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Abstract 
 

As software systems become more complex, software modeling is crucial. Software engineers 
are adopting UML behavioral diagrams to model the dynamic features of a system. These 
dynamic diagrams keep changing for further improvement, hence becoming more complex. In 
this case, there is a need to define the measurement attributes used to measure the complexity of 
these diagrams. Several researchers have addressed the quality of these diagrams by 
developing measurement frameworks. However, the existing frameworks in the literature are 
limited since they do not capture the perspective complexity of these diagrams. In this paper, we 
establish the taxonomy complexity of UML behavioral diagrams, we then modify Kaner’s and 
Briand’s framework to propose measurement attributes namely, element, control flow, and 
interaction based on the taxonomy complexity of behavioral diagrams. Finally, we test the 
applicability of the proposed framework using behavioral diagram metrics. Results indicate that 
the proposed framework represents parameters vital to evaluate and validate the complexity 
measures of behavioral diagrams. 
 
Keywords: Software Quality, UML Behavioral Diagrams, Measurement Framework, Metrics, 
Theoretical Validation. 

 
 
1. INTRODUCTION 

Today’s systems have become increasingly more complex than they were previously(Ozkaya & 
Erata, 2020; Al-Debagy & Martinek, 2020;Andrews & Sheppard, 2021; Cogo et al., 2023). 
Software designers extensively use the Unified Modeling Language (UML) to analyze complex 
systems before their implementation (Abayatilake & Blessing, 2021). UML behavioral diagrams 
are used to visualize the behavior of a system at runtime (Al-Fedaghi, 2021;(Bhatt & Nandu, 
2021). These diagrams display the behavior of a system in different perspectives such as 
element perspective (based on the elements that compose the diagram), control flow perspective 
(based on constructs such as sequence, loop, and decision), and message flow (based on how 
objects interact). Behavioral perspectives lead to UML diagrams' complexity and can compromise 
their quality.  
 
UML behavioral diagrams are dynamic in nature, meaning they keep changing whenever they are 
modified to fit the dynamic business environments (Ozkaya & Erata, 2020). These changes make 
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the affected diagrams to become more complex. To assess these diagrams' complexity, metrics 
must be defined and validated using measurement validation frameworks. Validation frameworks 
are used to evaluate all aspects of metrics and prove that the same are adequate for assessing 
the software.  
 
The problem in this study is that the UML behavioral diagrams have unique complexity beyond a 
simplistic single perspective which requires a rigorous measurement validation framework. 
Although several metric validation frameworks exist in literature for validating metrics, they do not 
incorporate all the desirable properties of complexity perspectives of these diagrams. Therefore, 
a metric validation framework that is intuitional when validating metrics needs to be developed to 
integrate all the complexity perspectives of a behavioral diagram. 
 
The remainder of this paper is organized as follows. Section 2 presents the literature review, 
section 3 presents methodology, section 4 presents the proposed framework, section 5 presents 
the evaluation of the proposed framework, section 6 presents discussion and, our conclusion and 
future work is presented in section 7. 

 
2. LITERATURE REVIEW 

2.1 Complexity Concept in Behavioral Diagrams 
UML is a collection of diagrams that comprehensively describe software intensive 
system(Mehrafrooz,2023; Haga et al., 2021; Jacobson & Booch, 2021; Alshayeb et al., 2020; El-
Attar, 2019; Kulkarni, 2021; Singh & Sidhu, 2018). UML dynamic diagrams are used to capture 
the behavior of a system at runtime. The commonly used behavioral diagrams are sequence, 
statechart and collaboration diagrams (Kulkarni, 2021). A statechart displays the behavior of a 
class due to response to stimuli (Van &Vangheluwe, 2020; Kezai & Khababa, 2022). It is made 
up of nested states that represent an entire state machine. Events trigger the transition from one 
state to another, and actions and activities which are executed inside a state (Carnevali et al., 
2020). State diagrams are useful in event driven programming since event handling is made 
possible and makes it possible to test conditions between different modes of implementation (Van 
&Vangheluwe, 2020; Sunitha & Samuel, 2019).  
 
The sequence diagram displays how messages are exchanged between objects (Pérez-Castillo 
et al., 2021; Haga et al., 2021; Rocha et al., 2021; Alshayeb et al., 2020). The sequence diagram 
uses time to show the order of interactions. It has a lifeline which is an object that participates in 
an interaction. An actor represents a user interacting with the system while objects represent 
components of the system that send messages (Kraibi et al., 2019).  
 
The activity diagram is used to represent the workflow and operations of a system (Lima et al., 
2020; Abbas et al., 2021). The diagram enables multiple conditions and choices in a workflow to 
be easily understood (Cogo et al., 2023; Yildirim & Campean, 2020; Singh& Sidhu et al., 
2018;Ahmad et al., 2019). It is made up of an initial node that shows the start of the workflow, 
control flows represented by arrows that indicate the direction of the workflow, activities that show 
the levels of workflows, decisions that depict selection between multiple conditions of a workflow, 
guard conditions that show a condition to proceed and end nodes that show the end of the 
workflow (Ahmad et al., 2019). Activity diagrams are useful in representing parallel activities and 
multiple conditions. The diagrams are easy to understand and interpretable for analysts and 
collaborators. 
 
The complexity of behavioral diagrams can be viewed in three perspectives namely element, 
control flow, and interaction perspective (King’ori et al., 2024). The element perspective is based 
on the building elements of the behavioral diagram, control flow perspective is the behavior flow 
from one object to another (i.e. sequential, decision, repetitive, and parallel control flow) and 
interaction perspective occurs when an element or an object such as state, an action state or a 
lifeline of a UML behavioral diagram communicates with each other. Interaction is illustrated by 
the use of edges, links, transitions, or messages that are incoming or outgoing from the elements 
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of different behavioral diagrams (King’ori et al. 2024). Figure 1 shows the complexity of 
behavioral diagrams. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

FIGURE 1: Complexity of behavioral diagrams. 

 
Elements are the building blocks of UML behavioral diagrams. Each diagram has unique 
elements that constitute it. For instance, a state is a building block of a statechart diagram; a 
message is an element of a sequence diagram while an action state is an element of an activity 
diagram as shown in Figure 1. 
 
The control flow perspective is represented by the different control structures of a system as it 
executes behavior at runtime. They include the sequential control flow which represents the 
execution of behavior one after the another, decision control flow which depicts the types of 
alternative paths that a system follows when executing behavior, repetitive control flow which 
represents how certain behavior is executed several times and parallel control flow that illustrates 
activities that are executed simultaneously. Figure 1 shows the different types of control flows. 
 
Interaction occurs when an object such as a state, action state, and lifeline communicate with 
each other via incoming and outgoing messages. Figure1 shows the different types of 
interactions in behavioral diagrams. 
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2.2 Existing Measurement Frameworks 
Theoretical validation is an exercise that ensures that a metric does not violate any critical 
properties of the entity being measured. In this section, we present several metrics validation 
frameworks that have been proposed to date. 
 
Weyuker (1988) established 9 properties to evaluate the theoretical soundness of complexity 
metrics. The properties include noncoarseness, granularity, nonuniqueness, design details, 
monotonicity, nonequivalence of interaction, permutation, renaming properties and interaction.  
Although Weyuker’s properties have been developed based on measurement theory, they fail to 
recognize certain aspects of complexity. They have also being criticized for being unrealistic and 
inadequate for non-complexity metrics (King’ori et al., 2024; Muketha, 2010). Therefore, they are 
inadequate for evaluating certain attributes that do not purely fall under the aspect of complexity 
such as coupling, cohesion etc. 
 
Kitchenham et al. (1995) established a framework that focuses on theoretical and empirical 
soundness of a metric. Empirically, a valid measure should satisfy attribute validity, unit validity, 
instrument validity, and protocol validity. Although the framework is based on the measurement 
theory, it does not relate to a specific measurement attribute. 
 
To address the limitations of Weyuker’s properties, Briand et al. (1996), proposed a validation 
framework that defined properties to evaluate size, length, complexity, cohesion, and coupling 
attributes separately. In this framework, the complexity attribute has properties such as non-
negativity, null value, symmetry, module monotonicity, and disjoint module additivity (Briand et al., 
1996). A careful look at Briand’s properties reveals that they lay too much emphasis on code and 
design phases and less on the run time environment, meaning they largely overlook the unique 
features of behavioral diagrams. 
 
Kaner & Bond (2004), established 10 questions to evaluate the use of the measure, attributes 
being measured, measuring instrument, and scope of the measure among others. Kaner’s 
framework is practical from the measurement theory and is used to validate metrics. Even so, it 
does not evaluate a specific measurement attribute. 

 
3. METHODOLOGY 
The study employed a deductive approach to develop a metrics validation framework. Two 
existing software metrics validation frameworks, namely, Kaner’s and Briand’s, were examined to 
establish whether they are suitable for validating behavioral UML metrics. Briand’s framework 
provides a logical method to validate software metrics by assessing specific software attributes. 
On the other hand, Kaner’s framework evaluates if a given software metric provides accurate and 
relevant insights from a practical approach.  
 
Data collection involved identifying and determining which features from these frameworks were 
relevant to the new proposed framework. Data analysis included evaluating the proposed 
framework against existing behavioral metrics and comparing its performance against existing 
validation frameworks. These existing frameworks are reasonable from the measurement theory 
perspective. However, they failed to address the unique features of behavioral diagrams which 
led to the decision to extend and develop a new framework.  
 
In the development of the proposed framework, the first step was to identify the measurement 
attributes based on the complexity characteristics of these diagrams. Three measurements 
attributes namely element, control flow, and interaction were identified.  The element attribute 
analyses the building blocks of a behavioral diagram, the control flow analyses the presence of 
sequence, decision, loop, and parallel in a diagram while the interaction attribute analyses how 
objects communicate by sending messages to each other. The second step was to define 
properties for each of the measurement attributes. The properties of the element are the type of 
element, the extent of the element, and weighted element complexity. The control flow properties 



Ann Wambui King’ori, Geoffrey Muchiri Muketha & John Gichuki Ndia 

International Journal of Software Engineering (IJSE), Volume (11): Issue (1): 2024 5 
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php 

are the type of control flow, the extent of the control flow, depth of the edge, and weighted control 
flow complexity. The interaction properties are the type of interaction, total of incoming and 
outgoing messages, and weighted interaction complexity. The third and last step was to test the 
applicability of the proposed framework using behavioral diagram metrics. 

 
4. PROPOSED FRAMEWORK 
4.1 Overview 
Kaner’s and Briand’s frameworks have been modified to capture the three unique perspectives of 
behavioral diagrams namely, element, control flow, and interaction. The properties have also 
been established for each of the measurement attributes identified.  
 
To define the complexity attributes of a behavioral diagram, we adopted the work of Briand et al., 
(1996) on systems and modules.  A behavioral diagram is characterized by its objects such as a 
state, action state, lifeline, an edge that connects the objects and messages that represent the 
relationship between objects. Therefore, formally, a behavioral diagram D can be defined as a 3 
tuple <O, E, M> where O represents the set of objects/ elements, E represents the set of edges 
and M represents the set of messages. 
 
4.2 Measurement Attributes and their Properties 
4.2.1 Element 
 
Property 1 (Type of element): Is the metric measuring the complexity due to the presence of 
different types of elements in the diagram?  
 
Each UML diagram has unique building blocks that constitute it. For instance, a statechart 
diagram is composed of different types of states i.e. simple state, orthogonal state, composite 
state, initial and final state. A sequence diagram has different types of messages namely delay, 
return, synchronous and asynchronous message. An activity diagram is made up of the initial, 
action state, and final state. Therefore, a good measure should evaluate the elements composing 
a diagram. 
 
Property 2 (Extent of the element): Is the metric measuring the extent of elements in the 
diagram? 
 
The extent of the element refers to the size of the element. A good element metric should return 
the size of a UML behavioral diagram in terms of the number of elements contained in a diagram. 
 
Property 3 (Weighted element complexity): Does the metric measure the complexity derived 
from the extent and complexity factor of an element? 
 
The weighted complexity of a UML diagram is the product of the weight of and extent of an 
element. Therefore, a good metric should be based on the presence of elements together with 
their weights. 
 
4.2.2 Control Flow 
Our definition of a control flow is borrowed from the control structures of traditional software 
namely, sequence, decision, repetitive, and parallel control structures. It refers to the behavior 
flow from one object to the other. The control flow properties are as follows: 
 
Property 1 (Type of control flow): Does the metric measure the complexity due to the existence 
of categories of control flows in a diagram?  
 
All UML behavioral diagrams exhibit the sequence, decision, repetitive and parallel control flows 
while executing behavior at runtime. A good metric should evaluate the different types of control 
flows in a diagram. 
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Property 2 (Extent of the control flow): Does the metric assess the extent of guards on a 
control flow? 
 
The extent of the control flow refers to how large is the control flow in terms of the presence of a 
guard or a Boolean. A guard is a Boolean condition that is evaluated when behavior is being 
executed. A good metric should return the size of the control flow based on the number of guard 
conditions. 
 
Property 3 (Depth of the edge): Is the metric measuring the complexity due to the distance 
covered by an edge? 
 
The depth of the edge refers to the length covered by an edge during the execution of behavior. A 
good metric should return the distance covered by an edge. 
 
Property 4 (Weighted control flow complexity): Does the metric measure the complexity 
derived from the extent, the distance covered  and the complexity factor of the control flow? 
 
The complexity of a UML diagram is a product of the weight of the control flow, the total depth of 
the control flow edge, and the extent of the control flow.  A good metric should be based on the 
presence of control flow together with their assigned weights. 
 
4.2.3 Interaction 
The concept of interaction has been used based on how objects/elements communicate with 
each other. Also, it assesses the level of interaction of an object. According to our framework, an 
object communicates with another object via a message/ link/ transition/ edge. An object with 
more outgoing and incoming messages/ link/ transition/ edge has a high level of interaction. 
Therefore, we have incoming and outgoing interactions. The interaction measurement concept 
has the following properties: 
 
Property 1 (Type of interaction): Is the metric measuring the complexity due to the presence of 
incoming and outgoing interactions?  
 
The type of interaction refers to incoming and outgoing interaction as depicted by incoming and 
outgoing messages/ links/edges/transitions. A good metric should evaluate the different types of 
interaction in a diagram. 
 
Property 2 (Total of incoming and outgoing messages):  Does the metric count the total 
number of incoming and outgoing messages?  
 
The extent of the interaction refers to how large is the interaction in terms of the presence of 
incoming and outgoing messages. A good metric should be based on the total count of incoming 
and outgoing messages. 
 
Property 3 (Weighted interaction complexity): Does the metric measure the complexity 
derived from the incoming and outgoing messages and their complexity factor? 
 
The complexity of an interaction is a product of the weight of an interaction and the total number 
of incoming and outgoing messages. A good metric should be based on the presence of incoming 
and outgoing messages together with their assigned weights. 

 
5. EVALUATION OF THE PROPOSED FRAMEWORK 
5.1. Evaluation with Selected Behavioral Metrics 
We selected the element complexity metrics, aggregate control flow complexity metrics, and 
interaction complexity metrics proposed in (King'ori et al., 2024) as cases for evaluating the 
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intuition of our framework. The metrics were grouped into element, control flow, and interaction 
measurement attributes. 
 
5.1.1 Element 
Property 1 (Type of element): Is the metric measuring the complexity due to the presence of 
different types of elements in the diagram?  
 
A good measure should evaluate the elements composing a diagram. The element complexity 
metrics in evaluate the complexity due to the presence of elements in a diagram(King'ori et al., 
2024). For instance, the weighted number of states and activities (WNSA) evaluates complexity 
due to the presence of states and activities in a statechart diagram. The adjusted weighted 
message into lifeline (AWMIL) and adjusted weighted message out of lifeline (AWMOL) assess 
complexity due to the presence of messages in a sequence diagram while the adjusted weighted 
number of states (AWNS) evaluated complexity due to the presence of action states in an activity 
diagram. 

Property 2 (Extent of the element): Is the metric measuring the extent of elements in the 
diagram? 

A good element metric should return the size of a diagram in terms of the number of elements 
contained in a diagram. The WNSA metric returns the number of types of states in a statechart 
diagram, AWMIL and AWMOL return the total number of categories of messages in a sequence 
diagram while the AWNS gives the total number of states in an activity diagram. 

Property 3 (Weighted element complexity): Does the metric measure the complexity derived 
from the extent and complexity factor of an element? 

The weighted complexity of a UML diagram is the product of the weight of and extent of an 
element. Therefore, a good metric should be based on the presence of elements together with 
their weights. The WNSA, AWMIL, AWMOL, and WNSA return complexity values based on the 
category of elements and their assigned weights. 

As seen in Table 1, all the element complexity metrics satisfied the element properties as 
specified in the proposed framework. 

Property WNSA AWMIL AWMOL TSC AWNS 

Property 1 Yes Yes Yes Yes Yes 

Property 2 Yes Yes Yes Yes Yes 

Property 3 Yes Yes Yes Yes Yes 
 

TABLE 1: Summary of validation results of element metrics. 

 
5.1.2 Control Flow 
Property 1 (Type of control flow): Does the metric measure the complexity due to the existence 
of categories of control flows in a diagram?  
 
A good metric should evaluate the different types of control flows in a diagram. The aggregate 
control flow complexity metric (ACFC) can assess complexity due to the presence of a sequence, 
decision, loop, and parallel in a diagram(King'ori et al., 2024). 
 
Property 2 (Extent of the control flow): Does the metric assess the extent of guards on a 
control flow? 
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A good metric should return the size of the control flow based on the number of guard conditions. 
The ACFC metric evaluates the complexity of a diagram based on the total number of guards in a 
control flow. 
 
Property 3 (Depth of the edge): Is the metric measuring the complexity due to the distance 
covered by an edge? 
 
A good metric should return the distance covered by an edge.  The ACFC can evaluate the 
complexity due to the distance covered by an edge. 
 
Property 4 (Weighted control flow complexity): Does the metric measure the complexity 
derived from the extent, the distance covered and the complexity factor of the control flow? 
 
A good metric should be based on the presence of control flow together with their assigned 
weights. ACFC can evaluate complexity due to the presence of control flows together with their 
assigned complexity weights. 
 
Table 2 shows the summary of the validation of the aggregate control flow complexity metric 
against the control flow properties. 
 

Property ACFC 

Property 1 Yes 

Property 2 Yes 

Property 3 Yes 

Property 4 Yes 
 

TABLE 2: Summary of validation results of aggregate control flow metric. 

 
5.1.3 Interaction 
Property 1 (Type of interaction): Is the metric measuring the complexity due to the presence of 
incoming and outgoing interactions?  
 
A good metric should evaluate the different types of interaction in a diagram. The incoming 
interaction complexity metrics i.e. incoming interaction complexity (IIC), outgoing interaction 
complexity (OIC), and TIC can assess the complexity due to incoming or outgoing 
interaction(King'ori et al., 2024). 
 
Property 2 (Total of incoming and outgoing messages): Does the metric count the total 
number of incoming and outgoing messages?  
 
A good metric should be based on the total count of incoming and outgoing messages. The IIC, 
OIC, and TIC metrics evaluate the complexity of a diagram based on the total number of 
incoming and outgoing messages. 
 
Property 3 (Weighted interaction complexity): Does the metric measure the complexity 
derived from the incoming and outgoing messages and their complexity factor? 
 
A good metric should be based on the presence of incoming and outgoing messages together 
with their assigned complexity weights. The IIC, OIC, and TIC can assess the complexity of a 
diagram based on the total number of incoming and outgoing messages together with their 
assigned weights. 
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As shown in Table 3, all the interaction complexity metrics satisfied the interaction properties as 
specified in the proposed framework. 
 

Property IIC OIC TIC 

Property 1 Yes Yes Yes 

Property 2 Yes Yes Yes 

Property 3 Yes Yes Yes 

 
TABLE 3: Summary of validation results of interaction metrics. 

 
5.2. Comparison with Existing Theoretical Validation Frameworks 
In this section, we present a comparison of our framework with three existing frameworks. The 
objective of this comparison was to assess the completeness of each framework in terms of its 
ability to validate various aspects and perspectives of complexity. This evaluation highlights the 
strengths and limitations of each framework and demonstrates how our proposed framework 
addresses gaps, particularly in validating the unique features of behavioral diagrams and diverse 
metric categories. Table 4 shows a comparison of our framework with three existing frameworks. 

 
Framework Considers 

multiple metrics  
Considers 

different aspects 
of complexity 

Considers behavioral 
perspectives 

Weyuker’s (1988) Yes No No 
Briand’s et al. 

(1996) 
Yes Yes No 

Kaner & Bond, 
(2004) 

Yes No No 

Proposed 
perspective-based 

framework 

Yes Yes Yes 

 

TABLE 4: Comparison with existing validation frameworks. 

 
Although the frameworks are practical from the measurement theory concept, some are generic 
in that they do not evaluate a particular measurement attribute while some cannot evaluate the 
unique features of behavioral diagrams. In addition, they do not involve several types or 
categories of metrics. Therefore, the proposed framework outperforms other frameworks in its 
ability to assess UML behavioral diagrams in a more holistic approach. 

 
6. DISCUSSION 
This section presents a discussion of the implications of our results. Kaner’s (2004) measurement 
framework emphasizes software quality by formulating ten questions to measure metrics directly. 
Although the framework is based on the measurement theory, it lacks specificity to a particular 
measurement attribute. On the other hand, Briand’s et al. (1996) framework evaluates specific 
measurement attributes namely, length, size, complexity, cohesion, and coupling. However, it 
puts much emphasis on code and design phases and less on the run time environment. In this 
study, Kaner’s and Briand’s frameworks have been modified to assess specific software attributes 
namely, element, control flow, and interaction for UML behavioral diagrams. 
 
Findings from analysis of selected behavioral metrics with the proposed framework indicate that 
the element metrics namely, weighted number of state activities (WNSA), adjusted weighted 
message out of lifeline (AWMOL), adjusted weighted message into lifeline (AWMIL), total 
sequence complexity (TSC), and adjusted weighted number of states (AWNS) satisfied all the 3 
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element requirements namely, type of element, extent of the element, and weighted element 
complexity.  
 
Further, the aggregate control flow metric (ACFC) metric satisfied all the control flow properties 
namely, type of control flow, extent of the control flow, depth of the edge, and weighted control 
flow complexity. Finally, incoming interaction complexity (IIC), outgoing interaction complexity 
(OIC), and total interaction complexity (TIC) metrics satisfied all the 3 interaction properties, 
namely, type of interaction, total incoming and outgoing messages, and weighted interaction 
complexity. These findings imply that the proposed framework is sound and intuitional. 
 
Findings from the comparison with existing validation frameworks show that the proposed 
framework captures the most unique features of behavioral diagrams, implying that it is more 
complete than others. 
 
The findings of this research have positive implications that can benefit both software engineers 
and researchers. Software engineers can address potential issues early enough in the designing 
of UML behavioral diagrams. In addition, the study lays a strong basis for further research on 
behavioral diagram quality. 

 
7. CONCLUSION AND FUTURE WORK 
In this study, a new framework was proposed to validate UML behavioral metrics based on 
complexity perspectives. The identified measurement attributes were element, control flow, and 
interaction. The properties were further defined under each measurement attribute. The 
properties established under the element were the type of element, the extent of the element, and 
weighted element complexity. The control flow properties were the type of control flow, the extent 
of control flow, depth of edge, and weighted control flow complexity. The type of interaction, total 
incoming and outgoing messages, and weighted interaction complexity properties were 
established under the interaction concept.  
 
The proposed framework provides theoretical properties for assessing the soundness of UML 
behavioral diagrams-related metrics. In order to establish its intuition, the framework was 
evaluated using selected behavioral metrics. Finally, the framework was evaluated by comparing 
it with three existing and well-known validation frameworks to establish its completeness.  
 
In conclusion, the proposed framework provides theoretical development for validation of UML 
behavioral diagrams, and extends existing frameworks in that it is more complete in terms of 
behavioral complexity perspectives covered. The framework can benefit software engineers and 
researchers in assessing and therefore controlling UML diagrams complexity, which in turn can 
lead to improved software quality. 
 
Future work includes validating other existing behavioral metrics with the proposed framework. 
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