queue ordered by: 
�(@) = cost(@) + ' ⋅ ℎ(@) 

where ℎ(@) is a heuristic estimate of the remaining cost. 
6. Insert the root node into �)0@. 
7. While �)0@ ≠ ∅: 

o Pop node ) ←  ]�](�)0@). 

o If ). ] �ℎ" is conflict-free: 

 If all agents reached their final goals ��, return ). ] �ℎ". 

 Else, update sub-goals BA with next sub-goals for agents 

and:).paths[-] ← A
∗^current_pos� ,new �� , �A_ 

).cost ← Y  
�

�ZC
len(
�) 

 Insert ) into �)0@. 

o Else, detect a conflict:( � ,  � , T, �)indicating agents  �   �:  � collide at vertex T at time 

�. 

 For each agent in { � ,  �}: 
A. Create a child node new_node as a copy of ). 

B. Add constraint forbidding the agent from being at vertexT at time �: 

new_node. �A ← new_node. �A ∪ {( �=��, T, �)} 
C. Recompute the path respecting the new constraints: 

new_node.paths[ �=��] ← A∗(current_pos`abcd, �`abcd,new_node. �A) 
D. If a valid path exists: 

- Update new_node.cost ← ∑  ��ZC len(
�) 
- Insert new_node into �)0@. 

 
4. DISCUSSION 
Agile CBS presents a conceptual framework combining hierarchical planning with dynamic sub-
goal assignment. By breaking down agent objectives into smaller targets, ACBS allows for 
localized conflict resolution. This reduces the computational load compared to handling conflicts 
on a global scale. The bounded-suboptimality guarantee through parameter w offers a solid 
theoretical foundation while providing practical flexibility. 
 
The suggested architecture naturally supports parallel processes through independent sub-goal 
planning phases and step-by-step path refinement. This setup may improve scalability in 
warehouse robotics, coordination of autonomous vehicles, and air traffic management, where 
real-time performance is essential. 
 
4.1 Theoretical Advantages 
Agile CBS presents a theoretical solution to the scalability challenges of traditional CBS in dense 
environments through several key advantages: 
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Reduced Conflict Density: By breaking long-term goals into smaller, localized sub-goals, the 
planning horizon and the spatial scope of potential conflicts are significantly reduced. This is 
expected to lower the critical conflict count (�), addressing the exponential complexity �(2�  ·
 � ��� �) that hinders CBS in dense scenarios. 
 
Progressive Refinement: The decomposition enables the generation of intermediate, non-final 
path segments, which supports an anytime behavior where initial, coarse solutions can be 
progressively refined. 
 
Bounded Guarantees: The integration of the suboptimality bound w (used in the high-level 
search function �(@)  =  ��"�(@)  +  ' ·  ℎ(@) maintains a theoretical guarantee on solution 
quality relative to the optimal cost. 
 
Adaptive Replanning: The framework's ability to reassign local sub-goals upon conflict detection 
allows it to adaptively target and resolve conflicts in congested regions. 

 
4.2 Limitations 
As a conceptual framework, ACBS requires empirical validation to confirm theoretical 
advantages. Key challenges include: 
 

- Sub-goal selection strategies affecting performance 
- Overhead from multiple planning phases 
- Heuristic design for conflict estimation 
- Scalability limits in extremely dense scenarios 

 
5. FUTURE WORK 

Empirical validation will test ACBS on standard MAPF benchmarks including Sturtevant's 4-
connected grid maps (Sturtevant, 2012) with 50-100 agents in dense scenarios such as Dragon 
Age maps and urban layouts. Evaluation metrics include: 
 

- Runtime performance 
- Solution cost + ��"�(
�) 
- Suboptimality ratio ��"�_1�fB / ��"�_�)* 
- Scalability with agent count � 

 
Comparative analysis against CBS, ECBS, LaCAM (Okumura, 2023), MAPF-LNS2 (Huang et al., 
2022), HiMAP (Tang et al., 2024), and real-time replanning methods (Zhang et al., 2024) will 
assess efficiency in reducing conflict density and planning overhead. Implementation will 
formalize sub-goal assignment strategies and integrate with existing CBS variants to enable 
comprehensive performance evaluation. 

 
6. CONCLUSION 
The research question addressed by this paper is: "How can the Conflict-Based Search 
framework be adapted to achieve scalable Multi-Agent Pathfinding solutions in dense 
environments while maintaining bounded-suboptimality guarantees?" 
 
Agile CBS introduces a bounded-suboptimal MAPF framework employing dynamic sub-goal 
decomposition and adaptive constraint resolution. By combining hierarchical planning with 
localized conflict handling, ACBS offers potential computational advantages in dense 
environments. The theoretical foundation balances solution quality through bounded 
suboptimality with efficiency through progressive refinement. While empirical validation remains 
necessary, this conceptual approach demonstrates promising directions for scalable classical AI-
based MAPF solving. The framework's emphasis on sub-goal-driven, plan-merging strategies 
represents a viable path toward addressing real-world multi-agent coordination challenges 
requiring both optimality guarantees and computational efficiency. 
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