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Abstract 
 
This paper presents the implementation of a novel technique for sensor based path planning of 
autonomous mobile robots. The proposed method is based on finding free-configuration eigen 
spaces (FCE) in the robot actuation area. Using the FCE technique to find optimal paths for 
autonomous mobile robots, the underlying hypothesis is that in the low-dimensional manifolds of 
laser scanning data, there lies an eigenvector which corresponds to the free-configuration space 
of the higher order geometric representation of the environment. The vectorial combination of all 
these eigenvectors at discrete time scan frames manifests a trajectory, whose sum can be 
treated as a robot path or trajectory. The proposed algorithm was tested on two different test bed 
data, real data obtained from Navlab SLAMMOT and data obtained from the real-time robotics 
simulation program Player/Stage. Performance analysis of FCE technique was done with existing 
four path planning algorithms under certain working parameters, namely computation time 
needed to find a solution, the distance travelled and the amount of turning required by the 
autonomous mobile robot. This study will enable readers to identify the suitability of path planning 
algorithm under the working parameters, which needed to be optimized. All the techniques were 
tested in the real-time robotic software Player/Stage. Further analysis was done using MATLAB 
mathematical computation software. 
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1. INTRODUCTION 

Motion planning is one of the most important tasks in intelligent control of an autonomous mobile 
robot (AMR). It is often decomposed into path-planning and trajectory planning. Path planning is 
referred as to generate a collision free path in an environment with obstacles. Whereas, trajectory 
planning schedule the movement of a mobile robot along the planned path. Based on the 
availability of information about environment, the path-planning algorithms are divided into two 
categories, namely offline and online. Offline path planning of robots in environments uses 
complete information about stationary obstacles and trajectory of moving obstacles, which are 
known in advance. This method is also known as global path planning. When complete 
information about environment is not available in advance, the mobile robot gets information 
through sensors, as it moves through the environment. This is known as online or local path 
planning. Essentially, online path planning begins its initial path offline but switches to online 
mode when it discovers new changes in obstacle scenario. Classical approaches used in online 
path planning are Potential Filed approach (PF), collision–cone approach, and vector field 
histogram (VFH) method. Khatib [1] proposed the Artificial Potential Field (APF) approach which 
is popular in mobile robotics. This approach is known for its mathematical elegance and simplicity 
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as the path is found with very little computation. However, the drawback of this algorithm is that 
the robot may become stagnant or trapped when there is a cancellation of equal magnitudes of 
attractive and repulsive forces. Till date many variants of the potential field approach like escape-
force algorithm [2], trap recovery model, adaptive virtual target algorithm etc. have been 
proposed. Path planning problems can also be solved by VFH approach [3]. At every instant, a 
polar histogram is generated to represent the polar density of obstacles around a robot. The 
robot’s steering direction is chosen based on the least polar density and closeness to the goal. In 
a given environment, the polar histogram must be regularly regenerated for every instant and 
hence this method is suited for environments with sparse moving obstacles. Another commonly 
used online approach is based on the collision cone concept [4]. The Collision of a robot can be 
averted if the relative velocity of it with respect to a particular obstacle falls exterior to the collision 
cone. Another online approach for obstacle avoidance is dynamic windows approach [5]. The 
dynamic window contains the feasible linear and angular velocities taking into consideration the 
acceleration capabilities of a robot. Then the velocity at the next instant is optimized for obstacle 
avoidance subject to vehicle dynamics. With classical techniques, the optimum result requires 
more computational time due to incomplete information of the environment. This classical 
approach can be combined with heuristic approaches like genetic algorithm (GA) and particle 
swarm optimization (PSO) [6].  Another class of online path planning algorithms are sampling 
based path planning algorithms like rapidly evolving random trees (RRT) and probabilistic 
roadmap methods PRM [7].  The idea of connecting points sampled randomly from the state 
space is essential in both RRT and PRM approaches. 
 
A limitation of the classical planning algorithm is that a complete model of the environment is 
needed before the planner can proceed. A solution to this problem is a sensor based path 
planner. Sensor based planner allows robots to work autonomously in unknown environments. 
Specifically the robot is able to move to a given configuration without prior knowledge of the 
environment. The motion of the robot is generated step by step while more and more knowledge 
about the environment is accumulated incrementally. A great variety of sensors that can be used 
for robots includes tactile sensor, vision sensor, sonar sensor etc. A well-known sensor based 
technique is “Bug” family. These path planners incorporates sensing and path planning as an 
integrated solution. Bug algorithms assume only local knowledge of the environment and a global 
goal. The most commonly used sensor based robot path planners are Bug1, Bug2, TangentBug, 
DistBug, and VisBug [8] .Bug 1 and Bug 2 uses tactile sensors while tangent bug, and Distbug 
uses range sensors. These techniques require its own position by using odometry, goal position 
and range sensor. In this paper, a novel sensor based path planning technique is proposed, 
namely, free-configuration eigenspace (FCE). This approach tends to find principal components 
(Eigenvectors) spanning the low dimensional space (Eigenspace) of high order scanning data. 
Integrating the highest eigenvector in time steps can produce a collision free trajectory. 
 
In this paper, we have compared our proposed FCE path planning approach with other well- 
known path planning techniques. Also, we have analyzed the path produced by any path planner 
based on the following parameters. Path Length: distance of the path from start to finish. 
Computation time: algorithm’s total execution time excluding time spent during driving (i.e. from 
start to goal). Turning: the amount of turning which is performed along the path from start to 
finish. Memory requirements: the amount of global memory reserved by the algorithm. For good 
path planner it is assumed that all these parameter should be as small as possible.  
 
This paper is organized as follows, in section 2, the Problem formulation and proposed technique 
is presented. In Section 3 the materials and methods used are explained. Section 3.3 describes 
the detection of eigensapce and trajectory generation algorithms. Section 4 explains about the 
experimental set up and implementation of the FCE algorithm. In section 5 a detailed 
performance analysis done with existing four planning algorithms namely, APF, A*, RRT and 
PRM and section 6 with conclusion. 
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2. PROBLEM FORMULATION 
2.1 Free-Configuration Space 
Finding a collision free path problem can be formulated as a search in a confi

Let A be a robot, moving in a Euclidean space

be fixed rigid bodies distributed in 

configuration of A is a specification of the position of every point in 

WF  is a Cartesian coordinate system. The configuration space of 

with all possible configurations of 

by A(q). A path from an initial configuration 
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of obstacles denoted by BB ,, 21

                          

{)( =i qBC

                           

Which is called as obstacleC . The union of all  

                       
Ufree CC −=

A collision free path between two configurations is any continuous path  

 

                               
 
FIGURE 1: Configuration Space 2D Model 

arrows inside the scan area are the eigenvectors and the red arrows outside the laser scan region show the 

 
2.2 Proposed FCE Technique 
To obtain a collision free path, we have utilized
Eigenspaces” which explains the underlying
represented by an eigenvector which corresponds to th
vectorial combination of all these eigen
trajectory. To realize the above 
critical hypotheses: 

Robotics and Automation (IJRA), Volume (6) : Issue (1) : 2015 

PROBLEM FORMULATION  
pace Concept  

Finding a collision free path problem can be formulated as a search in a configuration space [9

Euclidean space. 
N

RW = , where N = 2 or 3. Let 

be fixed rigid bodies distributed in W are called as obstacles and are the closed subsets of 

is a specification of the position of every point in A with respect to

is a Cartesian coordinate system. The configuration space of A is the space denoted by C, 

with all possible configurations of A. The subset of W occupied by A at configuration

A path from an initial configuration initq  to a goal configuration goalq  is a continuous 

goalq=  and initq=)0(τ . The workspace contains a finite number 

nB,,K . Each obstacle maps in C to a region: 

}0)(| ≠∩∈ iBqAC
                                (1) 

. The union of all  obstacleC  is the region U
n

i iBC
1

)(
=

and the set

U
n

i iBC
1

)(
=                                                          (2)

A collision free path between two configurations is any continuous path  [ ] →1,0:τ

 

Configuration Space 2D Model - The blue line represents the laser scan area, whereas the red 
arrows inside the scan area are the eigenvectors and the red arrows outside the laser scan region show the 

obstacle region. 

FCE Technique  
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To realize the above methodology of path planning, we have set forth the basis of two 
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1. H1: In the exploration process t
paths which lie in that space can form an exploratory
 
2. H2: The free-configuration space path shows a distinct pattern in the sensor data (surrounded 
by obstacles) and can be learnt to pr
According to the hypothesis:  

 

• The single vector formulation of the trajectory point can be described as
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3. MATERIALS AND METHODS 
3.1 Laser Sensor Model   
Range sensing is a crucial element of any obstacle avoidance system. 
obstacle detection are 2-D LADAR (i.e., a laser that scans in one plane). 2
widely used sensor for obstacle detection
measurement of time-of-flight (TOF)

by its range and bearing, with the resolution of

range of 5 meters. Where the center position

terms of the world coordinates frame. The incoming data are numbered as
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: In the exploration process there lies a free-configuration space, such that the discrete 
paths which lie in that space can form an exploratory-trajectory 

configuration space path shows a distinct pattern in the sensor data (surrounded 
by obstacles) and can be learnt to produce a better quality exploratory map. 

The single vector formulation of the trajectory point can be described as

)
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Consequently the vectorial sum of all the free-configuration eigen

 

AND METHODS  

Range sensing is a crucial element of any obstacle avoidance system. Sensors suitable for 
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pace, such that the discrete 

configuration space path shows a distinct pattern in the sensor data (surrounded 

The single vector formulation of the trajectory point can be described as; 
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(a)                                                                 
 
FIGURE 2:  (a)The Pioneer 2AT autonomous mobile robot

 
3.2  Dimensionality Reduction 
Using the SICK-laser a large number of point feature
correspond to the same environmenta
to extract higher-order features 
data patterns. Principal Components Analysis (PCA) is a powerful 
bases functions that can be linearly combined to represent
been used extensively to cluster sets of point features in a map
represent each cluster of point features, generat
representation using just the four parameters of the endpoints of 2
the highest eigenvector is to be found by applying PCA to the sensor data which can be 
integrated in discrete time scan to get a trajectory.
 
3.3 Eigenspace Detection Method  
It is possible to produce a trajectory as vectorial combination of highest eigenvectors in discrete 
time scan frame of sensor scanning data.
this direction shown by the eigen
vehicle to pass through. Hence it can be ascertaine
by the dimensionality reduction technique, with reference to the vehicle pose at that point along 
with the sensor data. The pose of the mobile robot is denoted by the position and orientation (x, y, 
θ) in the map. In the beginning we compute the 
which is commonly used for constructing range data maps in robotics.
map, sensor’s position and robot’s orientation, while
accurately. The algorithm for eigen
evident that the highest eigenvector
the vehicle can easily manure without hitting the obstacle and hence this space 
as free-configuration eigenspace
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                                                                (b) 

autonomous mobile robot (AMR) carrying an onboard SICK laser 
(b) A single laser scan plot output. 

Reduction Technique  
laser a large number of point features can be obtained and

the same environmental structure. The dimensionality reduction technique enables 
order features in lower dimensional manifold representations which capture the 

data patterns. Principal Components Analysis (PCA) is a powerful tool that com
s functions that can be linearly combined to represent a collection of data [1

been used extensively to cluster sets of point features in a map. We can extract line segments to 
represent each cluster of point features, generating very efficient representations, e.g., a 

using just the four parameters of the endpoints of 2-d line segment
vector is to be found by applying PCA to the sensor data which can be 

scan to get a trajectory. 

ethod   
It is possible to produce a trajectory as vectorial combination of highest eigenvectors in discrete 

frame of sensor scanning data. But to ensure the easy manoeuvring of the robot along
is direction shown by the eigenvector, one must make sure that there is enough space 

vehicle to pass through. Hence it can be ascertained by plotting the all the eigenvector
by the dimensionality reduction technique, with reference to the vehicle pose at that point along 
with the sensor data. The pose of the mobile robot is denoted by the position and orientation (x, y, 
) in the map. In the beginning we compute the visibility model, which is the data2D laser 

commonly used for constructing range data maps in robotics. In order to construct such 
nsor’s position and robot’s orientation, while obtaining laser scans should be estimated 

The algorithm for eigenspace detection is described below. From the Fig.
eigenvector shows the direction of maximum free space through which 

the vehicle can easily manure without hitting the obstacle and hence this space w
space.  
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a collection of data [16]. PCA has 
e can extract line segments to 

esentations, e.g., a 
d line segment. In this case, 

vector is to be found by applying PCA to the sensor data which can be 

It is possible to produce a trajectory as vectorial combination of highest eigenvectors in discrete 
the robot along 

vector, one must make sure that there is enough space for the 
vectors obtained 

by the dimensionality reduction technique, with reference to the vehicle pose at that point along 
with the sensor data. The pose of the mobile robot is denoted by the position and orientation (x, y, 

visibility model, which is the data2D laser sensor, 
In order to construct such 

should be estimated 
space detection is described below. From the Fig. 3 it is 
shows the direction of maximum free space through which 

e have named 
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Algorithm 1:  Finding Free-Configuration Space
Input: The Pose data (x, y, theta), 
Output: Eigenspace (Eigenvectors)
 
Begin  
     Initialize Pose (x, y, theta), n, p 
           M = [ ]  
      for Time = 1 to n 
             for angle =-90 : 0.05: 90
                   M(time, angle) = d(Time, angle )
                end  
        end 
       Calculate the Covariance of M
 
      Calculate the Eigenvalues (V) and Vectors
          for i = 0,1,…,m 
                  for angle =-90 : 0.5:90

                        
sin(

cos(

max

max

EE

EE

y

x

×=

×=

λλ

λλ

                  
      end 

           end  
        Plot the eigenvectors from 
End 

 
 

 
(a)

 
FIGURE 3: (a) Principle  components extracted from the laser data, the green vectors are the smaller 

eigenvectors, whereas the red vector is the highest principal component, 

      
3.4 Autonomous Robot Trajectory 
According to the hypotheses in low
eigenvector which will represent
highest eigenvector in discrete time can be integrated to get an exploratory trajectory .The 
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Configuration Space 
The Pose data (x, y, theta), sensor scanning data (matrix) 

vectors) 

Initialize Pose (x, y, theta), n, p  

90 
M(time, angle) = d(Time, angle ) 

Calculate the Covariance of M 

Calculate the Eigenvalues (V) and Vectors (E) of the Covariance of M    

90 : 0.5:90 

)sin(

)cos(

angle

angle
 

Plot the eigenvectors from the corresponding vehicle pose, 

(a)                                                   (b) 
 

components extracted from the laser data, the green vectors are the smaller 
eigenvectors, whereas the red vector is the highest principal component, (b) the RED Vector 

towards maximum the free area. 

rajectory Generation Method   
hypotheses in low-dimensional manifolds of laser scanning data, there lies an 

represent free area or obstacle area. Assuming this to be free area, the 
vector in discrete time can be integrated to get an exploratory trajectory .The 
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following algorithm describes trajectory formation using eigen
trajectory and the actual trajectory with laser scans
  

Algorithm 2: Trajectory connectivity in Free
 
Input: Robot Pose data, sensor
Output: Highest Eigenvector   Sensor data in discrete time scan 
  Begin 
      Initialise Pose (x, y, theta), n, p 
       M = [ ]  
       for   Time = 1 to n 
            for angle =-90 : .05:90 
                    M(time, angle) = d(Time, angle )
            end  
       end 
          Calculate the Covariance of M 
          Calculate the Eigenvalues (V) and Vectors (E) of the Covariance of M
          Sort the diagonal of E in descending order
          Taking the Maximum of E and its corresponding V
           Plot E and V from the initial Pose(x,y,
                   

             
sin(

cos(

max

max

angleEE

EE

y

x

×=

×=

λλ

λλ

        Plot the eigenvectors from the corresponding vehicle pose  ,Pose(x,y,theta)
    End 
 

FIGURE 4: Green & red lines showing the trajectory formed

 
4.  EXPERIMENTAL SETUP and 
4.1 Player/Stage Data Simulation
The proposed technique was applied to the robotic
system (RTOS) Ubuntu 8.04 Hardy
RAM. The environment was created in 
robotic software, Player/Stage as shown in Fig
that contain positions of environment floor plan, a pioneer 2DX autonomous mobile robot, laser 
sensor, odometry sensor. The mobile robot is defined as a non
can move around in the environment and can sense the obstacle by measuring the laser distance 
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rajectory formation using eigenvectors. The obtained eigen
jectory and the actual trajectory with laser scans for Navlab test bed data are shown in Fig.4.

Trajectory connectivity in Free-Configuration Space 

, sensor measurement data M 
vector   Sensor data in discrete time scan  

Initialise Pose (x, y, theta), n, p  

M(time, angle) = d(Time, angle ) 

Calculate the Covariance of M  
Calculate the Eigenvalues (V) and Vectors (E) of the Covariance of M 
Sort the diagonal of E in descending order 
Taking the Maximum of E and its corresponding V 

V from the initial Pose(x,y,theta) as follows 

)

)

angle

angle
 

Plot the eigenvectors from the corresponding vehicle pose  ,Pose(x,y,theta) 

 

 
red lines showing the trajectory formed by the Eigenvectors in discrete

laser data. 

EXPERIMENTAL SETUP and SYSTEM DESCRIPTION   
Data Simulation  

applied to the robotic simulator running under real-
ystem (RTOS) Ubuntu 8.04 Hardy–heron on 2.0 GHz Intel dual core processor having 3 GB of 

RAM. The environment was created in real time (distributed under GNU) 2D autonomous m
Stage as shown in Fig. 5. A configuration definition XML file was created 

that contain positions of environment floor plan, a pioneer 2DX autonomous mobile robot, laser 
The mobile robot is defined as a non-holonomous (pioneer2DX) , which 

environment and can sense the obstacle by measuring the laser distance 
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vectors. The obtained eigenvector 
are shown in Fig.4. 

 

 

e time scan of 
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time (distributed under GNU) 2D autonomous mobile 
nfiguration definition XML file was created 

that contain positions of environment floor plan, a pioneer 2DX autonomous mobile robot, laser 
holonomous (pioneer2DX) , which 

environment and can sense the obstacle by measuring the laser distance 



 
Shyba Zaheer & Tauseef Gulrez 

International Journal of Robotics and 

from its Centre point of gravity. TCP/IP sockets are used to for the communication between the 
mobile robotic agent and the robotic software server. For experimental purposes, the mobil
robot’s Laser data and the odometer readings   was recorded using player/stage data commands, 
processed/ reduced online as shown in the Fig.
was  implemented in MATLAB (product of Mathworks Inc.)
segments and each segment’s consecutive laser sensor readings were taken. The latent values 
were found for these chunks of laser data using PCA analysis. T
eigenvector) were integrated in time and the 
robot and environment is shown in the Fig
eigenvector trajectory in blue   
 
 

                     
(a)                                                                                       

                      
                                    (c) 
                       
FIGURE 5: (a) 2Dview of the environment with the laser mounted autonomous mobile robot. (b) Simulated 

laser plot. (c) Graphical User Interface client program “playerv” that visualizes laser data from a player 
server, (c) The Actual tr

 
4.2 Real Time Data Simulation 
The scenario of Navlab SLAMMOT Datasets, Carnegie Mellon University USA as s
in yellow Loop-2. The laser data for the entire loop was divided in to four segments and within 
each segment consecutive laser sensor readings was taken. The latent value
PCA analysis and the  latent values (highest eigen
trajectory was obtained .This new  trajectory and the actual trajectory was compared and an error 
graph was plotted as shown in  Fig. 6 (c , d, e, g) . It was 
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point of gravity. TCP/IP sockets are used to for the communication between the 
mobile robotic agent and the robotic software server. For experimental purposes, the mobil
robot’s Laser data and the odometer readings   was recorded using player/stage data commands, 
processed/ reduced online as shown in the Fig. 5.The proposed trajectory detection methodology 

(product of Mathworks Inc.). The actual trajectory was divided in
and each segment’s consecutive laser sensor readings were taken. The latent values 

were found for these chunks of laser data using PCA analysis. The latent values (highest 
vector) were integrated in time and the new trajectory was obtained. The scenario of the 

robot and environment is shown in the Figure.5(c) and the actual trajectory (in red) and the 
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                                                                  (d) 

(a) 2Dview of the environment with the laser mounted autonomous mobile robot. (b) Simulated 
laser plot. (c) Graphical User Interface client program “playerv” that visualizes laser data from a player 

server, (c) The Actual trajectory & learned trajectory (red). 

imulation  
SLAMMOT Datasets, Carnegie Mellon University USA as s

The laser data for the entire loop was divided in to four segments and within 
onsecutive laser sensor readings was taken. The latent values were found using 

e  latent values (highest eigenvector)were integrated in time and the new 
trajectory was obtained .This new  trajectory and the actual trajectory was compared and an error 

as shown in  Fig. 6 (c , d, e, g) . It was concluded from the Fig. 6(b) that at 
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(a) 2Dview of the environment with the laser mounted autonomous mobile robot. (b) Simulated 
laser plot. (c) Graphical User Interface client program “playerv” that visualizes laser data from a player 

SLAMMOT Datasets, Carnegie Mellon University USA as shown in Fig. 6 
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corners, the direction of eigenvector obtained deviated from the actual trajectory where as in a 
straight line segment, the eigenvector
 

(a)                                                                  

 
(c)                                                                       

                                      (e )                                                                  (f)
FIGURE 6: (a)The Aerial Photo is downloaded from and the copyrighted property of GlobeXplorer, LLC. 

(“GlobeXplorer”). The trajectory (Loop
obtained after applying PCA to the laser data

segments vs laser-data chunks and their error bounds for PCA with real

4.3 Experimental Result Analysis 
We have tested the developed 
result plots for the real time data
constructed eigenvector  trajectory  (in red)  is perfectly matching 
actual trajectory. But, failed to produce goo
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vector obtained deviated from the actual trajectory where as in a 
eigenvector is very much close to the actual trajectory. 

    
                                                                 (b) 

                                                                   (d) 

(e )                                                                  (f) 
(a)The Aerial Photo is downloaded from and the copyrighted property of GlobeXplorer, LLC. 

(“GlobeXplorer”). The trajectory (Loop-2) in yellow, was used for laser data-set collection. (b)The trajectory 
obtained after applying PCA to the laser data-set. (c).(d),(e) (f)error-plots show the respective trajectory 

data chunks and their error bounds for PCA with real-trajectory

 
esult Analysis  
developed algorithm on real time and simulated laser data set. 

result plots for the real time data, as shown in Fig. 6(b) & Fig. 6(d), it is evident tha
vector  trajectory  (in red)  is perfectly matching on the longer segments of

failed to produce good results on the corners. In order to get 
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vector obtained deviated from the actual trajectory where as in a 

 

 

 

(a)The Aerial Photo is downloaded from and the copyrighted property of GlobeXplorer, LLC. 
set collection. (b)The trajectory 

plots show the respective trajectory 
trajectory. 

and simulated laser data set. From  the 
it is evident that  the 

on the longer segments of the 
 a clear picture 
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about the corner misalignment of
2D map of the laser data. It is also evident from Fig
deviating away from the actual trajectory of the robot.  
 

FIGURE 7: The 2D map obtained from plotting the outliers of laser data and the 

5.   PERFOMANCE ANALYSIS  
The path produced by any path planner can be 
Length: distance of the path from start to finish. 
time excluding time spent driving. 
path from start to finish. Memory requirements
algorithm. The following section 
planners APF, RRT, PRM and 
scenarios Room1 and Room2 and found the estimated values for all the
consideration. The analysis was done using
below tables summaries the results obtained
 

       
(a)                                                                                       
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about the corner misalignment of the trajectory, we plotted the Navlab data trajectories with
It is also evident from Fig. 7, at the corners the eigenvector

deviating away from the actual trajectory of the robot.   

 
 

The 2D map obtained from plotting the outliers of laser data and the actual trajectory
the eigenvector trajectory(blue). 

 
PERFOMANCE ANALYSIS   

The path produced by any path planner can be analysed on the following parameters.
: distance of the path from start to finish. Computation time: algorithm’s total execution 

g time spent driving. Turning: the amount of turning which is performed along the 
Memory requirements: the amount of global memory reserved by the 

The following section illustrate the result performance analysis done
and A* with the proposed FCE method. We have considered

oom2 and found the estimated values for all the parameters under 
. The analysis was done using MATLAB mathematical computation software

esults obtained:  

                         
                                                                                      (b) 
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trajectories with in the 
eigenvector trajectory is 

actual trajectory (black) and 

on the following parameters. Path 
algorithm’s total execution 

is performed along the 
: the amount of global memory reserved by the 

done existing path 
considered two 

parameters under 
MATLAB mathematical computation software. The 
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                             (i)                                                                                 (

            
                                         (k)                                    

 
FIGURE 8: Trajectories obtained from different Path

of Room-2. c) Trajectories obtained from FCEalgorithm from scenario of Room
points trajectory, where as green is the FCE algorithm t

from scenario of Room-2. The red is normal way points trajectory, where as green is the FCE algorithm 
trajecorty. e) Trajectory obtainedfrom APF method for scenario of Room

method forscenario of Room-2. g) Trajectory obtained from RRT method fromscenario of Room
Trajectory obtained from RRT method from scenario of Room

method from scenarioof Room-1. j) Smoothed trajecto
2. k) Trajectory obtained from A* method from scenario of Room

 

Source = [70 70]; in Y, X format
Goal = [400  400]  in Y, X format
 

Technique Scenario

RRT Room1

PRM Room1

APF Room1

A* Room1

FCE Room1
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)                                                                                 (j)          

   
)                                                                  (l)                     

Trajectories obtained from different Path-planning alogrithms. a) Scenario of Room
2. c) Trajectories obtained from FCEalgorithm from scenario of Room-1. The red is normal way 

points trajectory, where as green is the FCE algorithm trajecorty. d) Trajectories obtained from FCE algorithm 
2. The red is normal way points trajectory, where as green is the FCE algorithm 

trajecorty. e) Trajectory obtainedfrom APF method for scenario of Room-1. f) Trajectory obtained fr
2. g) Trajectory obtained from RRT method fromscenario of Room

Trajectory obtained from RRT method from scenario of Room-2. i) Smoothed trajectory obtained from PRM 
1. j) Smoothed trajectory obtained from PRM method from scenario of Room

method from scenario of Room-1.l) Trajectory obtained from A
scenario of Room-2. 

[70 70]; in Y, X format. 
[400  400]  in Y, X format. 

Scenario Path length(cm) Processing time Max-turn(cm

Room1 5.646315e+002 1.513718e+002 0.1412 

Room1 4.491235e+002 1.848314e+001 -0.0019 

Room1 5.889301e+002 1.846913e+000 3.00 

Room1 4.740559e+002 4.430567e+001 0.1474 

Room1 10.91235e+002 1.98314e+001 1.7471 

 
TABLE 1: Result for Room1. 
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)                      

planning alogrithms. a) Scenario of Room-1. b) Scenario 
1. The red is normal way 

rajecorty. d) Trajectories obtained from FCE algorithm 
2. The red is normal way points trajectory, where as green is the FCE algorithm 

1. f) Trajectory obtained from APF 
2. g) Trajectory obtained from RRT method fromscenario of Room-1. h) 

2. i) Smoothed trajectory obtained from PRM 
ry obtained from PRM method from scenario of Room-

1.l) Trajectory obtained from A* method from 

turn(cm
-1) 
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Source = [140 260]; in Y, X format. 
Goal = [260  140]  in Y, X format. 
 

Technique Scenario Path 
length(cm) 

Processing 
time 

Max-turn(cm
-1) 

RRT Room2 3.347247e+000 3.012290e+000 0.0004 

PRM Room2 2.806335e+002 3.273510e+000 0.0854 

APF Room2 3.234583e+002 1.037137e+000 -0.0204 

A* Room2 2.482843e+002 5.420330e+001 0.1574 

FCE Room2 6.234583e+002 2.012290e+000 2.900 

 

TABLE 2: Result for Room2. 

 
5.1 Result Analysis  
As shown in Table-1 & 2, performance analysis on different path planning algorithms shows that 
the PRM technique performs better in terms of turning and path length. But it is probabilistic 
complete. But RRT is faster as compared to PRM and produce fine path with minimum turning. 
Even though A*shows an optimal path, the computational cost is high and the clearance space 
from the obstacle is low. The APF algorithm requires less computational time but the path length 
depends on the set value of the potential forces and it suffers from local-minima problem. In case 
of FCE, the path length and turning value are comparatively larger than all other methods.A good 
path is relatively short, keeps some clearance distance from the obstacles, and is smooth. Result 
analysis shows APF and proposed FCE technique is better on this attributes. 

 
6. CONCLUSIONS 
This paper proposes a novel path planning problem of an autonomous mobile robot navigating in 
a structured unknown environments, using free-configuration eigenspaces (FCE). The results are 
very much consistent with the hypothesis we laid for our research in the beginning, i.e. trajectory 
formation in correspondence to the highest eigenvector of the free-configuration laser data 
always results into a better exploration of the unknown area. Consequently by adapting to the 
similar trajectory formations, the autonomous mobile robot has better tendency towards the map-
building process. The trajectories maximizing the map building process could be formed by the 
intramural property of the laser sensor dually responsible for the map building process, the vector 
sum of all these highest vectors obtained from the laser data result into the trajectory which 
maximizes the information of the map. These individual eigenvectors were machine learned and 
the predicted new trajectory vectors facilitated the autonomous robot to maneuver at considerably 
higher speed. A limitation of our proposed approach is the assumption of simple obstacle 
geometry. This can be tackled by situation aware sensing descriptors, which may result into 
dimensionality scaling and require algorithms that scale well. 
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