
Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 69
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

A Proposed Approach for Unique Random Key Generation

Dalal N. Hamood dalal.naeem@nahrainuniv.edu.iq
Computer Department/College of Science, Dal_scin81@yahoo.com
University AL-Nahrain,
Baghdad, 10001, Iraq

Abdulrahman Q. Hammod abdulrahman.qutaiba@proton.me
Computer Department/College of Science, abdulrahman.business@proton.me
University AL-Nahrain,
Baghdad, 10001, Iraq

Abstract

Regarding network security, many cryptographic techniques use random numbers. To boost its
robustness, a precise quantity of randomness must be used to make encryption and decryption
unexpected. This paper offered a mechanism that chooses a distinctive number based on data
instead of a temporal seed, which is what the bulk of applications now do. The suggested method
is the basis for Unique Random Generation and uses the parallel technique. This approach has
been tried, and the findings demonstrate that it is easy to use and yields the best results because
it chooses a distinct number based purely on data. The random key is better than regular keys
since it is dynamic whereas regular keys are static. After testing the proposed work, concluded
when using seeds with the appropriate levels of entropy, this method can generate sequences
whose randomness cannot be distinguished from that of an ideal random generator, with a
confidence level of 99%. Additionally, the proposed method used base=2 to produce the highest
entropy, the lowest space complexity, and the highest time complexity than methods based time
seed.the proposed method success in all NIST tests (high randomness) and has a short time in
generation (faster method). This method appropriates for high security applications.

Keywords: Random Number Generator, Randomness, Binary Tree List, Ranges, Time
Generation.

1. INTRODUCTION

The study of utilizing mathematics to encrypt and decrypt data is known as cryptography. With
the help of cryptography, you may store and send private data in a way that only the intended
receiver can read it [1] over insecure networks like the Internet. While cryptanalysis is the
discipline of deciphering secure communication, cryptography is the science of protecting data.
Traditional cryptanalysis is an intriguing blend of mathematical application, pattern recognition,
analytical thinking, perseverance, and good fortune [2]. Cryptanalysts are also called attackers.
Cryptology embraces both cryptography and cryptanalysis. Cryptography can be strong or weak
[3][4]. Cryptographic strength is measured in the time and resources it would require to recover
the plaintext. The result of strong cryptography is ciphertext that is very difficult to decipher
without possession of the appropriate decoding tool. With given all of today’s computing power
and available time—even a billion computers doing a billion checks a second—it is not possible to
decipher the result of strong cryptography before the end of the universe [5][6]. A key is a value
that works with a cryptographic algorithm to produce a specific ciphertext. When we have a
strong key we have a strong ciphertext and more difficult to suggest the plaintext [7][8].Larger and
random keys will be cryptographically secure for a longer period of time. If what you want to
encrypt needs to be hidden for many years, you might want to use a very large and random key
[9]. Due to keys importance in cryptography, Random Number Generators (RNGs) are an
essential component of key generation in the cryptography. An RNG, which generates
unpredictable and fast random numbers is essential for better data confidentiality and

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 70
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

integrity protection. The next applications of cryptography used random number generators [10]
[11]:

• PIN code and different password generation

• Private keys for digital signature algorithms
• Values that are utilized in protocols like key establishment

It's crucial in cryptography to ensure that secret keys are random and unpredictable, or, to put it
another way, that they might follow the randomness' rules [12]. In this paper, suggested a method
to generate unique random numbers (small, large) without depending on time seed because the
random number generated depending on time is vulnerable when an attacker can analyze and
watch victim actions. A full article usually follows a standard structure: 1. Introduction, 2. Types of
Random Number Generators, 3. Proposed Method, 4. Results and Discussion, and 5.
Conclusion.

2. LITERATURE REVIEW

Literature review that has been various advancements in RNG with encryption were made in
recent years; a few of these are briefly detailed below. The authors of [13] developed a
Deterministic Random Bit Generator (DRBG) which satisfies the security standards for
cryptographic applications as a Cryptographically Secure Pseudo-Random Number Generator
(CSPRNG), along with an entropy source that demonstrated a high level of entropy and high
portability. The suggested design has undergone extensive testing to determine its randomness
and entropy using the BSI and NIST suites, and it is now prepared to be incorporated into the
European Processor Initiative (EPI) chip. The authors at [14] presented work discovered the
drawbacks of linear-feedback shifter register (LFSR), i.e., predictable and periodic random
sequences, and have suggested a polynomial modulator to prevent the predictability. According
to simulation results, the dynamic polynomial modifications in the suggested design allow for the
generation of random numbers which are over 4000 times larger before they recur and become
unpredictable. The authors in [15] suggested the approach of producing real random numbers
using a circuit primarily intended as PUF depending on ring oscillators. The objective is to
demonstrate that it is possible to create a universal crypto system which could be utilized for a
variety of purposes. For example, the PUF might be utilized for asymmetric cryptography and
producing asymmetric keys, while the TRNG could be utilized for symmetric cryptography and
producing session and ephemeral keys, salts, and nonces. The evaluation regarding a circuit
used for TRNG purposes is evaluated, and the results are reported in the study. The author of
[16] uses a quantum RNG that is based on a balanced homodyne measurement of vacuum
electromagnetic field fluctuations. With a quick randomness extraction method depending on a
linear feedback shift register, the digitized signal is instantly processed. The random bit stream
passes an extensive test suite for random numbers and is continually read in a computer at a rate
of roughly 480 Mbit/s. Through observing the vacuum variations regarding the electromagnetic
field, we developed a RNG method. This study produced uniformly distributed random numbers
quickly from a fundamentally unpredictable quantum measurement through calculating the
amount of useable entropy of quantum noise and employing an effective randomness extractor
depending on linear feedback shift registers. In [17] according to the space of all UUIDs, a UUID
can be defined as an identifier that is distinct over both time and space. Values may rollover
(around A.D. 3400, based on the specific algorithm used) in UUID since it has a time field and is
fixed in size. A UUID could be utilized for a variety of tasks, including correctly
detecting extremely persistent objects over a network and labeling objects with an
extremely limited lifetime. The internal representation regarding a UUID is a particular pattern of
bits stored in memory. It is important to convert the bit representation into a string form in order to
appropriately represent a UUID as a URN.In [18] proposed the SDSM system is based on a set of
guidelines for a very secure system, free of implementation dependencies. The elimination of
single instance of encryption key by adopting a dynamic approach to determine encryption key,
prevents the attacker from getting an access to the encryption key. The algorithm presented in
the paper demonstrates the concept of dynamic generation of encryption key, as well as key
rotation across files. This combination makes the system extremely secure. In [19] introduces a

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 71
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

brand-new discrete-time chaotic map-based Bernoulli random number generator. The discrete-
time chaotic map and the dual oscillator architecture are used in the construction of the presented
RNG to increase throughput and improve the statistical quality of the output sequence. A
mathematical model of the proposed design had been developed, and it had been algebraically
proven that the resulting bit stream had passed the FIPS-140-2 test suite's four main tests. The
bit stream, which was produced in a similar manner from the hardware realization of the circuit,
has likewise been verified to have passed all NIST-800-22 tests without requiring any post-
processing. The experiment and simulation findings, which support the circuit's effectiveness, are
provided. We can use the integrated circuit to create the recommended RNG. In [20] suggest
Rando, a multipurpose genuine random number generator for use with normal computing
hardware. Rando does not consume additional spaces and has an O(m) time complexity, where
m is the bit size of a random number. Our suggested algorithm is a straightforward true random
number generator that is both easy to use and effective. It is based on hashing algorithms and
system clocks. Our test results demonstrate that Rando performs better in randomness than
cutting-edge methods. NIST SP 800-22 validates Rando's real randomness and finds that it
passes all 15 statistical tests.

3. TYPES OF RANDOM NUMBER GENERATORS
Pseudorandom number generators (PRNGs) and True random number generators (TRNGs) are
the two categories into which RNGs fall [21].

A. True Random Numbers Generators: A TRNG doesn't create its own seed values; instead,
it took entropy sources already present in the environment. The physical surroundings of the
computer could provide entropy sources like timing samples of keystrokes, mouse movement,
electrical activity on disks, current values of the system clock, and many more [22]. The method
that generates random binary output is given either a single source or a combination of several
sources as input. Examples include the timing of keystrokes and mouse movements [23], as seen
in Fig. 1.
B.

FIGURE 1: True Random Number Generator [28].

C. Pseudorandom Numbers Generators: PRNGs are RNGs that don't base their sequence
of events in the real world. The features regarding the number sequences produced
through PRNGs are comparable to those of random numbers [24]. A random starting state is
used when utilizing a seed state PRNG. If the starting point within the given set is known, several
numbers could be created later on in a short amount of time. As a result, the numbers produced
are accurate and predictable [25]. A PRNG must locate the entropy in order to maintain its
unpredictable nature; TRNGs convert entropy sources directly into sequences [26]. We can
obtain the entropy needed for the PRNGs by using the time of day, the mouse's position
or location, or the activity on the keyboard. As there is a chance that an attacker may intentionally
change the system to bias it. As a result, we exposed this approach in a secure setting [27], as
illustrated in Fig. 2.

FIGURE 2: Pseudorandom Number Generator [28].

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 72
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

4. THE PROPOSED METHOD
In this paper, suggested a new method to generate unique random numbers (small, large) without
depending on time base because the random number generated depending on time is vulnerable
when an attacker can analyze.

4.1 Data Structure
The abstract data structure used in the proposed method is [Node List] with sequential numbers
start {0...max} and later another class can derive it to reach nodes in a better way (such as
BinaryTreeList) where each node is fixed array of with size = 2 cells. Each node has (start, size,
values), where the start is the position of the first number (zero by default) represents the
beginning of the node. And size is the number of allocated items with values where (size <= 2),
as shown in Fig. 3.

FIGURE 3: Data Structure Used An Array Of Nodes.

4.2 Delete Operation
In the proposed method, Deletion operation causes a change of the index values of upcoming
nodes in case we avoid calculating unallocated items. Pop operation retrieves the relatively
positioned item and delete (unallocated) it; This is the first step and the base idea behind unique
choosing such that choosing value is not repeated and we achieve it by deallocating the specific
item.

4.3 Node Sequential (Derives Node List)
To get better access to nodes, we have to group them in the node list in addition to get a bigger
index range instead of 0 and 1 in case of a single node. The node list receives cardinality as part
of its definition to make the number of items are 2^cardinality. The reason for using cardinality is
to represent the raw positive integer numbers as an array; This makes them easy to access,
modify, delete, insert.

For example: Let the cardinality = 4 then 2^4 = 16 then array [4, 4] is equivalent to number 0100
0100 which is 0x44 in hexadecimal or 68 in decimal.

4.3.1 Remove items based on next index
Let be in the interface a method called next () that retrieve an integer number each time we
invoke it.

If the retrieved index of the key is >=NNodeList.Size () then the index becomes [index mod
NodeList. Size()] and This achieves abstract approach of Unique Choosing.

For proposed method, the key type that implements the proposed interface uses secret sequence
and this achieves approach of Unique Random Generation. And we call it Random because it is
unknown how the key will produce the next it.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 73
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

 Let’s consider a key returns the following sequences [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]
and another method uses the output of next () method as remove index for proposed node
sequence and print removed number.

Cardinality = 4 so the node sequence is set {0.....15}

Output:
[0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 4, 9, 14]

NODE LIST NOTES
[Node<0,1>,
 Node<2,3>,
 Node<4,5>,
 Node<6,7>,
 Node<8,9>,

 Node<10,11>,
 Node<12,13>,
 Node<14,15>,]

While creating an object of type
(NodeSequence), the node list will be

[Node<0,1>,
 Node<2,3>,
 Node<4,5>,
 Node<6,7>,
 Node<8,9>,

 Node<10,11>,
 Node<12,13>,
 Node<14,15>,]

Because remove index is 0 at the first 4 next
key indices the first 4 items are removed and

retrieved.

[Node<0,1>,
 Node<2,3>,
 Node<4,5>,
 Node<6,7>,
 Node<8,9>,

 Node<10,11>,
 Node<12,13>,
 Node<14,15>,]

The next 4 key indices are 1 and since
index=0 points to 4 so it retrieves the next 4

numbers after 4 which are [5, 6, 7, 8].

[Node<0,1>,
 Node<2,3>,
 Node<4,5>,
 Node<6,7>,
 Node<8,9>,

 Node<10,11>,
 Node<12,13>,
 Node<14,15>,]

The next 4 key indices are 2 and since
index=0 points to 4 and index=1 points to 9 so
it retrieves the next 4 numbers after 9 which

are [10, 11, 12, 13].
And at last, the next 4 indices are 3 and since
index=0 points to 4 and index=1 points to 9
and index=2 points to 14 then it retrieves 15
then next 3 are List [3 mod 3], List [3 mod 2],
List [3 mod 1] which are the same as [List[0],
List[1], List[0]] (where [3, 2, 1] at the right side
of the mod are sizes) so it returns [4, 14, 9]

TABLE 1: An explanation for what is going on.

Note: reset() function within NodeList will reallocate all previous items.

4.4 Binary Tree List (Derives Node List)
For more optimal approach, split array to sub-ranges and each range index represent the division
result of the numbers that within the range over a specific value called range-division. Each two
ranges are then grouped with parent range and each two parents are grouped and so on till
reaching root range represent the allocated area from beginning to the end of the Node List, as
shown in Fig. 4.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 74
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 4: Splitting Array to Sub-Ranges.

Let range-division be count of values that can be sorted ascending/descending for easy
implementation such as adding or removing value, for example:

As an abstract proposed approach a parent sub-range has two children and each child has (start,
end) where the end might be included or discarded according to the type of application, as shown
by the following algorithm, also see Fig. 5.

Algorithm (1): Sub-Ranges Sorted Ascending/Descending

Input:a1, b1 (sub-range)

Output: a2, b2 (sibling) then for second sibling

Processes:

(either a2 = b1 or a2 = b1 + 1) and pos = pos – a2

state a2 = b1 → if pos >= b1 then

 goto left
else if pos >= b2 then
 goto right
else index out of range
state a2 = b1 + 1 → if pos > b1 then
 goto left
else if pos > b2 then
 goto right

else index out of range

Node List Range-Division Sub-Ranges

[1, 2, 3, 6, 7, 8, 23, 24, 25] 3 [1, 2, 3], [6, 7, 8], [23, 24, 25]

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 75
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 5: Sub-Ranges Sorted Ascending/Descending.

If we try to remove valuables (2) and shift all next values, then, as shown in Fig. 6:

FIGURE 6: Remove Value (2) and Shift All Next Values in Sub-Ranges.

From the above case, notice that only b’s parents have been updated and automatically shift next
sub-ranges because the next sub-range depends on previous sub-ranges. Another optimal
approach is done by replacing (start, end) by the end because start is always zero, as shown in
Fig. 7.

if right child → pos = pos - end1 or pos = pos - end1 – 1

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 76
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 7: Replacing (Start, End) by the End Because Start has been Always Zero.

4.5 Unique Random Generation
Unique random generation is required to generate a large number, If we use unique random
choosing it will suffer from space complexity. The unique random choosing is a special case of
unique random generation if we use one unique random choosing object within a unique random
generation as it will be explained.

4.5.1 Natural Counting System
The natural counting system starts from 0 to the (cardinality-1) like from 0 to 1 and from 0 to 9
and from 0 to F; It looks like as if the chosen number is going to be removed from list until all
numbers are deleted from 0 to (cardinality-1) then reset the list and choose one from next rank,
as shown in Fig. 8 where the number 5 is now first element after removing previous numbers so
the number as position 0 is chosen, then remove again, then choose 6, 7, 8,… till 9.

FIGURE 8: The Number 5 is Now First Element.

To explain this case, let’s consider a Counting Key just like as before and Counting Key always
returns 0 as the next random relative position because it always chooses next number.

4.5.2 Generate with Concept of Ranks
If we look at the Natural Counting System, it can be considered the natural counting as a special
case of set of unique choosing objects where we always choose next number. In this case, if we
use unique random choosing object for each rank of the specified counting system. E.g. decimal
system; then we are going into generating a unique number because counting system is always
increasing and can never return to start or previous point.

Generating numbers is done by the sum of each chosen value for each rank * (rank cardinality ^
rank position) or let’s call it rank * rank_weight, just like how decimal system has ranked 1, 10.
100, 1000, …. etc. The proposed method, supposed to change the position of rank value by
changing rank weight so instead of making a lower order at the beginning, it can be in a different
position within the number to increase randomization instead of making the weights fixed.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 77
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Theory Example: Let’s consider the following case and cardinality=4 and the combination of key1
with rank1 node list produces a sequence [2, 1, 0, 3] and combination of key2 with rank2 node list
produces a sequence [1, 3, 2, 0] and rank1 weight = 4^0 or 1 and rank2 weight = 4^1 or 4.

Number Generated Note
2 + 1*4 = 6 The first generated number
1+1*4 = 5

then choose next number in rank1 and the next

number rank2
then next 2 numbers are 4, 7
The next number is 2 + 3*4 =

14….. etc.
Then reset rank1 and choose next number for

rank2. i.e 3 so
2 + 1*4 = 6
1 + 1*4 = 5
0 + 1*4 = 4
3 + 1*4 = 7
2 + 3*4 = 14
1 + 3*4 = 13
0 + 3*4 = 12
3 + 3*4 = 15
2 + 2*4 = 10
1 + 2*4 = 9
0 + 2*4 = 8
3 + 2*4 = 11
2 + 0*4 = 2
1 + 0*4 = 1
0 + 0*4 = 0
3 + 0*4 = 3

At the end, we should have the following
numbers

TABLE 2: illustrated the Example.

The second state that generating numbering with change weight is more random than the first
state that generation numbering with fixed weights.

5. RESULTS AND DISCUSSION
In this section, consists of several test suites, which are done on random binary numbers. Table 3
illustrated the tests that perform testing of the proposed method, [25].

Test ID Description
T1 Frequency
T2 Block Frequency
T3 Cumulative Sums
T4 Runs
T5 Longest Run

T6 Rank
T7 FFT
T8 NonOverlaping Template
T9 Overlaping Template
T10 Universal

T11 Approximate Entropy
T12 Serial
T13 Linear Complexity
T14 Random Exclusions
T15 Random Exclusions Variants

TABLE 3: Test ID with Description.

The previous Randomness tests used in this paper to evaluate the seven samples of random
numbers that generated by the proposed method with the length of 64 bits, as shown in table 4.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 78
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Also evaluate the seven samples of random numbers that caused by NIST tests, as shown in
table 4.

Table 4 illustrated the 7 samples of random number generating by the proposed method with
binary coding and cardinality = 4.

Sample

of
Random
Number

Length
of

Sample
(Bit)

Binary coding Decimal number

S1 64 0010-1001-1010-0110-0001-0000-0111-0101-
1101-1000-1011-0100-0011-1110-1111-1100

2, 9, 10, 6, 1, 0, 7, 5, 13, 8,
11, 4, 3, 14 , 15, 12

S2 64 1111-0000-0111-1000-0010-1011-1100-1010-
1101-0100-0101-1110-0110-0011-1001-0001

15, 0,7, 8, 2, 11, 12, 10,13,
4, 5, 14, 6, 3, 9, 1

S3 64 1010-0000-0110-0010-0100-1111-0011-1001-
0111-0001-1011-1101-1110-10000101-1100

10, 0,6, 2, 4, 15, 3,9, 7, 1,
11, 13,14, 8, 5, 12

S4 64 0111-1010-1101-0101-0011-0100-0110-0010-
1000-0001-1001-1011-1110-1100-0000-1111

7, 10,13,5,3, 4, 6, 2, 8, 1, 9,
11, 14, 12, 0, 15

S5 64 1110-1100-1010-1000-1111-0101-0001-0000-
0111-0011-1001-1011-0100-0110-0010-1101

14, 12, 10, 8, 15, 5, 1,0, 7, 3,
9, 11, 4, 6, 2, 13

S6 64 1100-0001-1111-0110-1101-0011-0101-1110-
0111-0010-1001-1000-0100-1010-0000-1011

12, 1, 15, 6, 13, 3, 5, 14, 7,
2, 9, 8, 4, 10, 0, 11

S7 64 1110-1101-0001-1011-0011-0101-0000-1111-
0010-0110-0100-1001-0111-1010-1000-1100

14, 13, 1, 11, 3, 5, 0, 15, 2,
6,4, 9, 7, 10, 8, 12

TABLE 4: The 7 Samples of Random Number Generating.

Table 5 illustrated the result of the NIST random tests of the 7 samples of the random number
generation that generated by the proposed method and Fig. 9 illustrated the results of NIST
randomnesstests.

Test ID S1 S2 S3 S4 S5 S6 S7
T1 0.9411 0.9901 0.9465 0.9510 0.9876 0.9890 0.9889
T2 0.7865 0.7980 0.7799 0.7855 0.7798 0.7810 0.7870
T3 0.8761 0.8821 0.8890 0.8790 0.8901 0.8711 0.8796

T4 0.9912 0.9789 0.9965 0.9865 0.9901 0.9890 0.9901
T5 0.9091 0.9102 0.9120 0.9110 0.9098 0.9096 0.9104
T6 0.8099 0.8297 0.8123 0.8201 0.8079 0.8120 0.8096
T7 0.9001 0.9231 0.9108 0.9220 0.9190 0.9199 0.9090
T8 0.9798 0.9876 0.9819 0.9769 0.9814 0.9822 0.9790

T9 0.9435 0.9433 0.9432 0.9436 0.9437 0.9434 0.9436
T10 0.9213 0.9234 0.9218 0.9220 0.9219 0.9224 0.9230
T11 0.9980 0.9891 0.9897 0.9910 0.9925 0.9892 0.9962
T12 0.9123 0.9144 0.9125 0.9135 0.9139 0.9127 0.9140
T13 0.9245 0.9267 0.9241 0.9248 0.9246 0.9253 0.9259

T14 0.9432 0.9398 0.9391 0.9401 0.9419 0.9420 0.9427
T15 0.9451 0.9450 0.9456 0.9453 0.9452 0.9451 0.9454

TABLE 5: The Results of NIST Randomness Tests of 7 Samples.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 79
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 9: Results of the NIST Randomness Tests.

From the above figure, tested 16 samples of random numbers that are generated by this
approach, each sample passed all randomness tests, the threshold value is (0.1) that
represented in Fig. 9 by the blue dotted line.

In additional, calculated the time generation for each example, table 6 illustrated the time
generation for each sample of random number generation that measured by microsecond (us)
and Fig. 10 illustrated generation time curve for seven samples.

Sample of Random Number Generation Time (us)

S1 2.0
S2 2.2
S3 2.1

S4 1.9
S5 2.3
S6 1.8
S7 2.2

TABLE 6: The Time Generation for seven Sample of Random Number Generation.

FIGURE 10: Time Generation Curve.

The proposed method does not make use of additional spaces and has a time complexity of
O(m), where m is the bit size of a random number.

0

0.2

0.4

0.6

0.8

1

1.2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

NIST Randomness Tests

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7

0

1

2

3

S 1 S 2 S 3 S 4 S 5 S 6 S 7

Time Generation

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 80
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Also, The Randomness tests used in this paper to evaluate the seven samples of unique
choosing numbers that generated by the proposed method with the length of 64 bits, as shown in
table 7. Also evaluate the seven samples of random numbers that caused by NIST tests, as
shown in table 7.

Sample Of
Unique

Choosing
Number

Length
of

Sample
(Bit)

Binary coding Decimal number

SU1 64 0001-0101-0011-0111-0110-1010-1011-
1101-1110-0000-1001-0010-1111-0100-

1100-1000

1, 5, 3, 7, 6, 10, 11, 13, 14, 0, 9,
2, 15, 4 , 12, 8

SU2 64 0011-0110-1001-1100-1010-0010-0101-
0111-0000-0001-1110-0100-1111-1000-

1011-1101

3, 6,9, 12,10, 2, 5, 7,0, 1, 14, 4,
15, 8,11, 13

SU3 64 0100-0011-0101-1111-0111-1100-1011-
1010-0110-0000-0001-0010-1001-1000-

1110-1101

4, 3, 5, 15, 7, 12, 11,10, 6, 0, 1,
2,9, 8, 14, 13

SU4 64 1011-1101-0110-1111-0011-1001-1010-
0010-0100-0001-1000-1110-0101-0111-

1100-0000

11, 13,6,15,3, 9, 10, 2, 4, 1,8,
14, 5, 7,12, 0

SU5 64 0011-1000-1111-0110-0100-1001-0101-
1010-0010-0001-1011-1101-1110-0000-

0111-1100

3, 8, 15, 6, 4, 9, 5,10, 2, 1, 11,
13,14,0, 7, 12

SU6 64 0000-1100-0100-0001-1110-0010-0101-
1010-1000-1001-1101-0110-0111-1011-

1111-0011

0, 12, 4, 1, 14, 2, 5, 10, 8,9, 13,
6, 7, 11,15, 3

SU7 64 0101-0100-1100-0110-0011-1110-1111-
1001-1011-0000-1000-0111-1101-0001-

1010-0010

5, 4, 12, 6, 3, 14, 15, 9, 11, 0,8,
7,13, 1, 10, 2

TABLE 7: The Seven Samples of Unique Choosing Numbers.

Table 8 illustrated the result of the NIST random tests of the 7 samples of the random number
generation that generated by the proposed method and Fig. 11 illustrated the results of NIST
randomness tests.

Test ID SU1 SU2 SU3 SU4 SU5 SU6 SU7

T1 0.8311 0.8901 0.8565 0.861 0.8876 0.899 0.8989
T2 0.6765 0.698 0.6899 0.6955 0.6798 0.691 0.697
T3 0.7661 0.7821 0.799 0.789 0.7901 0.7811 0.7896
T4 0.8812 0.8789 0.9065 0.8965 0.8901 0.899 0.9001
T5 0.7991 0.8102 0.822 0.821 0.8098 0.8196 0.8204

T6 0.6999 0.7297 0.7223 0.7301 0.7079 0.722 0.7196
T7 0.7901 0.8231 0.8208 0.832 0.819 0.8299 0.819
T8 0.8698 0.8876 0.8919 0.8869 0.8814 0.8922 0.889
T9 0.8335 0.8433 0.8532 0.8536 0.8437 0.8534 0.8536
T10 0.8113 0.8234 0.8318 0.832 0.8219 0.8324 0.833

T11 0.888 0.8891 0.8997 0.901 0.8925 0.8992 0.9062
T12 0.8023 0.8144 0.8225 0.8235 0.8139 0.8227 0.824
T13 0.8145 0.8267 0.8341 0.8348 0.8246 0.8353 0.8359
T14 0.8332 0.8398 0.8491 0.8501 0.8419 0.852 0.8527
T15 0.8311 0.8901 0.8565 0.861 0.8876 0.899 0.8989

TABLE 8: The Results of NIST Randomness Tests of 7 Samples.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 81
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 11: Results of the NIST Randomness Tests.

From the above figure, tested seven samples of unique choosing numbers, each sample passed
all randomness tests, the threshold value is (0.1) that represented in Fig. 12 by the blue dotted
line.

In additional, calculated the time generation for each example table 9 illustrated the time
generation for each sample of unique number choosing that measured by microsecond (us) and
Fig. 12 illustrated generation time curve for seven samples.

Sample of Unique Random

Choosing
Generation Time

(us)
SU1 2.7
SU2 2.9
SU3 2.8

SU4 2.6
SU5 3
SU6 2.5
SU7 2.9

TABLE 9: The Time Generation for 7 Sample of Unique Number Choosing.

FIGURE 12: Time Generation Curve of UniqeNumbers Choosing.

The proposed method does not make use of additional spaces and has a time complexity of
O(m), where m is the bit size of a random number.

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

NIST Randomness Tests

SU1 SU2 SU3 SU4 SU5 SU6 SU7

2.4

2.6

2.8

3

3.2

0 1 2 3 4 5 6 7 8

Time Generation

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 82
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Space Complexity for each unique choosing object is O(2^Cardinality) with SequentialNodeList
so consider using Unique Random Generation to reduce the space complexity, so instead of
using 256 slots for Cardinality = 8 it can be 32 slots by splitting them to 2 unique choosing objects
Within a unique random generation objects where Cardinality = 4 bits are used for each rank.
Also, Using Cardinality=2 will get maximum entropy and minimum space complexity and
maximum Time Complexity.

When comparison between the proposed method and some related work, the result of the
comparisonexplains the proposed method success for generating a random number safety for
using in the security applications, as shown in table 10.

No. Method Seed Tests result

[13] DRBG input ports for
external seed
and
personalization
string for
internal seed

Entropy
Probability

High Entropy
High probability

[19] Bernoulli
discrete-time
chaotic map

discrete-time

FIPS-140-2
test
NIST-800-
22 tests

passed the FIPS-140-2 test suite's four main
tests
passed all NIST-800-22 tests

[20] Rando light, image,
voltage,
currents, etc.,
to achieve true
randomness

NIST SP
800-22
Time
Complexity

Rando is validated its true randomness in
NIST SP 800-22 and passes all 15 statistical
tests of randomness.
The time complexity of Rando is O(m)

Proposed
method

Random
number
Generation
based on data
instead of a
temporal seed

Data(Hex.
Decimal)only

NIST-800-
22 tests
Space
Complexity
Time
Consuming
time
complexity

passed all NIST-800-22 tests
Space Complexity of O(2^Cardinality)
Short time
time complexity of O(m),

TABLE 10: Comparison between proposed method and related works.

From the previous results, the proposed method success in all NIST tests (high randomness),
has a short time in generation (faster method), has the time complexity O(m), and has the space
complexity of O(2^Cardinality).

6. CONCLUSIONS
In the security purposes and the gaming industry, random numbers are frequently utilized. In this
paper, a new technique that selects a unique number depending on data rather than a time seed
(as what the majority of applications doing currently) was conducted. Because it is the foundation
for Unique Random Generation and is applied in parallel form, this technique solves the problem
at hand. This method has a high-throughput RNG and high-entropy, which indicated that it
satisfies the securityrequirements with regard to cryptographic applications. The results show that
as soon as the seeds with the right levels of entropy are utilized, itcould generate sequences with
a confidence level of 99 % that can't be distinguished fromthe randomness of an ideal random
generator, also of highly qualified and validated cryptographic keys. This method of using number
generators is simple to use and produces the best results because it selects a unique number
based solely on data. The random key is superior to regular keys since it changes over time while
regular keys remain fixed where, chose value is not repeated so achieved that by deallocating the
specific value also, used a different position within the number to increase randomization instead
of the weights are fixed. Where, the generated number with change weight is more random than

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 83
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

the generated number with fixed weights. When Using one unique choosing object inside a
unique random generator object is similar to using unique choosing as alone. But unique random
choosing has a higher entropy than Unique Random Generation. When used base=2 will get
maximum entropy and minimum space complexity and maximum Time Complexity. The scope of
this paper could be applied to a wide range of RNG features.Also, the proposed method success
in all NIST tests (high randomness), has a short time in generation (faster method). This method
appropriates for high security applications for generating the best encryption keys.

7. REFERENCES
Adi N. R. K and Vishnuvardhan B., (2014), Secure Linear Transformation Based Cryptosystem
using Dynamic Byte Substitution, International Journal of Security (IJS), Vol (8), No (3), PP:24-32.

Challita K., andFarhat H., (2011), Combining steganography and cryptography: new directions,
International Journal of New Computer Architectures and their Applications (IJNCAA), Volume 1,
Issue 1, pp.199-208.

Chatterjee D.,Nath J.,Dasgupta S., andNath A., (2011), A new Symmetric Key Cryptography
Algorithm using extended MSA method: DJSA symmetric key algorithm. Paper presented at the
Communication Systems and Network Technologies (CSNT), 2011 International Conference on.

Chavan P. V.,Atiquedan M., andMalik L.,(2014), Design and Implementation of Hierarchical
Visual Cryptography with Expansionless Shares, International Journal of Network Security, vol. 6,
no. 1, pp. 91-102.

Crocetti L., Matteo S. D., Nannipieri P., Fanucci L. and Saponara S., (2022),” Design and Test of
an Integrated Random Number Generator with All-Digital Entropy Source.

Das K. and Bandyopadhyay S. K., (2016), A REVIEW PAPER ON VARIOUS VISUAL
CRYPTOGRAPHY SCHEMES, International Journal of Current Research Vol. 8, Issue, 06,
pp.32445-32449.

Gamil R.S.Q. and Sanjay N. T., (2012), Encryption and Decryption of Digital Image Using Color
signal, IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 2, No 2.

Jyoti T., Anu S., Kishan, Nikhil, Shazad, (2020),Enhanced Visual Cryptography: An Augmented
Model for Image Security, International Conference on Computational Intelligence and Data
Science (ICCIDS 2019), Elsevier B.V.

Leach P., (2005), A Universally Unique IDentifier (UUID) URN Namespac, LLC R.
SalzDataPower Technology.

MangiH.. and YoungminK. , (2017), Unpredictable 16 bits LFSR-based true random number
generator.

Maxim integrated, (2019), https://www.maximintegrated.com/en/appnotes/index.mvp/id/4400, last
accessed 2019/02/11.

Panda S. and Kavana B. R., (2018), Electronic Document Verification using Visual Cryptography,
International Journal of Innovative Science and Research Technology, Volume 3, Issue 11.

Raphael A. J., and Sundaram V., (2011), “Cryptography and Steganography- A Survey”,
International Journal of Computer Technology and Applications, Volume 2, Issue 3.

Ripon Patgiri, (2021), Rando: A General-purpose True Random Number Generator for
Conventional Computers, 2021 IEEE 20th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Shenyang, China,
DOI:10.1109/TrustCom53373.2021.00032.

Dalal N. Hamood

& Abdulrahman Q. Hammod

International Journal of Security (IJS), Volume (13) : Issue (3) : 2022 84
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Ross A. and Othmen A., (2011), Visual Cryptography for Biometric Privacy”, IEEE Transactions
on Information forensics and security, vol. 6, no. 1, pp. 70- 81.

Rukhin A., Soto J., Smid M., E. Barker, S. Leigh, M. Levenson., M. Vangel, D. Banks, A. Heckert,
J.DrayAnd S. Vo,(2010), A statistical test suite for random and pseudorandom number generators
for cryptographic applications, NIST Speical Publication 800-22.

Salih E. and Sercan T., (2018), Random Number Generation Using Dual Oscillator Architecture
and Discrete-Time Chaos, Conference: 2018 international Symposium on Electronics and Smart
Devices (ISESD), DOI: 10.1109/ISESD.2018.8605452.

Selman Y., Taner T., Ahmet B. O., (2019), Secure and Efficient Hybrid Random Number
Generator Based on Sponge Constructions for Cryptographic Applications.

Shyu S. J., (2013), Visual Cryptography of Random Grids for General Access Strctures, IEEE,
vol. 23. no. 3.

Simona B.,Róbert L., FilipK., and JiríB. , (2016), True Random Number Generator Based on
ROPUF Circuit, Published in: 2017 International SoC Design Conference (ISOCC).

Srivatsan I. and Tejas A., (2014), Multi-part Dynamic Key Generation For Secure Data
Encryption, International Journal of Security (IJS), Vol (8), No (4), PP:37-46.

Stalling W., (2013), Cryptography And Network Security, 5th Edition.

Wang D., Yi F., Li X., (2009), On General Construction For Extended Visual Cryptography
Schemes, Pattern Recognition 42(2009), pp 3071– 3082.

Yadagiri Rao R. and Swetha R., (2013),SECURE VISUAL CRYPTOGRAPHY, International
Journal of Scientific & Engineering Research Vol(4), No (3).

Yaprak G. D. and Muhammet K., (2019),A computational method for large-scale differential
symmetric Stein equation, Special Issue: ICOMATH2018 - International Conference on
Mathematics: An Istanbul Meeting for World Mathematicians 2018, Vol(42), No (16).

Yicheng S., Brenda C. and Christian K., (2016), Random numbers from vacuum fluctuations,
Published in: 2016 Euromicro Conference on Digital System Design (DSD).

Yutaka S., (2020), Unpredictable random number generator,Cite as: AIP Conference
Proceedings 2286, 040004 (2020); https://doi.org/10.1063/5.0029701 Published Online: 03
December 2020.

