
Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 1

Software Process Control on Ungrouped Data: Log-Power Model

Satya Prasad Ravi profrsp@gmail.com
Associate Professor,
Dept. of Computer Science & Engg.,
Acharya Nagarjuna University
Andhrapradesh, India

B. Indira Reddy Indira2259@yahoo.co.in
Associate professor,
St. Pauls college of Management & IT
Hyderabad, India.

Krishna Mohan Gonuguntla km_mm_2000@yahoo.com
Reader, Dept. of Computer Science,
P.B.Siddhartha College
Andhrapradesh, India.

Abstract

 Statistical Process Control (SPC) is the best choice to monitor software reliability process. It
assists the software development team to identify and actions to be taken during software failure
process and hence, assures better software reliability. In this paper we propose a control
mechanism based on the cumulative observations of failures which is ungrouped data using an
infinite failure mean value function of Log-Power model, which is Non-Homogenous Poisson
Process (NHPP) based. The Maximum Likelihood Estimation (MLE) approach is used to estimate
the unknown parameters of the model.

Keywords: MLE, SPC, Log-Power, Ungrouped Data.

1. INTRODUCTION
Many software reliability models have been proposed in last 40 years to compute the reliability
growth of products during software development phase. These models can be of two types i.e.
static and dynamic. A static model uses software metrics to estimate the number of defects in the
software. A dynamic model uses the past failure discovery rate during software execution over
time to estimate the number of failures. Various software reliability growth models (SRGMs) exist
to estimate the expected number of total defects (or failures) or the expected number of
remaining defects (or failures).

The goal of software engineering is to produce high quality software at low cost. As, human
beings are involved in the development of software, there is a possibility of errors in the software.
To identify and eliminate human errors in software development process and also to improve
software reliability, the Statistical Process Control concepts and methods are the best choice.
SPC concepts and methods are used to monitor the performance of a software process over time
in order to verify that the process remains in the state of statistical control. It helps in finding
assignable causes, long term improvements in the software process. Software quality and
reliability can be achieved by eliminating the causes or improving the software process or its
operating procedures [1].

The most popular technique for maintaining process control is control charting. The control chart
is one of the seven tools for quality control. Software process control is used to secure, that the

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 2

quality of the final product will conform to predefined standards. In any process, regardless of
how carefully it is maintained, a certain amount of natural variability will always exist. A process is
said to be statistically “in-control” when it operates with only chance causes of variation. On the
other hand, when assignable causes are present, then we say that the process is statistically
“out-of-control”. Control charts should be capable to create an alarm when a shift in the level of
one or more parameters of the underlying distribution occurs or a non-random behavior comes
into. Normally, such a situation will be reflected in the control chart by points plotted outside the
control limits or by the presence of specific patterns. The most common non-random patterns are
cycles, trends, mixtures and stratification [2]. For a process to be in control the control chart
should not have any trend or nonrandom pattern. The selection of proper SPC charts is essential
to effective statistical process control implementation and use. The SPC chart selection is based
on data, situation and need [3].

Chan et al.,[4] proposed a procedure based on the monitoring of cumulative quantity. This
approach has shown to have a number of advantages: it does not involve the choice of a sample
size; it raises fewer false alarms; it can be used in any environment; and it can detect further
process improvement. Xie et al.,[5] proposed t-chart for reliability monitoring where the control
limits are defined in such a manner that the process is considered to be out of control when one
failure is less than LCL or greater than UCL. Assuming an acceptable false alarm �=0.0027 the
control limits were defined. In section 5 of present paper, a method is presented to estimate the
parameters and defining the limits. The process control is decided by taking the successive
differences of mean values.

2. BACKGROUND THEORY
This section presents the theory that underlies NHPP models, the SRGMs under consideration
and maximum likelihood estimation for ungrouped data. If ‘t’ is a continuous random variable with
pdf:

1 2(; , , ,)kf t θ θ θ…
. Where, 1 2, , , kθ θ θ… are k unknown constant parameters which need to

be estimated, and cdf: ()F t . Where, The mathematical relationship between the pdf and cdf is

given by: ()'()f t F t= . Let ‘a’ denote the expected number of faults that would be detected given

infinite testing time. Then, the mean value function of the NHPP models can be written
as: () ()m t aF t= , where F(t) is a cumulative distribution function. The failure intensity function

()tλ in case of NHPP models is given by: () '()t aF tλ = [6].

2.1. NHPP model
The Non-Homogenous Poisson Process (NHPP) based software reliability growth models
(SRGMs) are proved to be quite successful in practical software reliability engineering [7]. The
main issue in the NHPP model is to determine an appropriate mean value function to denote the
expected number of failures experienced up to a certain time point. Model parameters can be
estimated by using Maximum Likelihood Estimate (MLE). Various NHPP SRGMs have been built
upon various assumptions. Many of the SRGMs assume that each time a failure occurs, the fault
that caused it can be immediately removed and no new faults are introduced. Which is usually
called perfect debugging. Imperfect debugging models have proposed a relaxation of the above
assumption [8][9].

2.2. Model under consideration: Log-Power model
Software reliability growth models (SRGM’s) are useful to assess the reliability for quality
management and testing-progress control of software development. They have been grouped
into two classes of models concave and S-shaped. The most important thing about both models
is that they have the same asymptotic behavior, i.e., the defect detection rate decreases as the
number of defects detected (and repaired) increases, and the total number of defects detected
asymptotically approaches a finite value. The Log Power NHPP model has several interesting
properties, such as simple graphical interpretations and simple forms of the maximum likelihood
estimates for the parameters. This model is characterized by the following mean value function:

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 3

() ()log 1bm t a t= + . Where, , 0, 0a b t> ≥ . The failure intensity function of the model, which is

defined as the derivative of the mean value function ()m t , is given by () ()1log 1

1

bab t
t

t
λ

− +
=

+
.

3. MAXIMUM LIKELIHOOD ESTIMATION
In much of the literature the preferred method of obtaining parameter estimates is to use the
maximum likelihood equations. Likelihood equations are derived from the model equations and
the assumptions which underlie these equations. The parameters are then taken to be those
values which maximize these likelihood functions. These values are found by taking the partial
derivate of the likelihood function with respect to the model parameters, the maximum likelihood
equations, and setting them to zero. Iterative routines are then used to solve these equations.
Unfortunately, the SRGM literature is sadly lacking in advice on which iterative routines to use,
and with what starting values. This is unfortunate because the accuracy of parameter estimates
and thus the accuracy of the models themselves greatly depend on the ability of the iterative
search methods used to overcome local minima and find good values for the parameters.

If we conduct an experiment and obtain N independent observations, 1 2, , , Nt t t… . The likelihood

function may be given by the following product:

()1 2 1 2 1 2
1

, , , | , , , (; , , ,)
N

N k i k
i

L t t t f tθ θ θ θ θ θ
=

= ∏… … …

Likelihood function by using �(t) is:
()

1

()
n

m t
i

i

L e tλ−

=

= ∏

Log Likelihood function for ungrouped data [10] is given as,

[]
1

lo g lo g () ()
n

i n
i

L t m tλ
=

= −∑

The maximum likelihood estimators (MLE) of 1 2, , , kθ θ θ… are obtained by maximizing L or Λ ,

where Λ is ln L . By maximizing , which is much easier to work with than L, the maximum
likelihood estimators (MLE) of 1 2, , , kθ θ θ… are the simultaneous solutions of k equations such

as: ()
0

jθ
∂ Λ

=
∂

, j=1,2,…,k.

3.1. Illustration: Parameter Estimation
We used cumulative time between failures data for software reliability monitoring. The use of
cumulative quality is a different and new approach, which is of particular advantage in reliability.
Using the estimators of ‘a’ and ‘b’ we can compute ()m t .

The likelihood function of Log-power model is given as,

() ()1
lo g 1

1

lo g 1

1

b
bN

a t i

i i

a b t
L e

t

−
− +

=

+
=

+∏ (3.1.1)

Taking the natural logarithm on both sides, The Log Likelihood function is given as:

() ()
1

1

log 1
log log log 1

1

bn
i b

n
i i

ab t
L a t

t

−

=

 +
= − +  + 
∑ . (3.1.2)

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 4

Taking the Partial derivative with respect to ‘a’ and equating to ‘0’.

()log 1b
n

n
a

t
=

+
 (3.1.3)

Taking the Partial derivative of log L with respect to ‘b’ and equating to‘0’.

()() ()
1

log log 1 log log 1
n

n i
i

n
b

n t t
=

=
+ − +  ∑

 (3.1.4)

4. TIME DOMAIN FAILURE DATA SETS
The techniques examined here deal with data about the time at which failures occurred; or
alternatively, data about the time between failure occurrences. These two forms can be
considered equivalent. Although most software reliability growth models use data of this form,
and such models have been in use for several decades, finding suitable data to verify models and
improvement techniques is difficult. Early work generally focused on data based on calendar or
wall clock time. Musa asserts that CPU execution time is a better measure than wall clock time,
during which the actually time spent running a program can vary greatly based on CPU load, man
hours, and other factors [11].

DS #1: On-Line Data Entry IBM Software Package
The data reported by Ohba [8] are recorded from testing an on-line data entry software package
developed at IBM. The following table shows the number of errors and the inter failure time.

Failure
Number

Time
Between
Failure(h)

Failure
Number

Time
Between
Failure(h)

Failure
Number

Time
Between
Failure(h)

1 10 6 12 11 19
2 9 7 18 12 30
3 13 8 15 13 32
4 11 9 22 14 25
5 15 10 25 15 40

TABLE 4.1: DS #1.

DS #2: AT&T System T Project
The AT&T’s System T is a network-management system developed by AT&T that receives data
from telemetry events, such as alarms, facility-performance information, and diagnostic
messages, and forwards them to operators for further action. The system has been tested and
failure data has been collected [12]. The following Table shows the failures and the inter-failure
times (in CPU units).

Failure
Number

Inter Failure
Time

Failure
Number

Inter Failure
Time

Failure
Number

Inter Failure
Time

1 5.5 9 11.39 17 125.67
2 1.83 10 19.88 18 82.69
3 2.75 11 7.81 19 0.46
4 70.89 12 14.6 20 31.61
5 3.94 13 11.41 21 129.31
6 14.98 14 18.94 22 47.6
7 3.47 15 65.3
8 9.96 16 0.04

TABLE 4.2: DS #2.

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 5

5. RESULTS
The performance of the model under consideration is exemplified by applying on the data sets
given in tables 4.1 and 4.2.

5.1 Calculation of Control Limits
The control limits for the chart are defined in such a manner that the process is considered to be
out of control when the time to observe exactly one failure is less than LCL or greater than UCL.
Our aim is to monitor the failure process and detect any change of the intensity parameter. When
the process is normal, there is a chance for this to happen and it is commonly known as false
alarm. The traditional false alarm probability is to set to be 0.27% although any other false alarm
probability can be used. The actual acceptable false alarm probability should in fact depend on
the actual product or process [13].

()
()
()

log 1 0.99865

log 1 0.5

log 1 0.00135

b
u

b
c

b
l

T t

T t

T t

= + =

= + =

= + =

Data set a b)(Utm

)(Ctm

)(Ltm
DS#1 0.022149 3.747340 0.022136 0.016392 0.001256
DS#2 0.073480 3.040257 0.073437 0.054379 0.004168

TABLE 5.1.1: Estimated Parameters and the Control Limits.

5.2 Distribution of Failures
The ()m t values were calculated at each cumulative value of ‘t’. The successive differences of

these values are calculated to plot as a failure control chart along with the calculated control limits
which vary with the considered data. The following tables 5.2.1, 5.2.2 and graphs given in figures
5.2.1, 5.2.2 shows the performance of Log-Power model in software process control.

FN m(t) SD FN m(t) SD FN m(t) SD
1 0.587104 0.764908 6 5.069872 1.082693 11 10.191812 1.262075
2 1.352012 1.060919 7 6.152565 0.838939 12 11.453888 1.249374
3 2.412931 0.832128 8 6.991504 1.145406 13 12.703262 0.917759
4 3.245060 1.047639 9 8.136909 1.201109 14 13.621021 1.378979
5 4.292699 0.777173 10 9.338018 0.853794 15 15.000000

TABLE 5.2.1: Successive Differences of Mean Values IBM.

FN m(t) SD FN m(t) SD FN m(t) SD
1 0.494209 0.227281 9 8.843671 0.842176 17 16.753902 1.699392
2 0.721490 0.337608 10 9.685847 0.312257 18 18.453294 0.008876
3 1.059098 5.614150 11 9.998104 0.559258 19 18.462171 0.596590
4 6.673248 0.218518 12 10.557362 0.417022 20 19.058761 2.206733
5 6.891766 0.784428 13 10.974384 0.658035 21 21.265494 0.734506
6 7.676194 0.172320 14 11.632419 2.008932 22 22.000000
7 7.848515 0.477406 15 13.641351 0.001129
8 8.325921 0.517750 16 13.642479 3.111423

TABLE 5.2.2: Successive Differences of Mean Values ATT.

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 6

failure control chart

UCL 0.022136

CL 0.016392

LCL 0.001256

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

failure number

su
cc

es
si

ve
 d

if
fe

re
n

ce
s

o
f

m
ea

n

va
lu

es

FIGURE 5.2.1: Failure Control Chart.

failure control chart

0.073437UCL

0.054379CL

0.004168LCL

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

failure number

su
cc

es
si

ve
 d

if
fe

re
n

ce
s

o
f

m
ea

n

va
lu

es

FIGURE 5.2.2: Failure Control Chart.

A point below the control limit ()Lm t indicates an alarming signal. A point above the control limit

()Um t indicates better quality. If the points are falling within the control limits it indicates the

software process is in stable. By placing the failure cumulative data shown in tables 5.2.1 and
5.2.2 on y axis and failure number on x axis and the values of control limits are placed on Control
chart, we obtained Figures 5.2.1 and 5.2.2.The software quality is determined by detecting
failures at an early stage.

6. CONCLUSION
The given Time between failures data are plotted through the estimated mean value function
against the failure serial order. The graphs have shown out of control signals i.e below the LCL.
Hence we conclude that our method of estimation and the control chart are giving a positive
recommendation for their use in finding out preferable control process or desirable out of control
signal. By observing the Control chart it is identified that, for DS#1 the failure process out of UCL.
For DS#2 the failure situation is detected at 15th point below LCL. Hence our proposed Control
Chart detects out of control situation. The performance of this model is compared with Rayleigh
and exponential Rayleigh models [14][15]. Many of the successive differences have gone out of

Satya Prasad, B. Indira Reddy & Krishna Mohan Gonuguntla

International Journal of Software Engineering (IJSE), Volume (5) : Issue (1) : 2014 7

upper control limits for the present model. But, in the case of exponential and Rayleigh model the
successive differences have gone out of Lower control limits and within the upper and lower
control limits.

7. REFERENCES
[1] Kimura, M., Yamada, S., Osaki, S., (1995). ”Statistical Software reliability prediction and its

applicability based on mean time between failures”. Mathematical and Computer
ModellingVolume 22, Issues 10-12, Pages 149-155.

[2] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007. “Statistical process control using
shewart control charts with supplementary Runs rules” Springer Science + Business media
9:207-224.

[3] MacGregor, J.F., Kourti, T., 1995. “Statistical process control of multivariate processes”.
Control Engineering Practice Volume 3, Issue 3, March 1995, Pages 403-414.

[4] Chan, L.Y, Xie, M., and Goh. T.N., (2000), “Cumulative quality control charts for monitoring
production processes. Int J Prod Res; 38(2):397-408.

[5] Xie. M, T.N Goh and P.Ranjan. (2002). “Some effective control chart procedures for reliability
monitoring”, Reliability Engineering and System Safety. 77, 143-150.

[6] Swapna S. Gokhale and Kishore S.Trivedi, (1998). “Log-Logistic Software Reliability Growth
Model”. The 3rd IEEE International Symposium on High-Assurance Systems Engineering.
IEEE Computer Society.

[7] Musa, J. D.; Iannino, A.; Okumoto, K. (1987). “Software Reliability - Measurement, Prediction,
Application”, New York.

[8] Ohba, M., 1984. “Software reliability analysis model”. IBM J. Res. Develop. 28, 428-443.

[9] Pham. H., 1993. “Software reliability assessment: Imperfect debugging and multiple failure
types

[10] Pham. H., 2006. “System software reliability”, Springer.

[11] Musa J.D. (1975). “A Theory of Software reliability and its applications” IEEE Trans. On
Software Engineering ,vol SE-1(3)

[12] Ehrlich, W., Prasanna, B., Stampfel, J. and Wu, J. (1993). “Determining the cost of a stop
testing decision”, IEEE Software: 33-42.

[13] Gokhale, S.S and Trivedi, K.S., 1998. “Log-Logistic Software Reliability Growth Model”. The
3rd IEEE International Symposium on High-Assurance Systems Engineering. IEEE Computer
Society.

[14] R.Satya Prasad, G.Krishna Mohan and Prof. R.R.L. Kantham. “Time Domain based Software
Process Control using Weibull Mean Value Function”, International Journal of Computer
Applications (IJCA). 18(3):18-21, March 2011.

[15] G.Krishna Mohan, B.Srinivasa Rao and Dr. R.Satya Prasad. ”A Comparative study of
Software Reliability models using SPC on ungrouped data”, International Journal of
Advanced Research in Computer Science and Software Engineering (IJARCSSE). Volume 2,
Issue 2, February 2012.

