
Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 105

Defect Management Practices and Problems in Free/Open Source
Software Projects

Dr. Anu Gupta anugupta@pu.ac.in
Assistant Professor
Department of Computer Science and Applications
Panjab University, Chandigarh, 160014, India.

Dr. R.K. Singla rksingla@pu.ac.in
Professor
Department of Computer Science and Applications
Panjab University,Chandigarh, 160014, India.

Abstract

With the advent of Free/Open Source Software (F/OSS) paradigm, a large number of
projects are evolving that make use of F/OSS infrastructure and development
practices. Defect Management System is an important component in F/OSS
infrastructure which maintains defect records as well as tracks their status. The
defect data comprising more than 60,000 defect reports from 20 F/OSS Projects is
analyzed from various perspectives, with special focus on evaluating the efficiency
and effectiveness in resolving defects and determining responsiveness towards
users. Major problems and inefficiencies encountered in Defect Management among
F/OSS Projects have been identified. A process is proposed to distribute roles and
responsibilities among F/OSS participants which can help F/OSS Projects to improve
the effectiveness and efficiency of Defect Management and hence assure better
quality of F/OSS Projects.

Keywords: Free Software, Open Source, Defect Management, Quality, Metrics

1. INTRODUCTION
Free/Open Source Software (F/OSS) is an evolving paradigm of software development which allows
the entire Internet community to use its combined programming knowledge, creativity and expertise to
develop software solutions, which could render benefits to whole community without involving cost
and proprietary issues [1]. F/OSS participants rely on extensive peer collaboration through the
Internet using Version Control System, Mailing List, Defect Management System, Internet Relay Chat,
Discussion Forum etc. [2]. These tools enable participants to collaborate in the F/OSS development
process as well as act as repositories to store the communication activities of the participants,
manage the progress and evolution of F/OSS Projects. These repositories contain explicit and implicit
knowledgebase about F/OSS projects that can be mined to help developers in improving the product
as well as to facilitate the users in evaluating the product.

Even though there are number of qualitative and quantitative studies about F/OSS, little attention has
been paid to the rich information stored in Defect Management Systems of F/OSS projects [3-8].
Defect Management System provides an effective mechanism for recording and tracking of defects as
well as promotes user involvement and peer review process. All the users may not have knowledge to
participate in the development or code review of an F/OSS Project but such users may report bugs or
request new features. They may also comment on existing defect reports or help in their removal, for
example by reproducing them or supplying more information. A large amount of defect related data
flows back and forth between the developers and the users of the F/OSS projects. Hence in most of
the F/OSS projects, substantial amount of defect data gets accumulated in the Defect Management
Systems over the period. This valuable defect data can be used to analyze the past experience,
degree of improvement or deterioration in resolving defects and determine responsiveness towards
users. As the potential F/OSS users need to evaluate the extensibility and maintainability before

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 106

taking any decision to adopt a particular F/OSS product, so the defect related analysis can greatly
help them to evaluate how efficiently and effectively the requests for fixing bugs, enhancing features,
translation requests, support requests etc. are being managed. Moreover the availability of huge
amount of information with a great variety in size, programming languages, tools, methods etc. offers
the possibility of creating a comparison framework among F/OSS projects from which knowledge and
experience can be gained.

In the current study, the defect data of various F/OSS projects is analyzed from various perspectives,
with special focus on evaluating the efficiency and effectiveness in resolving defects and determining
responsiveness towards users. Based on the findings, effective ways and means are suggested to
improve defect management and thus enhance the quality of F/OSS projects.

2. F/OSS PROJECT SELECTION AND DATA COLLECTION
F/OSS projects are selected from SourceForge, a centralized place for F/OSS developers to host their
projects [9]. It is the world's largest F/OSS projects repository with more than 230,000 F/OSS projects
and over 2 million registered users. It provides some of the best empirical data on F/OSS research. A
single source is chosen to select projects in order to control for differences in available tools and
project visibility. In spite of large number of projects hosted, only a small proportion of these projects
are actually active. Also many of the F/OSS projects either do not use or do not allow public access to
Defect Management System. Hence those projects are considered for which defect related data is
publicly accessible and is being maintained completely at SourceForge. Another criterion used for
selection of projects is the project development stage (1-6 where 1 is the planning and 6 is a mature
stage). A cut-off of 5 is chosen which indicates that the selected projects are at similar stage of
development and are not in the early stage of development lifecycle. A total of 20 projects are
selected which constitute a diverse mix of project size, team size, nature of application and targeted
end user type. Selection of limited number of projects has helped to carry out in-depth study. For all
the selected F/OSS projects, detailed defect data is downloaded from SourceForge Research Data
Archive (SRDA) for the period starting from their respective Registration Date to October 2008 [10].
The defect data is downloaded on the basis of unique Project ID assigned to each project at
SourceForge and is stored in the local repository (mySQL) aggregating more than 60,000 defect
records. Further the Defect Analysis and Reporting Tool (DART) is used to carry out exhaustive
analysis of defect data and generate variety of textual/graphical reports. For selected F/OSS projects,
various parameters used for analyzing defect data and their quantitative results are discussed in
subsequent sections.

3. Quality Metrics used for evaluating Defect Management
In order to evaluate Defect Management among F/OSS projects, various metrics used are mentioned
in Table 1.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 107

Sr. # Metric Name Formula Objective
1. Defect

Resolution
Cumulative Defect Arrival Pattern and
Defect Closure pattern over time
interval (in months)

To check consistency and efficiency
in defect resolution over the period

2. Pending Defects Frequency as well volume of
increase/decrease in pending defects
over period (in months)

To check the trend of pending
defects over the period

3. Defect Removal
Rate

Proportion of defects resolved out of
defects submitted for a particular period

To observe the rate at which
defects are resolved over the period

4. Backlog
Management

Ratio of number of defects closed to
number of defects arrived during the
period

To measure the capability to handle
the pending defects

5. Software
Release and
Backlog
Management

Tracing the shapes of BMI curves with
release history of the project

To observe the relationship of
software releases with defect
handling over the period

6. Defect
Resolution Age

Number of days elapsed since a defect
arrived till the time defect is
resolved/closed.

To measure the resolution efficiency

7. Fix/Non-Fix
Defect
Resolution

Defect Resolution Age for Fix versus
Non-Fix Defects

To compare the efficiency in
handling defects requiring code
change with defects requiring no
code change

8. Defect Pending
Age

Number of days elapsed since a defect
arrived and still remained pending at the
end of the month

To measure the age of pending
defects at any point of time

9. Defect
Resolution
(Defect Type
Wise)

Defect Resolution Age for Bugs versus
Feature Requests versus others

To compare the efficiency in
handling defects belonging to
various defect types

TABLE 1: Quality Metrics used for Evaluating Defect Management

4. QUANTITATIVE RESULTS
The detailed results obtained are being presented with the help of statistics and various graphs in the
following subsections.

4.1. Defect Resolution
Defect arrival curves and defect closure curves have been drawn for all the selected F/OSS projects
on the basis of live defect data consolidated on monthly basis. Defect arrival curve is related to the
defects reported by F/OSS community, represented as Cumulative Defects arrived over the period.
Defect closure curve is related to the resolution and closing of defects by F/OSS community,
represented by Cumulative Defects closed over the period. The distance between these two curves at
a given point in time represents the number of defects pending at that time. An ideal defect resolution
process needs to be
• Continuous: when cumulative closed curve is quite smooth without having any peaks or steps.

• Efficient: when cumulative closed curve stays near to the cumulative open curve without raising
overall number of pending defects.

The graphs for all the selected F/OSS projects have been drawn which show varying patterns. Those
patterns can be classified among the following four categories [11]:
• Continuous and Efficient

• Discontinuous and Efficient

• Continuous and Inefficient
• Discontinuous and Inefficient

The patterns for all the selected F/OSS projects are identifiable in one or the other category and
helpful in determining the quality of defect resolution process. The example graphs for each of the
above categories are shown in Figure 1 to 4.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 108

FIGURE 1: Continuous and Efficient Defect Resolution

FIGURE 2: Continuous and Inefficient Defect Resolution

FIGURE 3: Discontinuous and Efficient Defect Resolution

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 109

FIGURE 4: Discontinuous and Inefficient Defect Resolution

4.2. Pending Defects
Pending defects refers to all those defects which still need to be addressed. Ideally pending defects
should decrease with the passage of time or at least it should remain constant. Large number of
pending defects may discourage participating users from providing further feedback and many
opportunities of improvement in the software may be lost. Figure 5 shows that number of monthly
pending defects for all the 20 projects taken together keeps on increasing. To confirm the same
statistically, a paired two-sided t-test is applied between number of pending defects in the beginning
and at the end of the observation period for each of the 20 projects. It is clearly seen that there is
significant difference (t(19)=3.93634888, p<0.05; t critical =2.09302405).

Pending Defects

0

2000

4000

6000

8000

10000

12000

14000

16000

Apr
 2

00
0

Sep
 2
00

0

Fe
b

20
01

Ju
l 2

00
1

D
ec

 2
00

1

M
ay

 2
00

2

O
ct
 2

00
2

M
ar

 2
003

Aug
 2

00
3

Ja
n

200
4

Ju
n

20
04

N
ov

 2
00

4

Apr
 2

00
5

Sep
 2
00

5

Feb
 2

00
6

Ju
l 2

00
6

D
ec

 2
00

6

M
ay

 2
00

7

O
ct
 2

00
7

M
ar

 2
00

8

Aug
 2

00
8

Period

 D
e
fe

c
ts

FIGURE 5: Aggregate Pending Defects for 20 F/OSS projects Together

The closer examination of pending defects over the period January 2006- November 2007 (Figure 6)
shows that there are usually gradual increases and steep decreases in the number of pending
defects. This suggests that defects slowly accumulate over the period and are removed in bursty
manner. To test the hypothesis statistically, changes in pending defects from one month to the next
month are recorded in form of upward change (for an increase) and downward change (for a
decrease) frequencies for each of the 20 projects. Paired two-sided t-test shows that the difference
between upward and downward changes in the number of pending defects is significant
(t(19)=11.9702; p<0.05; t critical = 1.7291). There are overall 2.91 times more upward changes than
downward changes. On an average basis, whenever there is an increase in pending defects, the
upward change is 16.63 defects per month. On the other hand, if pending defects decrease, the
downward change is 30.36 defects per month on an average. The reason for bursty nature of defect
resolution is further discussed in subsection 4.5.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 110

Pending Defects

11000

11500

12000

12500

13000

13500

14000

Ja
n

20
06

M
ar

 2
006

M
ay

 2
00

6

Ju
l 2

00
6

Sep
 2

00
6

N
ov

 2
00

6

Ja
n

200
7

M
ar

 2
00

7

M
ay

 2
00

7

Ju
l 2

00
7

Sep
 2

00
7

N
ov

 2
00

7

Period

 D
e
fe

c
ts

FIGURE 6: Gradual Increases and Steep Decreases in Pending Defects

4.3. Defect Removal Rate
Defect removal rate refers the proportion of defects resolved out of defects submitted for a particular
period. The ever increasing number of pending defects indicates that the defect removal rate is
decreasing. The size of core team has remained roughly same among the selected F/OSS projects.
The hypothesis is that certain percentage of defects does not get resolved over the period as defect
reports are submitted, thus number of pending defects accumulate.

In order to investigate this hypothesis statistically, a period of five years from 2003 to 2007 is
considered. For each selected project, all the defects reports submitted during a particular year have
been considered and then the status of each defect report exactly after 1 year of defect submission is
observed whether the defect is resolved/closed or not [12]. The application of ANOVA reveals that the
period in which a defect is submitted has significant influence on the defect removal rate
(F(4,94)=6.058928; p<0.05; F critical=2.468533). The defects that have been reported during the year
2003, 81% of them have been resolved after 1 year (Table 2). The defect removal rate reduces to
71% in year 2005 and further to 65% in year 2007. This clearly shows that the defect removal rate is
declining which results in ever increasing number of pending defects.

Period Average Removal Rate Standard Deviation

Year 2003 0.81 0.11

Year 2004 0.74 0.20

Year 2005 0.71 0.15

Year 2006 0.66 0.23

Year 2007 0.65 0.26

TABLE 2: Defect Removal Rate Over Five Years

4.4. Backlog Management
Backlog management refers to the capability of F/OSS developers to handle the pending defects,
measured using Backlog Management Index (BMI). BMI is a ratio of number of defects closed to
number of defects arrived during the period.

100

 ×=

periodtheduringarriveddefectsofNumber

periodtheduringcloseddefectsofNumber
BMI

If BMI is larger than 100, it means that the backlog is reduced as defects are being closed at the same
or higher rate at which the defects are arriving. If BMI is less than 100, the backlog is increased. Of
course, the goal is always to strive for a BMI larger than 100. With enough data points, the technique
of control charting can help to calculate the overall backlog management capability of the software
process [13]. A control chart is a graph or chart with limit lines, called control lines. In fact BMI chart is
a pseudo-control chart because BMI data are auto correlated and assumption of independence for

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 111

control charts is violated. As the BMI values are in wide range, c control chart is more suitable [13]. In
this case, three kinds of control lines are calculated as follows:

• Central Line (CL) equal to Mean BMI

• Lower Control Limit
)CL3 (×−= CLLCL

• Upper Control Limit)CL3 (×+= CLUCL

If a process is mature and under statistical process control, all values should lie within the LCL and
UCL. If any value falls out of the control limits, the process is said to be out of statistical process
control. Figure 7 shows a project having very good backlog management. Most of the times the BMI
curves are able to maintain themselves above the LCL. In case of Figure 8, the project was not having
good backlog management initially but later on it improved. Figure 9 shows poor backlog
management throughout the period.

FIGURE 7: Backlog Management of Defects (Good)

FIGURE 8: Backlog Management of Defects (Improved Later)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 112

FIGURE 9: Backlog Management of Defects (Poor)

4.5. Software Release and Backlog Management
In the subsection 4.4, it is observed that BMI curves for most of the F/OSS projects are very
fluctuating in spite of the fact that BMI values remain greater than 100 or lesser. To find out the
reasons for such behavior, a detailed analysis of release data with BMI curves was carried out.
Detailed inspection of release data revealed that the F/OSS projects are releasing their minor/major
versions very frequently confirming the premise “Release Early, Release Often” [1]. In the Figure 10
and 11, efforts are made to trace back the shapes of BMI curves with release history of the projects.
The dotted red colored vertical lines are drawn corresponding to major/minor releases in each of the
following graphs.

FIGURE 10: Software Release and Backlog Management of Defects

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 113

FIGURE 11: Software Release and Backlog Management of Defects

It is found that more than 90% of spikes in BMI curves are matching with the version releases. This
phenomenon refers that generally F/OSS developer community do not resolve the defects on regular
basis, instead put additional efforts to resolve defects near to each release.

4.6. Defect Resolution Age
Defect Resolution Age (DRA) refers to the number of days elapsed since a defect arrived till the time
defect is resolved/closed. The average defect resolution age should be short as well as quite
consistent to have efficiency in defect resolution. The monthly average of defect resolution age
(MADRA) is computed using the following formula:

DRA(di)=Defect Closing Date(di)-Defect Opening Date(di)

Where di refers to a defect closed

The graphs are drawn to show curves for average defect resolution age over the period for the F/OSS
projects. Corresponding linear trend lines are also plotted. The projects should have preferably
decreasing or at least constant trend of average defect resolution age to bring efficiency in defect
resolution. For the F/OSS projects under study, it is observed that none of the projects has decreasing
trend, very few projects are having near to constant trend lines (Figure 12) and most of the projects
are showing upward trends in average defect resolution age over the period (Figure 13).

FIGURE 12: Defect Resolution Age (Near to Constant Trend)

FIGURE 13: Defect Resolution Age (Increasing Trend)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 114

Project Period Average
Resolution Age

(Days)

Standard
Deviation

ANOVA
Statistics

Webmin Jan.1, 2002 to
Dec. 31, 2003

21.56 32.46 F(2,69)= 0.220411;
p<0.05;

F critical= 3.129644

Jan.1, 2004 to
Dec. 31, 2005

28.90 51.62

Jan.1, 2006 to
Dec. 31, 2007

23.89 29.62

NSIS Jan.1, 2002 to
Dec. 31, 2003

16.48 30.25 F(2,69)=7.176098;
p<0.05;

F critical= 3.129644

Jan.1, 2004 to
Dec. 31, 2005

19.98 21.48

Jan.1, 2006 to
Dec. 31, 2007

69.61 86.51

TABLE 3: One Way ANOVA Statistics on Defect Resolution Age

To confirm the observation about trends in Defect Resolution Age, a standard analysis of variance
(ANOVA) is carried out on monthly average resolution age over the period for all the selected F/OSS
projects. Statistics about two projects are shown in Table 3. It is clearly seen that there is no
significant difference in the average resolution over the period in case of Webmin, while it differs
significantly for NSIS.

To analyze the overall defect resolution age for all the selected projects together during the
investigation period, average resolution age for each of the 20 projects for various years is taken into
consideration and standard analysis of variance (ANOVA) is applied which shows that there is
significant change in defect resolution age over the period (F (4,94) =4.29461975;p<0.05;F critical
=2.468533). The Table 4 also shows a continuous increasing trend in average defect resolution age
(days) for various years for all the 20 projects taken together.

Period Average Defect Resolution Age

(Days)
Standard Deviation

2004 61.77 58.34

2005 76.35 41.62

2006 98.73 71.95

2007 113.07 89.99

2008 149.53 104.62

TABLE 4: Average Defect Resolution Age for 20 F/OSS projects Together

Figure 14 is a scatter plot for one of the F/OSS projects where each point represents resolution age
for each defect closed. While Figure 15 shows the number of defects resolved with same resolution
age value. The quality of the defect resolution process can be quantified by considering two statistical
indices of the resolution age distribution i.e. skewness and kurtosis [51]. Skewness measures the
asymmetry of the distribution and high values indicate that there are certain defects which have
resolution age much higher than the average one. While Kurtosis measures the peaked ness of the
distribution and high values mean that the variance of the resolution age is caused by very few
defects with extremely long closing time (Table 5).

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 115

SquirrelMail (Resolution Age)

0

500

1000

1500

2000

2500

0-J
an-

00

14
-M

ay
-0

1

26
-S

ep
-0

2

8-
Feb

-0
4

22
-J

un
-0

5

4-
N
ov

-0
6

18
-M

ar
-0

8

Defect Arrival Date

R
e
s

o
lu

ti
o

n
 A

g
e
 (

D
a
y

s
)

FIGURE 14: Scatter Plot of Resolution Age

Distribution of Resolution Age Value (SquirrelMail)

0

50

100

150

200

250

300

350

400

450

500

Resolution Age (Days)

D
e

fe
c

ts

FIGURE 15: Distribution of Resolution Age

 SquirrelMail NSIS Webmin

Mean 6.20 7.02 13.09

Standard Deviation 25.29 37.83 100.33

Kurtosis 188.75 131.18 127.30

Skewness 12.58 10.97 11.04

Sum of Resolved Defects 3880 1362 3194

TABLE 5: Descriptive Statistics on Distribution of Resolution Age

It is clearly indicated that in most of the selected F/OSS projects, larger number of defects are
resolved in shorter period while smaller number of defects are resolved in longer period which leads
to an increase in overall mean resolution age.

4.7. Fix/Non-Fix Defect Resolution
It is observed that there is generally an increasing trend in defect resolution age and some of the
defects are even resolved after 365 days. Many defects are resolved by making change/fix in the

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 116

source code whereas others may be resolved with non-fix status such as Invalid, Won’t fix, Out of
date, Duplicate, Works for me, Rejected etc.

Hence further analysis is carried out by comparing the resolution age in fix and non-fix categories.
Figure 16 and 17 show graphs for two of the selected projects where comparison is made between fix
and non-fix resolutions by distributing the resolved defects on the basis of defect resolution age (Less
than 10 days, 11 to 30 days, 31 to 90 days, 91 to 365 days and More than 365 days). It is found that
even the defects with non-fix resolution are closed in higher ranges of resolution age i.e. 91 to 365
days or More than 365 days. It is also observed that the proportion of non-fix resolved defects remain
more or less same across all the resolution age categories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Fix/Non Fix) - Gallery

Deleted

Works For Me

Wont Fix

Rejected

Out of Date

Invalid

Duplicate

Fixed

FIGURE 16: Defect Resolution Fix/Non-Fix (Gallery)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Fix/Non Fix) - NSIS

Deleted

Works For Me

Wont Fix

Rejected

Out of Date

Invalid

Duplicate

Fixed

FIGURE 17: Defect Resolution Fix/Non-Fix (NSIS)

An unpaired two-sided t-test is conducted between defects with fix and non-fix resolution using their
monthly average resolution age over all the months. The t-values in the last column of Table 6 for
various F/OSS projects are below the critical values which clearly show that there is no significant
difference in the resolution age of fix and non-fix resolved defects. An unpaired two-sided t-test is also
applied to overall average age of defects with fix and non-fix resolution for all the 20 F/OSS projects.
The test statistics (t(38)=0.984940769; p<0.05; t Critical=1.685954461) shows that there is no
difference in efficiency for defects with fix and non-fix resolution as a whole also.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 117

Project Resolution

Type
Average

Resolution
Age(Days)

Standard
Deviation

t value*

Squirrelmail Fix 132.58 165.75 0.820547
Non-Fix 106.78 260.96

Gallery Fix 104.66 110.02 0.65281
Non-Fix 117.43 167.31

Webmin Fix 22.47 37.78 0.21268
Non-Fix 24.05 75.40

NSIS

Fix 43.12 85.56 2.123759
Non-Fix 21.41 47.08

Netwide Assembler Fix 132.13 308.57 0.645107
Non-Fix 101.68 278.20

aMSN

Fix 62.91 69.01 0.572375
Non-Fix 55.69 81.39

*p<0.05
TABLE 6: t-test statistics on Defect Resolution (Fix/Non-Fix)

4.8. Defect Pending Age
Defect Pending Age (DPA) refers to the number of days elapsed since a defect arrived and still
remained pending at the end of the month. For all the selected F/OSS projects, monthly average of
defect pending age (MADPA) is computed using the following formula:

DPA(di)=Current Date-Defect Opening Date(di)

Where di refers to a pending defect

The graphs are plotted to show the curves for monthly averages of defect pending age for all the
projects. It is observed that all the projects are showing increasing trend of monthly average defect
pending age. Further detailed analysis of defects pending age is carried out by distributing the
pending defects according to their pending age (Less than 10 days, 11 to 30 days, 31 to 90 days, 91
to 365 days and More than 365 days). Figure 18 and 19 also show curves for the overall monthly
average pending age of all the pending defects as well as monthly average pending age for defects
falling in each of the categories. By observing the pattern of defect pending age over the period, it is
found that in almost all the projects the average pending age is increasing. But this increase in defect
pending age trend is attributed mainly by those defects whose average pending age is 90 days or
more. While in other lower age categories, trend remains either constant or slightly downward/upward.

Average Pending Defect Age - Privoxy

0
200
400
600
800

1000
1200
1400
1600
1800

S
ep

 2
00

0

A
pr

 2
00

1

N
ov

20
01

Ju
n

20
02

Ja
n

20
03

A
ug

 2
00

3

M
ar

 2
004

O
ct
 2

00
4

M
ay

 2
005

D
ec

20
05

Ju
l 2

00
6

Feb
 2

007

S
ep

 2
00

7

A
pr

 2
00

8

Period

A
g

e
 (

D
a

y
s
)

<=10Days

11To30Days

31To90Days

91To365Days

>365Days

Average Age

FIGURE 18: Defect Pending Age - Pending Age Wise (Privoxy)

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 118

Average Pending Defect Age - Webmin

0
200
400
600
800

1000
1200
1400
1600
1800

A
pr

 2
00

1

O
ct

 2
00

1

A
pr

 2
00

2

O
ct

 2
00

2

A
pr

 2
00

3

O
ct

 2
00

3

A
pr

 2
00

4

O
ct

 2
00

4

A
pr

 2
00

5

O
ct

 2
00

5

A
pr

 2
00

6

O
ct

 2
00

6

A
pr

 2
00

7

O
ct

 2
00

7

A
pr

 2
00

8

O
ct

 2
00

8

Period

A
g

e
 (

D
a

y
s
)

<=10Days

11To30Days

31To90Days

91To365Days

>365Days

Average Age

FIGURE 19: Defect Pending Age - Pending Age Wise (Webmin)

To observe the difference in pending age over the period for each of the 20 projects, ANOVA is
applied. The statistics for two projects are highlighted in Table 7. Since the test statistic for both the
projects is larger than the critical value, it is concluded that there is a (statistically) significant
difference in average pending age over the periods. To analyze the overall defect pending age for all
the selected projects together during the investigation period, average pending age for each of the 20
projects for various years is taken into consideration and standard analysis of variance (ANOVA) is
applied which shows that there is significant change in defect pending age over the period (F
(4,95)=15.2694; p<0.05; F critical=2.467494). The Table 8 also shows a continuous increasing trend
in average defect pending age (days) for various years for all the 20 projects taken together.

Project Period Average

Pending Age
Standard
Deviation

ANOVA
Results

Webmin Jan.1, 2002 to
Dec. 31, 2003

264.58 94.25 F(2,69)=
252.4181;

p<0.05;
F critical=

3.129644

Jan.1, 2004 to
Dec. 31, 2005

647.36 108.64

Jan.1, 2006 to
Dec. 31, 2007

1047.70 151.84

Privoxy Jan.1, 2002 to
Dec. 31, 2003

151.14 74.96 F(2,69)=
163.3788;

p<0.05;
F critical=

3.129644

Jan.1, 2004 to
Dec. 31, 2005

369.15 70.36

Jan.1, 2006 to
Dec. 31, 2007

927.15 244.99

TABLE 7: One Way ANOVA Statistics on Defect Pending Age

Period Average Defect Pending Age (Days) Standard Deviation

2004 286.51 174.13

2005 421.28 227.67

2006 593.92 288.80

2007 802.74 355.54

2008 897.11 364.85

TABLE 8: Average Defect Pending Age for 20 F/OSS Projects Together

4.9. Defect Resolution (Defect Type Wise)
An F/OSS user can submit defects in the form of bug reports, feature requests, patches or
miscellaneous (translation, support requests, plug-ins, package requests or any other project specific
category). As it is observed that there is generally an increasing trend in defect resolution age, hence
further analysis is carried out to observe the resolution age of each of the defect type. Figure 20 and

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 119

21 show graphs for two of the selected projects where comparison is made between various defect
types by distributing the resolved defects on the basis of defect resolution age (Less than 10 days, 11
to 30 days, 31 to 90 days, 91 to 365 days and More than 365 days).

0%

20%

40%

60%

80%

100%

D
e
fe

c
ts

 (
%

)

<=10 11 To 30 31 To 90 91 To 365 >365

Resolution Period (Days)

Defect Resolution (Defect Type Wise) - SquirrelMail

Miscellaneous

Patches

Feature Requests

Bugs

FIGURE 20: Defect Resolution - Defect Type Wise (SquirrelMail)

0%

10%

20%
30%

40%

50%

60%

70%

80%

90%

100%

D
e

fe
c

ts
 (

%
)

<=10 11 To 30 31 To 90 91 To

365

>365

Resolution Period (Days)

Defect Resolution (Defect Type Wise) - NSIS

Miscellaneous

Patches

Feature Requests

Bugs

FIGURE 21: Defect Resolution - Defect Type Wise (NSIS)

It is found that all the defect types are dispersed among all the resolution age categories. It is also
observed that proportion of bugs decrease with increasing resolution age while others (Feature
Requests, Patches, Miscellaneous) increase with increasing resolution age. Further analysis of
monthly average pending age is carried out in each of the defect type over the period (Figure 22 and
23). It is observed that each defect type is showing increasing trend in all the selected projects.

To analyze the defect pending age for each defect type taking all the selected projects together,
average pending age in each defect type for each of the 20 projects for various years is taken into
consideration and two way ANOVA is applied. The null hypothesis is that the differences between the
defect types are consistent for various years. A significant year effect (F(4)=23.36133;p<0.05;F
critical=2.395431) implies that there is a difference in the effect of different years on the defect
pending age regardless of the type of defect. A significant defect type effect (F(3)=14.83437;p<0.05;F
critical=2.628397) implies that there is a difference in the effect of different defect types on the defect
pending age regardless of the level of year. While the interaction of year and Defect type
(F(12)=0.748815;p>0.05; F critical=1.777693) implies that differences between the defect type are
consistent for various years.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 120

Average Pending Age (Defect Type Wise) - Gallery

0

200

400

600

800

1000

1200

J
u
l
2

0
0

0

J
a
n

 2
0
0

1

J
u
l
2

0
0

1

J
a
n

 2
0
0

2

J
u
l
2

0
0

2

J
a
n

 2
0
0

3

J
u
l
2

0
0

3

J
a
n

 2
0
0

4

J
u
l
2

0
0

4

J
a
n

 2
0
0

5

J
u
l
2

0
0

5

J
a
n

 2
0
0

6

J
u
l
2

0
0

6

J
a
n

 2
0
0

7

J
u
l
2

0
0

7

J
a
n

 2
0
0

8

J
u
l
2

0
0

8

Period

D
a

y
s

Bugs

FeatureRequests

Patches

Miscellaneous

FIGURE 22: Average Pending Age - Defect Type Wise (Gallery)

Average Pending Age (Defect Type Wise) - PDFCreator

0

200

400

600

800

1000

1200

A
u
g

 2
0

0
2

J
a
n

 2
0

0
3

J
u
n

 2
0

0
3

N
o

v
 2

0
0
3

A
p

r
2
0

0
4

S
e
p

 2
0

0
4

F
e
b

 2
0

0
5

J
u
l
2
0

0
5

D
e
c
 2

0
0
5

M
a

y

O
c
t

2
0

0
6

M
a
r

2
0

0
7

A
u
g

 2
0

0
7

J
a
n

 2
0

0
8

J
u
n

 2
0

0
8

Period

D
a
y

s

Bugs

FeatureRequests

Patches

Miscellaneous

FIGURE 23: Average Pending Age - Defect Type Wise (PDFCreator)

5. PROBLEMS IN DEFECT MANAGEMENT
During the current study, various problems that have been identified in Defect Management are
discussed as follows. Also an attempt is made to address these problems.

• It is observed that many F/OSS projects do not carry out defect resolution consistently and
efficiently. The defect resolution is not able to keep pace with defect arrival thus accumulating
pending defects. It is also found that backlog of pending defects accumulate gradually while their
resolutions are carried out in bursty manner near the forthcoming releases. All these factors
cause an increasing trend of overall resolution age as well as pending age. The detailed analysis
shows that most of the defects are closed in reasonable time period while few defects take quite
longer resolution time and aggravate the overall scenario. F/OSS development team should
periodically review such long pending defects and prioritize them for resolution.

• It is also observed that there is no significant difference in resolution age of defects resolved with
code fix or without any code fix (such as Duplicate, Out of Date, Won’t Fix, Works for Me, Invalid
etc.). It is not justified that a defect is closed after 100 days or longer with the status information
as Duplicate, Out of Date, Won’t Fix, Works for Me etc. Such behavior may cause loss of interest
among participating users for further involvement. A process need to defined so that as soon as a
defect is reported, members of development team should review it and if defect does not require
any code change, it should be closed immediately with appropriate resolution status. By reducing
Non-fix defect resolution age, overall resolution efficiency can be improved.

• It is found that all the defect types (Bugs, Feature Requests, Patches, Miscellaneous) are
dispersed among all the resolution age categories although proportion of bugs decrease with

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 121

increasing resolution age while others (Feature Requests, Patches, Miscellaneous) increase with
increasing resolution age. It is also observed that each defect type is showing an overall
increasing trend of pending age in all the selected projects. Ideally bugs should be resolved within
shorter period depending upon the criticality of the bugs; while feature requests, patch
submissions may be delayed till forthcoming releases/patches. Under miscellaneous category,
the resolution should be carried out based upon the type of request. Due to volunteer nature of
F/OSS participants, nobody can ensure that they will have enough time to respond to a defect
quickly. So spreading the load across several development team members may lead to more
reliability and to a shorter defect removal time.

• It has been found that in few F/OSS projects, the defect resolution status remains default (None)
rather than being updated with relevant resolution status (Fixed, Duplicate, Out of Date, Won’t
Fix, Works for Me, Invalid etc.) even after the defect is closed. Although such defects are closed
but the F/OSS users are not able to know exactly what actions have been taken on their reported
defects. Defect Management System should have the functionality which enforces the
development team to update the resolution status correctly while closing the defect.

• It has been found that in most of F/OSS projects, the F/OSS development team is not defining the
priority of each defect being reported, although Defect Management System has the functionality
to assign priority to reported defects. When a defect is reported, the priority is always set to
default value 5 i.e. Normal (1-Highest, 9-Lowest) which is generally not updated by Development
Team. Due to lack of prioritization of reported defects, the resolution of many critical defects may
be delayed. F/OSS project development team should clearly define the criterion to identify the
priority of each reported defect and make some of the team members responsible to assign the
priority as per the criteria.

6. PROPOSED PROCESS FOR DEFECT MANAGEMENT
Based on the suggestions mentioned in the previous section, a process is proposed as shown in
Figure 24, which can help to improve the effectiveness as well as efficiency of Defect Management.

FIGURE 24: Proposed Process Diagram

F/OSS Users

Quality

Assuran

ce Team

Support Level 1

Support Level 2

Communication with Users, Obtaining Feedbacks and

Conducting Periodically Surveys

Level

2

Defect Review, Reproduction, Prioritization, Assignment,
Monitoring and Escalation

Support Level 3

Code Change for Bug Fixing and Product Enhancements

F/OSS

Core

Team

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 122

It is proposed that support and maintenance activities should be distributed among various levels in
order to improve the effectiveness and efficiency in Defect Management. The roles and
responsibilities at these levels can be distributed as follows:

• Support Level 1: This level may comprise volunteer F/OSS users who may not have sufficient

technical skill set to help development team but are ready to participate in F/OSS development
process. This team should have responsibility to communicate with F/OSS users, obtain their
feedback and conduct surveys periodically to know the level of satisfaction regarding usage of
F/OSS Product and any issues that need to be addressed by development team.

• Support Level 2: This level may comprise volunteer F/OSS users cum developers who have

sufficient technical skill set to help development team. They should be assigned the responsibility
to review all the reported defects within stipulated period, make efforts to reproduce, collect
additional information if required, set priority based upon prior defined criterion and assign them to
team at level 3. They should keep on monitoring that no defect should remain pending for a long
period without any appropriate reason. If there is any long pending defect without any justified
reason, it should be escalated to Core Team for corrective measures. The members at this level
should also resolve the defects which does not require any code change and set their appropriate
status in the Defect Management System. They should also build knowledgebase comprising
frequently occurring defects related to installation, configuration etc. and enabling F/OSS users to
browse through easily.

• Support Level 3: This level may comprise volunteer F/OSS developers who have good technical

skill set and knowledge of source code of F/OSS project. This team will have the responsibility to
carry out necessary code changes to fix the defects as well to incorporate required feature
enhancements. Whenever a defect is assigned, they should resolve the defect with in reasonable
time frame. If some additional information is required about the defects, it should be obtained
through level 2 team. Many times some of the defects can not be resolved due to constraints like
software design, technology, resources, irreproducible etc. In all such cases, relevant information
should be communicated to users timely.

• Quality Assurance Team: This team should comprise F/OSS volunteers preferably having some

knowledge or experience in software quality assurance. They should have responsibility to
monitor the activities carried out at all levels e.g. responsiveness towards users, defect resolution
period, backlog of defects, code review etc. and should assure that quality is maintained at all the
levels. They should generate and analyze the statistics periodically and should escalate serious
concerns (if any) to core team.

• F/OSS Core Team: This team comprises the initiators and project leaders who have the overall

responsibility. They should control the overall direction of project, take corrective measures for
serious concerns and decide future strategy for forthcoming releases.

7. CONCLUSION
Defect Management Systems have been used to record and track defects for many years, but there is
little analysis of the recorded defect data. Analyzing the defect data is of substantial value since it
reveals how various variables connected to the defects change over time such as defect arrival rate,
defect removal rate, defect resolution period, handling of pending defects etc. An analysis of more
than 60,000 defect reports associated with 20 F/OSS projects reveals that many important insights
can be gained through the analysis of defect data that has been recorded over the years. The quality
of an F/OSS project can be improved a lot if defects are identified, reported and resolved in efficient
manner. Generally an F/OSS project is developed by a small team of core developers which is
surrounded by a community consisting of large number of globally distributed users. Not every F/OSS
user has the technical skills to take part in code review or to carry out development. However, these
users can contribute to the project by reporting bugs or by suggesting new features.

For effective Defect Management, the defect reports should be updated correctly and regularly. Also
for efficient defect management, the defects should be resolved and closed at the earliest and
consistently. During the analyses, it has been found that generally defect resolution is not performed
consistently. This results in declining defect removal rate and an ever increasing average age of
defect resolution. This problem needs to be addressed timely otherwise important user feedback is

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 123

not incorporated into the software and many opportunities of improving the software are lost. It is also
observed that defects get accumulated gradually and then additional efforts are put to resolve them
near the forthcoming software releases. An observation of the BMI reports also confirms that backlog
is increasing gradually but decreasing steeply. It is also found that a few defects remain pending for
fairly long period of time in the Defect Management System. They are neither resolved nor their status
is updated, if resolved. Such ignored defects keep on accumulating and result in increasing trend in
overall defect pending age. The inefficient defect resolution has serious effects in the long term if
effective countermeasures are not found. Moreover, as defects become older, reproducing them
becomes increasingly more complex because the software continuously changes. Finally, users will
perceive that their feedback does not have any impact and will stop providing valuable input. This
minimizes the benefits that F/OSS projects can draw from peer review and user involvement, which is
an important characteristic of F/OSS projects. A layered process is proposed where roles and
responsibilities are clearly defined and distributed among F/OSS participants. F/OSS projects may
use the proposed process which can help to improve the effectiveness and efficiency in Defect
Management and thus assure better quality of F/OSS Products.

ACKNOWLEDGMENTS
We are thankful to the University of Notre Dame for providing access to Sourceforge Research Data
Archive (SRDA) for retrieving data on F/OSS projects.

REFERENCES
1. Eric S. Raymond, "The Cathedral and the Bazaar", First Monday, 3(3), 1998.

2. Walt Scacchi, “Software Development Practices in Open Software Development

Communities: A Comparative Case Study”, Proceedings of 1st Workshop on Open Source
Software Engineering, May 2001, Toronto, Ontario, Canada.

3. Audris Mockus, Roy Fielding and James D. Herbsleb, “Two Case Studies of Open Source

Software Development: Apache and Mozilla” ACM Transactions on Software Engineering and
Methodology, 11(3): 309–346.

4. Dawid Weiss, “A Large Crawl and Quantitative Analysis Of Open Source Projects Hosted On

Sourceforge”, Research Report ra-001/05(2005), Institute of Computing Science, Pozna
University of Technology, Poland.

5. A. G. Koru and J. Tian, “Defect Handling in Medium and Large Open Source Projects”, IEEE

Software, 21(4):54-61, July 2004.

6. Daniel German and Audris Mockus, “ Automating the Measurement of Open Source
Projects”, Proceedings of the 3rd Workshop on Open Source Software Engineering,
International Conference on Software Engineering, May 2003, Portland, Oregon, USA.

7. Stefan Koch, “Effort Modeling and Programmer Participation in Open Source Software

Projects '', Information Economics and Policy, 20 (4): 345-355, 2008.

8. Ionic Stamelos, Lefteris Angelis, Apostolos Oikonomou and Georgios L. Bleris, “Code Quality
Analysis in Open Source Software Development”, Information Systems Journal, 12(1): 43:60,
2002.

9. “SourceForge”, http://sourceforge.net/

10. Yongqin Gao, Matthew Van Antwerp, Scott Christley and Greg Madey, "A Research
Collaboratory for Open Source Software Research", Proceedings of 29th International
Conference on Software Engineering + Workshops (ICSE-ICSE Workshops 2007),
International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS
2007), May 2007, Minneapolis, Minnesota, USA.

Anu Gupta & R.K. Singla

International Journal Software Engineering (IJSE), Volume (1): Issue (5) 124

11. Chiara Francalanci and Francesco Merlo, “Empirical Analysis of the Bug Fixing Process in
Open Source Projects”, Open Source Development, Communities and Quality, Springer
Boston, 275 :187-196, 2008.

12. Martin Michlmayr and Anthony Senyard, “A Statistical Analysis of Defects in Debian and

Strategies for Improving Quality in Free Software Projects”, The Economics of Open Source
Software Development, Elsevier B.V., 2006, pp 131–148.

13. Stephen H. Kan, “Metrics and Models in Software Quality Engineering”, Second Edition,

2003, Pearson Education.

