
Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 1
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Effect of SDLC Models on The Perception of SSDLC Innovation
Characteristics and SSDLC Adoption Intention

Wisdom Umeugo wumeugo@gmail.com
Ph.D. University of the Cumberlands
Independent Researcher
Ottawa, Canada

Kimberly Lowrey kimberly.lowrey@ucumberlands.edu
School of Computer and Information Sciences
University of the Cumberlands,
Kentucky, USA

Shardul Y. Pandya shardul.pandya@ucumberlands.edu
School of Computer and Information Sciences
University of the Cumberlands,
Kentucky, USA

Abstract

Software security remains an important issue. Security must be prioritized as a functional
requirement to build secure software. Security must also be incorporated in every stage of the
SDLC by practicing a secure SDLC (SSDLC). There are various SDLC models, each with
emphasized priorities, strengths, and weaknesses. Increasing the security of more published
software requires that SMEs, the majority of software publishers, adopt and practice the SSDLC.
In promoting the SSDLC, there is a need to know if efforts should be adapted to the various
SDLC models. This study empirically examined the effect of SDLC models on the innovation
characteristics of the SSDLC derived from the Diffusion of innovation theory and the intention to
adopt the SSDLC. A sample of software security managers of software SMEs in the United
States was surveyed for the SDLC model used, their perception of the relative advantage,
trialability, observability, complexity, and compatibility of the SSDLC, and intention to adopt the
SSDLC. A Kruskal-Wallis test performed on the data showed no statistically significant
differences between SDLC model groups for relative advantage, compatibility, trialability,
observability, complexity, and intention to adopt the SSDLC. Results also indicated that SME
Software security managers, on average, would be inclined to adopt the SSDLC if given the
impetus. SSDLC adoption efforts can be mostly uniformly applied across the SDLC models.
Software security policymakers may find the results of this study useful for SSDLC adoption
policy formulation.

Keywords: Software Security, SSDLC, Secure Software, Diffusion of Innovation, Adoption.

1. INTRODUCTION
Software security is important and remains a recurring issue. New software vulnerabilities are
reported daily in the National vulnerabilities database. Software’s complexity necessitates
engineering, which, in turn, requires a systematic approach to ensure that the software is
successfully built according to requirements (Almazaydeh et al., 2022). This systematic approach
to software development is termed the Software Development Lifecycle (SDLC) (Almazaydeh et
al., 2022). The SDLC consists of various activities and processes grouped into phases from
planning to development and deployment (Ragunath et al., 2010). The SDLC is practically
applied as various models determined by the project’s needs (Ragunath et al., 2010). Popular
SDLC models include the Waterfall model, V-Model, Spiral model, incremental model, iterative

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 2
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

model, agile model, and prototyping model (Atawneh, 2019; Pressman & Maxim, 2014; Ragunath
et al., 2010; Ruparelia, 2010). The SDLC models differ in their advantages, disadvantages, and
emphasized values, such as planning, risk management, testing, flexibility, rapid development,
and feedback (Kute & Thorat, 2014; Ragunath et al., 2010).

For software to be secure, security must be incorporated in all stages of its lifecycle (Al-Matouqet
al., 2020; Khan et al., 2021). This implies that a security-infused SDLC, termed secure software
development lifecycle (SSDLC), must be practiced. Integrating security practices into various
SDLC models comes with challenges due to each SDLC model's inherent strengths,
weaknesses, and priorities. SDLC models that focus on rapid development, usability, and shorter
time-to-market, such as the agile model, do not emphasize security practices (Abdulrazeg et al.,
2014; Boehm, 2002; McCaffery et al., 2018). Plan-driven development models such as the
waterfall model and V-Model are better suited for developing high-assurance software and,
therefore, are easier to incorporate security practices in all stages (Boehm, 2002; McCaffery et
al., 2018). Therefore, efforts to increase SSDLC practice among software small and medium
enterprises (SMEs), which are the majority of software publishers, may need to be tailored to the
various SDLC models. This study investigated the effect of practiced SDLC models on the
perception of the innovation characteristics of SSDLC and the intention to adopt SSDLC. The
SSDLC innovation characteristics analyzed were those provided by Rogers’ (2003) Diffusion of
innovation theory (DOI). DOI is widely used to explain the adoption of new ideas, tools, and
innovations in information technology and information security. The results of this study inform
software security policymakers to help tailor software security adoption policies. The research
also fills the existing knowledge gap on the effects of SDLC models on the perception of
innovation characteristics and adoption intention of the SSDLC.

2. BACKGROUND AND HYPOTHESIS DEVELOPMENT
2.1 SDLC Models
The SDLC provides the order and cycle of activities or software lifecycle processes used to
successfully build software according to requirements within pre-specified constraints like
resources, timeframes, and costs (Acharya & Sahu, 2020; Adanna & Nonyelum, 2020). The
SDLC generally involves a series of linear processes concerned with gathering the requirements,
designing and developing the software, and testing, deploying, and maintaining the developed
software (Arrey, 2019; Salve et al., 2018). The standard SDLC is practically applied to software
development using multiple models that best suit the project’s needs, constraints, and
developers’ choices (Acharya & Sahu, 2020). Historically, the concept of the SDLC was
introduced in the 1960s when the development of large-scale business systems dominated the
software industry and has since evolved from the need for structure and sequence to meet the
demand for rapid feedback (Olorunshola & Ogwueleka, 2022; Ranawana & Karunananda, 2021).
SDLC models followed the evolution of the software industry’s needs, evolving from the
sequential and rigidly structured waterfall model through the iterative model, the spiral model, the
unified process model, and the widely used agile models (Ranawana & Karunananda, 2021).
Boehm (2002) characterized this evolution as a shift from plan-driven development focused on
high assurance to agile methods focused on rapid value. Pressman and Maxim (2014)
characterized the SDLC models based on their order of activity or process flow into (1) linear or
sequential, where each phase is performed after the previous phase has concluded; (2)
evolutionary, where phases are performed circularly; (3) iterative, where phases are repeated
before proceeding to the next phase; (4) parallel where phases are performed in parallel.
Ragunath et al. (2010) classified the SDLC models into Linear models, evolutionary, formal
systems development, agile methods, and reuse-based development. According to Ragunath et
al. (2010), linear models such as the waterfall and V-Model linearly execute SDLC phases.
Evolutionary models such as the spiral, incremental, and prototype models interleave the
requirements and development phases (Ragunath et al., 2010). Formal Systems development
formally transforms and implements mathematical system models, while reuse-based systems
assemble software from existing components and modules (Ragunath et al., 2010).

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 3
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

2.1.1 The Waterfall SDLC
The Waterfall SDLC model is a rigid, sequential, and linear approach to the SDLC mainly used
when all requirements are well-known and understood (Salve et al., 2018). The waterfall model
process flows linearly from requirements analysis through system design, implementation,
testing, deployment, and maintenance phases (Acharya & Sahu, 2020). The waterfall model is
depicted in Figure 1. Each subsequent phase of the waterfall model starts only when the
preceding phase is concluded and reviewed (Salve et al., 2018; Shaikh & Abro, 2019; Stoica et
al., 2013). The waterfall model emphasizes planning and documentation, which is time-
consuming but helps eliminate design errors. The waterfall model is suited to short projects where
the requirements are clearly specified, a familiar technology is used, and expertise to conclude
the project is readily available, such as projects involving the development of database-backed
software (Kute & Thorat, 2014; Stoica et al., 2013). The waterfall model is still used across
government and commercial projects (Acharya & Sahu, 2020).

FIGURE 1: Waterfall SDLC model.

2.1.2 The V-Model SDLC
The V-Model SDLC model is a V-shaped variation of the waterfall model focused on quality
assurance (Durmus et al., 2018; Pressman & Maxim, 2014). Verification and validation are
emphasized in the V-Model (Acharya & Sahu, 2020). The V-Model is depicted in Figure 2. The
left side of the V is the systems definition part composed of the linear sequential steps of
planning, requirements analysis, system architecture determination, design, and implementation
(Acharya & Sahu, 2020; Kargl et al., 2019). The right side is the systems verification part,
consisting of unit testing, integration testing, system and acceptance testing, and deployment and
maintenance (Acharya & Sahu, 2020; Kargl et al., 2019). The requirements, system architecture,
and design phases on the left are each planned simultaneously with their equivalent step on the
right so that testing is incorporated from the early stages of the SDLC (Acharya & Sahu, 2020;
Kargl et al., 2019). This is shown in Figure 2 by bi-directional arrows within the “V.” The V-Model
is plan-driven and preferable to the waterfall model for complex, quality-focused, and time-
consuming projects, as in the automotive industry and medical software development projects
(Akinsola et al., 2020; Kargl et al., 2019; McCaffery et al., 2018).

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 4
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 2: V-Model SDLC Model.

2.1.3 The Incremental SDLC Model
The incremental SDLC model splits the requirements into modules and implements them
incrementally across multiple manageable waterfall-like development cycles (Saravanan et al.,
2020; Stoica et al., 2013). The Incremental model is illustrated in Figure 3. A complete set of
requirements is required to split all the requirements into module increments at the start of the
incremental model (Stoica et al., 2013; Tsui et al., 2022). However, there is flexibility to
incorporate minor changes due to feedback at the end of each increment (Stoica et al., 2013;
Tsui et al., 2022). The first increment usually delivers a usable and releasable working minimal
version of the software (Kute & Thorat, 2014; Stoica et al., 2013; Tsui et al., 2022). Each
increment adds features and delivers a new version of usable working software (Stoica et al.,
2013; Tsui et al., 2022). The cycle is repeated, incrementally adding the remaining modules until
the software is completely developed (Saravanan et al., 2020; Stoica et al., 2013; Tsui et al.,
2022). Three vertical dots depict this in Figure 3, implying increment cycle repetition until the last
n increment cycle required to complete the project. The Incremental model is suitable for software
projects with well-defined major requirements but requires some flexibility to evolve (Kute &
Thorat, 2014; Stoica et al., 2013; Tsui et al., 2022). Projects that require using unfamiliar
technology, have high inherent risks, and need to be quickly released are also suited to the
incremental model (Kute & Thorat, 2014; Stoica et al., 2013).

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 5
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

FIGURE 3: Incremental SDLC Model.

2.1.4 The Iterative SDLC Model
The Iterative SDLC model works similarly to the incremental model in that requirements are split
and implemented over waterfall-like cycles (iteration or build) (Okesola et al., 2020). However, it
differs in that all the core requirements are usually implemented in the first increment, while the
advancement requirements are split into the remaining cycles (Okesola et al., 2020). The first
iteration produces a working prototype with all the major requirements implemented. Therefore,
subsequent iterations refine the first build until acceptance (Okesola et al., 2020). The iterative
model is depicted in Figure 4. The product of each iteration of the iterative model is called a build
(Olorunshola & Ogwueleka, 2022). The Iterative model only requires the major requirements to
be specified initially, allowing refinements through minor requirements (Okesola et al., 2020). The
iterative model is suited to the same types of software projects as the incremental model, except
for those that require an early release to the market (Okesola et al., 2020).

FIGURE 4: Iterative SDLC Model.

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 6
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

2.1.5 The Spiral SDLC Model
The Spiral SDLC model incorporates prototyping and risk management in an evolutionary spiral
(Kute & Thorat, 2014). Prototyping focuses on rapidly developing a working set of features for
feedback (Pressman & Maxim, 2014). Prototypes can typically evolve into the final software or be
rejected and discarded (Pressman & Maxim, 2014). The Spiral model is illustrated in Figure 5. In
the Spiral model, early iterations produce non-operational prototypes that may be used for
demonstration and risk analysis (prototype one and prototype two in Figure 5). However, later
spirals produce working software prototypes (Kute & Thorat, 2014). Each spiral consists of four
phases depicted by quadrants in Figure 5: (a) Planning which involves requirements gathering
and setting objectives; (b) Risk analysis, where the software’s risks are analyzed, and a prototype
is created; (c) Development: the prototyped software feature is developed using waterfall
processes; (d) Evaluation: the resulting features are evaluated, and feedback is used to plan the
next iteration of the spiral (Salve et al., 2018). The spiral model is preferred when core
requirements are known, complex, and expected to evolve (Kute & Thorat, 2014). The spiral
model is also suitable for projects with high costs, complexity, and risks, as in large and complex
software projects like projects building new product lines (Kute & Thorat, 2014). The spiral model
is used to develop U.S. military combat software (Salve et al., 2018).

The Spiral model has noted strengths. The spiral model adheres to the waterfall model during the
development phase of the spiral, so it shares the advantages of having robust documentation and
planning (Salve et al., 2018). The spiral model emphasizes attention to risk management,
enhancing software quality (Salve et al., 2018). Building software in spirals, like the incremental
model, enables software to be produced early that can be used to receive feedback (Salve et al.,
2018).

FIGURE 5: Spiral SDLC Model.

2.1.6 The Agile SDLC Model
The Agile SDLC model arose from the pervasiveness of change in software projects, the
pressure to deliver, and the need to accommodate rapid changes (Pressman & Maxim, 2014;

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 7
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Ranawana & Karunananda, 2021). The agile software development methodology professes
twelve principles that favor effective communication, adaptation to changes, rapid production of
working software, and self-organizing software teams (Mergel et al., 2020; Pressman & Maxim,
2014). This contrasts with traditional software development methods focusing on tools,
documentation, planning, and contracts (Leau et al., 2012). Agile SDLC methods tend to avoid
‘up-front’ requirement gathering, preferring to promote customer collaboration and performing
frequent demonstrations and releases of the software (Leau et al., 2012). Figure 6 depicts the
agile development model. Figure 6 shows that multiple iterations are used to build the software
iteratively or incrementally until completion. There is also an emphasis on getting feedback from
the customer, which is then used to plan the next iteration. The agile method is modeled on
incremental and iterative models depending on the development goals (Saravanan et al., 2020).

Various agile development models have been described in academic literature. These include
Extreme programming (XP), Joint Application Development (JAD), Lean Development (LD),
Dynamic Systems Development Method (DSDM), Agile Unified Process (AUP), Scrum, Crystal
Method, Test Driven Development (TDD), and Feature-driven Development (FDD) (Al-Saqqaet
al., 2020; Atawneh, 2019; Ibrahim et al., 2020; Pressman & Maxim, 2014; Ruparelia, 2010; Stoica
et al., 2013). Agile methodology has become trendy in the software development industry
primarily due to its suitability for small teams and small projects in small organizations and its
focus on producing progressive results (Khalid et al., 2022). The agile model is particularly suited
to small or medium-sized feature-driven projects where requirements are scarce upfront and are
expected to change frequently (Olorunshola & Ogwueleka, 2022).

FIGURE 6: Agile SDLC Model.

2.2 SSDLC
The SSDLC is the SDLC infused with security activities at every phase (Alenezi & Almuairfi,
2019; Tudela et al., 2020). In the SSDLC, security requirements are gathered and included in
requirements engineering during the requirements phase. Threat modeling, risk mitigation,
security design, and security control selection are performed in the architecture design phase
(Ransome & Misra, 2021; Ruggieri et al., 2019). In the development phase, security is ensured in
the implementation by practicing secure and defensive coding, using secure programming
languages and modules, performing peer code reviews, and static application testing (Alenezi &
Almuairfi, 2019; Gasibaet al., 2020; Paul, 2013). The testing phase of the SSDLC includes
various security testing such as dynamic application security test (DAST), fuzz testing,

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 8
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

vulnerability scanning, and penetration testing (Alenezi & Almuairfi, 2020; Paul, 2013; Ransome &
Misra, 2021). Security activities in the operations and maintenance phase typically focus on
issuing pre-release final security clearance, third-party security testing and certification,
deployment environment hardening, and vulnerability management (Paul, 2013; Ransome &
Misra, 2021).

2.3 SSDLC Innovation Characteristics
Rogers’ (2003) diffusion of innovation (DOI) theory is the most widely used theory to explain
information technology innovation adoption. DOI posits that five innovation characteristics,
relative advantage, trialability, observability, complexity, and compatibility, impact its diffusion.
The five DOI variables measured in this study are SME software security managers’ perceptions
of the five SSDLC innovation characteristics. Table 1 shows the definitions of the five innovation
characteristics according to Rogers (2003).

Characteristic Definition

Relative Advantage “The degree to which an innovation is perceived as being better than the
idea it supersedes”

Observability “The degree to which the results of an innovation are visible to others”

Trialability “The degree to which an innovation may be experimented with on a
limited basis”

Complexity “The degree to which an innovation is perceived as relatively difficult to
understand and use.”

Compatibility “The degree to which an innovation is perceived as consistent with the
existing values, past experiences, and needs of potential adopters”

TABLE 1: SSDLC Innovation Characteristics

According to DOI, among the five innovation characteristics, only complexity is expected to
influence the innovation’s adoption negatively. The adoption tendency of an information security
innovation decreases as the complexity increases (Hameed & Arachchilage, 2020). The following
five hypotheses were proposed to assess the effect of the SDLC model on SME software security
managers’ perception of the SSDLC’s innovation characteristics.

H1: There is a statistically significant difference in SME software security managers’ perception of
the relative advantage of SSDLC based on their practiced SDLC model.

H2: There is a statistically significant difference in SME software security managers’ perception of
the compatibility of SSDLC based on their practiced SDLC model.

H3: There is a statistically significant difference in SME software security managers’ perception of
the trialability of SSDLC based on their practiced SDLC model.

H4: There is a statistically significant difference in SME software security managers’ perception of
the observability of SSDLC based on their practiced SDLC model.

H5: There is a statistically significant difference in SME software security managers’ perception of
the complexity of SSDLC based on their practiced SDLC model.

2.4 SSDLC Adoption Intention
SSDLC adoption intention is the last assessed dependent variable. SSDLC adoption intention
refers to the disposition towards adopting the SSDLC presently or shortly. SDLC models have
different priorities and arrangements of lifecycle processes and activities that may pose
challenges to integrating security into all its stages. Therefore, the intention to adopt the SSDLC

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 9
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

is expected to differ between practiced SDLC significantly. The sixth hypothesis is proposed to
explore the effect of the SDLC model on SSDLC adoption intention.

H6: There is a statistically significant difference in SMEs’ intention to adopt the SSDLC based on
their practiced SDLC model.

3. RESEARCH METHOD
An online survey hosted on Pollfish was administered to a random sample from a population of
software security managers and decision-makers of SMEs based in the United States. A
minimum sample size of 216 was calculated by power analysis using G*Power ANOVA fixed
effects, omnibus, one-way test at 0.25 effect size, 0.05 error probability, 0.80 power, and six
groups. The survey consisted of demographic questions and five-point Likert scale variable
measurement questions. The Likert scale measurement used ranged from 1=strongly disagree to
5=strongly agree. The questions measuring the variables were adapted from AlBar and Hoque
(2019). Pollfish audience service provided participant recruitment based on the inclusion criteria.
The survey was closed when 230 valid responses were received. Data from the survey was
downloaded and imported into Jamovi statistical software. One-way ANOVA and Kruskal-Wallis
tests were conducted on the data to determine the differences in perceptions of SSDLC’s relative
advantage, compatibility, complexity, observability, trialability, and SSDLC adoption intention
based on the practiced SDLC model.

4. RESULTS
A total of 230 valid responses were received. One hundred thirty-five males and 95 females
participated in the study. Most of the participants were aged between 25 and 44 years old. The
majority of positions held by participants were the chief technology officer and chief executive
officer positions. The Incremental model was the most used SDLC model, making up 28% of
responses. Table. 2 shows the study’s participant demographics. Table 3 shows the descriptive
statistics for the variables.

Demographic Category Frequency (n) Percent (%)

Age

25 – 34 92 40.0

35 – 44 99 43.0

45 – 54 28 12.2

54+ 11 4.8

Gender
Female 95 41.3

Male 135 58.7

Experience

Less than three years 33 16.5

3 – 5 years 38 19

6 – 10 years 61 30.5

11 – 15 years 30 15.0

16 – 20 years 14 7.0

20+ years 24 12.0

Organizational role

Chief Information Officer
(CIO)

25 10.9

Chief Information Security
Officer (CISO)

22 9.6

Chief Operation Officer
(COO)

10 4.3

Chief Technology Officer
(CTO)

42 18.3

Engineering Manager 18 7.8

Information Security Manager 20 8.7

Other 8 3.5

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 10
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Owner or Chief Executive
Officer (CEO)

32 13.9

Product Manager 19 8.3

Software security Architect 19 8.3

Tech Lead 15 6.5

SDLC Model

Agile model 37 16.1

Incremental model 64 27.8

Iterative model 30 13.0

Spiral model 39 17.0

V-Model 38 16.5

Waterfall 22 9.6

TABLE 2: Participant Demographics.

 N Mean
Standard
deviation

Shapiro-Wilk W Shapiro-Wilk p

Relative advantage 230 3.53 0.885 0.955 < .001

Complexity 230 3.34 0.904 0.971 < .001

Compatibility 230 3.6 0.895 0.957 < .001

Trialability 230 3.58 0.865 0.957 < .001

Observability 230 3.57 0.852 0.964 < .001

Intention 230 3.67 0.867 0.952 < .001

TABLE 3: Variable Descriptives.

All the SDLC groups had mean group values above average for all the dependent variables,
indicating the average responses were “neither agree nor disagree” and “agree.” Table. 4 shows
the group descriptives.

Variable SDLC N Mean SD SE

Relative advantage

Agile 37 3.55 0.89 0.1463

Incremental 64 3.54 0.914 0.1142

Iterative 30 3.61 0.867 0.1583

Spiral 39 3.51 0.729 0.1167

V-Model 38 3.42 1.033 0.1676

Waterfall 22 3.56 0.875 0.1866

Compatibility

Agile 37 3.68 0.938 0.1542

Incremental 64 3.61 0.875 0.1094

Iterative 30 3.76 0.742 0.1355

Spiral 39 3.48 0.864 0.1384

V-Model 38 3.54 0.888 0.1441

Waterfall 22 3.48 1.153 0.2459

Trialability

Agile 37 3.44 1.009 0.1659

Incremental 64 3.65 0.765 0.0956

Iterative 30 3.96 0.699 0.1276

Spiral 39 3.48 0.798 0.1277

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 11
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

V-Model 38 3.54 0.928 0.1506

Waterfall 22 3.32 0.984 0.2098

Observability

Agile 37 3.52 0.931 0.1531

Incremental 64 3.66 0.684 0.0855

Iterative 30 3.57 1.018 0.1858

Spiral 39 3.56 0.899 0.1439

V-Model 38 3.45 0.846 0.1373

Waterfall 22 3.58 0.904 0.1927

Complexity

Agile 37 3.39 0.918 0.1509

Incremental 64 3.44 0.812 0.1015

Iterative 30 3.47 0.985 0.1798

Spiral 39 3.44 0.876 0.1403

V-Model 38 3.06 0.869 0.141

Waterfall 22 3.14 1.082 0.2307

Intention

Agile 37 3.42 1.127 0.1852

Incremental 64 3.71 0.856 0.1069

Iterative 30 3.8 0.791 0.1444

Spiral 39 3.74 0.843 0.135

V-Model 38 3.68 0.733 0.1189

Waterfall 22 3.65 0.766 0.1634

TABLE 4: Group Descriptives.

As shown in Table 4, The Iterative model had the highest mean of the groups for the perception
of relative advantage (x̅=3.61), compatibility (x̅=3.76), trialability (x̅=3.96), complexity (x̅=3.47),
and intention (x̅=3.80). The incremental model had the highest group mean (x̅=3.71) for
observability. The group mean response of the V-Model (x̅=3.06) and Waterfall model (x̅=3.14) for
complexity was noticeably low, indicating that software security managers in SMEs practicing the
V-Model and Waterfall model were, on average, undecided about how complex the SSDLC would
be to practice. The SDLC group mean scores for complexity were, on average, the lowest among
the variables.

4.1 ANOVA Assumptions Test
The data were tested for ANOVA assumptions of linearity and homogeneity of variance. The data
failed the linearity test because all dependent variables had statistically significant Shapiro-wilk
test results in Table 3. All dependent variables except intention passed Levene’s test for
homogeneity of variance with statistically insignificant p-values. Table. 5 shows the results of
Levene’s test.

Variable Statistic df df2 p

Relative advantage 0.729 5 224 0.603

Compatibility 1.705 5 224 0.134

Trialability 1.709 5 224 0.134

Observability 2.027 5 224 0.076

Complexity 0.664 5 224 0.651

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 12
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Intention 3.192 5 224 0.008

TABLE 5: Levene's Test Result.

4.2 Kruskal-Wallis Test
Kruskal-Wallis test, the non-parametric equivalent of ANOVA, was conducted because the data
failed ANOVA assumptions. Table 6 shows the result of the Kruskal-Wallis test. There were no
statistically significant differences between groups of SDLC models for relative advantage (χ2 (5)
= 0. 335, p =. 997), complexity (χ2 (5) = 6.749, p =. 240), compatibility (χ2 (5) = 1.534, p =. 909),
trialability (χ2 (5) = 8.214, p =0.145), observability (χ2 (5) =1.557, p =. 906), and SSDLC adoption
intention (χ2 (5) = 2.950, p =. 708).

Variable χ² df p

Relative advantage 0.335 5 0.997

Complexity 6.749 5 0.24

Compatibility 1.534 5 0.909

Trialability 8.214 5 0.145

Observability 1.557 5 0.906

Intention 2.95 5 0.708

TABLE 6: Kruskals-Wallis Test Result.

4.3 Hypotheses Testing
All hypotheses were tested by looking at the p-value for each dependent variable in the Kruskal-
Wallis test result. All variables had statistically insignificant values (p > 0.05) in the Kruskal-Wallis
result. All the hypotheses positing the existence of a statistically significant effect of the SDLC
model on the dependent variable were, therefore, unsupported. Table VII shows the summary of
the hypotheses tests.

Hypothesis Significance Result

H1:There is a statistically significant difference in SME software
security managers’ perception of the relative advantage of SSDLC

based on their practiced SDLC model.
0.997 Unsupported

H2:There is a statistically significant difference in SME software
security managers’ perception of the compatibility of SSDLC

based on their practiced SDLC model.
0.909 Unsupported

H3:There is a statistically significant difference in SME software
security managers’ perception of the trialability of SSDLC based

on their practiced SDLC model.
0.145 Unsupported

H4:There is a statistically significant difference in SME software
security managers’ perception of the observability of SSDLC

based on their practiced SDLC model.
0.906 Unsupported

H5:There is a statistically significant difference in SME software
security managers’ perception of the complexity of SSDLC based

on their practiced SDLC model.

0. 240

Unsupported

H6:There is a statistically significant difference in SMEs’ intention
to adopt the SSDLC based on their practiced SDLC model.

0.708 Unsupported

TABLE 7: Summary of Hypothesis Test.

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 13
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

5. DISCUSSION
The above-average group response mean for all factors indicates a neutral or positive view of the
SSDLC characteristics, which could translate to a greater intention to adopt the SSDLC. The
iterative model had the highest group mean for most variables, including adoption intention. This
may indicate a higher predisposition to adopt the SSDLC by organizations that practice the
Iterative model. However, the mean group score of complexity for the iterative model was above
average, indicating that the complexity of the SSDLC may pose a challenge in the iterative model.
Group mean scores for complexity should ideally be lower than average because complexity
negatively correlates with adoption intention. Complexity had the lowest group mean scores of all
the variables. The V-Model and Waterfall model had the lowest group means, indicating that
incorporating the SSDLC into the V-Model and Waterfall model may be less challenging than
other SDLC models. This may be due to the plan-based nature of the V-Model and Waterfall
models.

Results showed no statistically significant differences between groups of SDLC model in the
perception of SSDLC innovation characteristics. The statistical insignificance between SDLC
models in the perception of compatibility is surprising. SSDLC’s compatibility with practiced SDLC
models should naturally differ and be an essential factor in software SME SSDLC adoption
intention because the more compatible an innovation is with existing practices, the greater the
tendency to adopt it. The intention to adopt the SSDLC did not statistically significantly differ
between groups of SDLC models. This implies that the practiced SDLC model does not
significantly influence the intention to adopt the SSDLC. SME software security managers,
therefore, may be willing to incorporate the SSDLC into their software development practices if
they are given the impetus to adopt the SSDLC.

6. CONCLUSION
Incorporating security into all stages of the SDLC or practicing the SSDLC is critical for enhanced
security of released software. No statistically significant differences were found between SDLC
groups consisting of the agile model, incremental model, iterative model, spiral model, V-model,
and waterfall model on the perception of relative advantage, compatibility, trialability,
observability, and complexity of the SSDLC and the intention to adopt the SSDLC. The above-
average group means, and the uniformity in the perception of SSDLC innovation characteristics
and intention to adopt the SSDLC implies that efforts to improve SSDLC adoption in software
SMEs do not have to consider the practiced SDLC model seriously. The complexity of the SSDLC
is still an important factor, as highlighted by its above-average group means for most of the SDLC
models. Efforts should be made to simplify practicing the SSDLC in the agile, incremental, spiral,
and iterative SSDLC models. Future research could qualitatively explore incorporating the
SSDLC into these SDLC models, producing practical and easy-to-implement frameworks for
SSDLC practice.

7. REFERENCES
Abdulrazeg, A. A., Norwawi, N. M., & Basir, N. (2014). Extending V-model practices to support
SRE to build secure web application. 2014 International Conference on Advanced Computer
Science and Information System, pp. 213–218. https://doi.org/10.1109/ICACSIS.2014.7065838

Acharya, B., & Sahu, K. (2020). Software development life cycle models: A review paper.
International Journal of Advanced Research in Engineering and Technology (IJARET), 11, 169–
176.

Adanna, A. A., & Nonyelum, O. F. (2020). Criteria for choosing the right software development life
cycle method for the success of software project. IUP Journal of Information Technology, 16(2),
39–65.

Akinsola, J. E., Ogunbanwo, A. S., Okesola, O. J., Odun-Ayo, I. J., Ayegbusi, F. D., & Adebiyi, A.
A. (2020). Comparative analysis of software development life cycle models (SDLC). In Intelligent

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 14
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Algorithms in Software Engineering: Proceedings of the 9th Computer Science On-line
Conference 2020, Volume 1 9 (pp. 310–322). Springer International Publishing.

AlBar, A. M., & Hoque, M. R. (2019). Factors affecting cloud ERP adoption in Saudi Arabia: An
empirical study. Information Development, 35(1), 150–164.
https://doi.org/10.1177/0266666917735677

Alenezi, M., & Almuairfi, S. (2019). Security risks in the software development lifecycle.
International Journal of Recent Technology and Engineering, 8(3), 7048-7055.

Alenezi, M., & Almuairfi, S. (2020). Essential activities for secure software development.
International Journal of Software Engineering & Applications (IJSEA), 11(2).

Al-Matouq, H., Mahmood, S., Alshayeb, M., & Niazi, M. (2020). A maturity model for secure
software design: A multivocal study. IEEE Access : Practical Innovations, Open Solutions, 8,
215758–215776. https://doi.org/10.1109/ACCESS.2020.3040220.

Almazaydeh, L., Alsafasfeh, M., Alsalameen, R., & Alsharari, S. (2022). Formalization of the
prediction and ranking of software development life cycle models. International Journal of
Electrical and Computer Engineering (IJECE), 12(1), 534.
https://doi.org/10.11591/ijece.v12i1.pp534-540.

Al-Saqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile software development: methodologies
and trends. International Journal of Interactive Mobile Technologies (IJIM), 14(11), 246.
https://doi.org/10.3991/ijim.v14i11.13269.

Atawneh, S. (2019). The analysis of current state of agile software development. Journal of
Theoretical Applied Information Technology, p. 97.

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69.
https://doi.org/10.1109/2.976920.

Arrey, D. A. (2019). Exploring the integration of security into software development life cycle
(SDLC) methodology (Doctoral dissertation, Colorado Technical University).

Durmus, M. S., Ustoglu, I., Tsarev, R. Y., & Börcsök, J. (2018). Enhanced V-Model. Informatica,
42(4). https://doi.org/10.31449/inf.v42i4.2027.

Gasiba, T. E., Lechner, U., Pinto-Albuquerque, M., & Fernandez, D. M. (2020, December).
Awareness of secure coding guidelines in the industry-A first data analysis. In 2020 IEEE 19th
International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom) (pp. 345–352). IEEE.

Hameed, M. A., & Arachchilage, N. A. G. (2020). A conceptual model for the organizational
adoption of information system security innovations. In R. C. Joshi & B. B. Gupta (Eds.), Security,
privacy, and forensics issues in big data (pp. 317–339). IGI Global. https://doi.org/10.4018/978-1-
5225-9742-1.ch014.

Ibrahim, M., Aftab, S., Bakhtawar, B., Ahmad, M., Iqbal, A., Aziz, N., Javeid, M. S., & Ihnaini, B.
N. (2020). Exploring the agile family: A survey. IJCSNS, 20(10).

Kargl, F., Schmidt, R., Kung, A., & Bösch, C. (2019). A privacy-aware V-model for software
development. 2019 IEEE Security and Privacy Workshops (SPW), 100.

Khalid, A., Butt, S. A., Jamal, T., & Gochhait, S. (2022). Agile Scrum Issues at Large-Scale
Distributed Projects: Scrum Project Development At Large. In I. R. Management Association
(Ed.), Research anthology on agile software, software development, and testing (pp. 388–398).
IGI Global. https://doi.org/10.4018/978-1-6684-3702-5.ch019.

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 15
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M. (2021). Systematic mapping study on security
approaches in secure software engineering. IEEE Access : Practical Innovations, Open Solutions,
9, 19139–19160. https://doi.org/10.1109/ACCESS.2021.3052311.

Kute, S. S., & Thorat, S. D. (2014). A review on various software development life cycle (SDLC)
models. International Journal of Research in Computer and Communication Technology, 3(7),
778–779.

Leau, Y. B., Loo, W. K., Tham, W. Y., & Tan, S. F. (2012). Software development life cycle AGILE
vs traditional approaches. International Conference on Information and Network Technology,
37(1), 162.

McCaffery, F., Özcan-Top, Ö., Treacy, C., Paul, P., Loane, J., Crilly, J., & Mahon, A. M. (2018). A
process framework combining safety and security in practice. In X. Larrucea, I. Santamaria, R. V.
O’Connor, & R. Messnarz (Eds.), Systems, Software and Services Process Improvement: 25th
European Conference, EuroSPI 2018, Bilbao, Spain, September 5-7, 2018, Proceedings (Vol.
896, pp. 173–180). Springer International Publishing. https://doi.org/10.1007/978-3-319-97925-
0_14.

Mergel, I., Ganapati, S., & Whitford, A. B. (2020). Agile: A new way of governing. Public
Administration Review. https://doi.org/10.1111/puar.13202.

Okesola, O. J., Adebiyi, A. A., Owoade, A. A., Adeaga, O., Adeyemi, O., & Odun-Ayo, I. (2020).
Software requirement in iterative SDLC model. In R. Silhavy (Ed.), Intelligent Algorithms in
Software Engineering: Proceedings of the 9th Computer Science On-line Conference 2020,
Volume 1 (Vol. 1224, pp. 26–34). Springer International Publishing. https://doi.org/10.1007/978-3-
030-51965-0_2.

Olorunshola, O. E., & Ogwueleka, F. N. (2022). Review of system development life cycle (SDLC)
models for effective application delivery. In A. Joshi, M. Mahmud, R. G. Ragel, & N. V. Thakur
(Eds.), Information and communication technology for competitive strategies (ICTCS 2020) ICT:
applications and social interfaces (Vol. 191, pp. 281–289). Springer Singapore.
https://doi.org/10.1007/978-981-16-0739-4_28.

Paul, M. (2013). Official (ISC)2 Guide to the CSSLP CBK ((ISC)2 Press) (2nd ed.). Auerbach
Publications.

Pressman, R., & Maxim, B. (2014). Software engineering: A practitioner’s approach (8th ed.).
McGraw Hill.

Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., & Ravimohan, R. (2010).
Evolving a new model (SDLC Model-2010) for software development life cycle (SDLC).
International Journal of Computer Science and Network Security, 10(1), 112-119.

Ranawana, R., & Karunananda, A. S. (2021). An agile software development life cycle model for
machine learning application development. 2021 5th SLAAI International Conference on Artificial
Intelligence (SLAAI-ICAI), 1–6. https://doi.org/10.1109/SLAAI-ICAI54477.2021.9664736.

Ransome, J., & Misra, A. (2021). Core software security (1st ed.). Routledge.

Rogers, E. M. (2003). Diffusion of innovations. NY: Simon and Schuster, p. 576.

Ruggieri, M., Hsu, T. T., & Ali, M. L. (2019, October). Security considerations for the development
of secure software systems. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON) (pp. 1187–1193). IEEE.

Ruparelia, N. B. (2010). Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35(3), 8. https://doi.org/10.1145/1764810.1764814.

https://www.cscjournals.org/journals/IJS/description.php

Wisdom Umeugo, Kimberly Lowrey & Shardul Pandya

International Journal of Security (IJS), Volume (14) : Issue (1) : 2023 16
ISSN: 1985-2320, https://www.cscjournals.org/journals/IJS/description.php

Salve, S. M., Samreen, S. N., & Khatri-Valmik, N. (2018). A Comparative Study on Software
Development Life Cycle Models. International Research Journal of Engineering and Technology
(IRJET), 5(2), 696–700.

Saravanan, T., Jha, S., Sabharwal, G., & Narayan, S. (2020). Comparative analysis of software
life cycle models. 2020 2nd International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN), pp. 906–909.
https://doi.org/10.1109/ICACCCN51052.2020.9362931.

Shaikh, S., & Abro, S. (2019). Comparison of traditional and agile software development
methodology: a short survey. International Journal of Software Engineering and Computer
Systems, 5(2), 1–14. https://doi.org/10.15282/ijsecs.5.2.2019.1.0057.

Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software development: agile vs. traditional.
Informatica Economica, 17(4/2013), 64–76. https://doi.org/10.12948/issn14531305/17.4.2013.06.

Tsui, F., Karam, O., & Bernal, B. (2022). Essentials of software engineering. Jones & Bartlett
Learning.

Tudela, F. M., Higuera, J. R. B., Higuera, J. B., Montalvo, J. A. S., & Argyros, M. I. (2020). On
combining static, dynamic and interactive analysis security testing tools to improve OWASP top
ten security vulnerability detection in web applications. Applied Sciences, 10(24), 9119.

https://www.cscjournals.org/journals/IJS/description.php

