
I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 1

Agile Knowledge Sharing

I. Burak Ersoy burak.ersoy@tamucc.edu
School of Engineering and Computing Sciences
Texas A&M University-Corpus Christi
Corpus Christi, TX 78412, USA

Ahmed M. Mahdy ahmed.mahdy@tamucc.edu
School of Engineering and Computing Sciences
Texas A&M University-Corpus Christi
Corpus Christi, TX 78412, USA

Abstract

In today's economy, enterprises require knowledge more than ever before. Employees are being
classified through their skill set and experience, where the tacit knowledge of individuals is the
key factor. The effect of knowledge hunger can be easily seen in agile software development
teams. To sustain the quality permanence of software development, it is essential to transform
individuals' tacit knowledge to core organizational knowledge. To achieve this goal, every
software development process utilizes different knowledge sharing and creation approaches. In
this paper, knowledge sharing issues are surveyed and categorized into: 1) sociological issues, 2)
documentation issues, and 3) implementation issues with/without pair programming. Finally, a
proposed technique, Knowledge Temple, is introduced as feasible improvement to well-known
knowledge sharing problems for small agile software development teams.

Keywords: Agile Software Development, Knowledge Sharing, Knowledge Creation, Knowledge
Loss, Knowledge Hoarding.

1. INTRODUCTION

Creating successful projects is the ultimate goal of software engineering. Thus, software
development methodologies are introduced to overcome software development issues, such as
late projects, budget issues, and faults [12]. Traditional software development methodologies,
team software process (TSP) and personal software process (PSP) from the Software
Engineering Institute (SEI) [5], and Agile methodologies [14] are leading software life-cycle
models. Every life-cycle model offers different participation or learning activities, such as cognitive
apprenticeship and knowledge repository creation routines. All those methodologies evolve
around knowledge management; in fact, knowledge sharing is the major component of each.

Tacit knowledge is the experience of development, training, and/or education, which materializes
in a person [2][16][31][51][60][64]. Software development is based on the tacit knowledge of the
individuals. To sustain the quality permanence of software development, it is essential to
transform individuals' tacit knowledge to core organizational knowledge. To achieve this goal,
every software development process utilizes different knowledge sharing and creation
approaches.

Traditional software development methodologies make use of extensive documentation to
accomplish knowledge sharing [13][19][26][59][61]. The documentation contains the project
management plan, configuration management plan, quality assurance plan, validation and
verification plans, requirements specification, design description, application testing, and user
documentation for the project. However, creation of those comprehensive documents is time

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 2

consuming because the documents are excessively project-specific, thus, the reusability of the
documents is nominal.

TSP and PSP offer self and team training through in-house and/or external educational programs
[5][56]. Moreover, TSP and PSP models are also performed in academia to create industry-level
software engineering for university students [25][62]. Although this training is influential, the cost
of the training is high especially for small software development teams. In addition, training lets
the software development team get sidetracked by gaining the knowledge because they are not
able to continue project development. Thus, the productivity of the development team becomes
almost zero.

The cognitive apprenticeship model presents an active participation technique between master
and the apprentice. This approach is applied in class and in virtual settings in academia
[24][32][43]. Its collaborative learning experience creates an authentic setting for knowledge
sharing. On the other hand, the success of cognitive apprenticeship depends on the lead quality
of the master. In addition, cognitive apprenticeship requires time for profitable knowledge sharing
[34].

Knowledge repository creation is an active learning and developing approach [6][53][58][71].
Creating process assets increases the tacit knowledge transformation among developers.
Moreover, this technique increases the reusability of externalized tacit knowledge. Yet, version
management of created assets and evolving assets, which have high functionality and specificity,
are the downside of knowledge repository creation.

Agile methodologies introduce two knowledge sharing approaches, which create strong
enthusiasm in software engineering [18][19][33][59][61][67]. Pair programming not only allows
successful knowledge sharing between pairs but also enhances the development quality. Pair
rotation builds a sincere software development environment by breaking the ice between software
development team members. Those two approaches are also carried out in academia as a
classroom technique to facilitate peer knowledge sharing and to increase intercommunication
among students [17][38][40][66]. However, those two methods lead to unequal participation and
pair incompatibility.

Agile development offers a productive, flexible, and adaptive environment, where knowledge
sharing limitations may arise [1][28][44][55]. The key concept of agile methodologies is creating
working software via customer satisfaction and development pace [9][14][22][44]. Therefore
software development teams focus more on applying the knowledge than sharing.
In this work, the main goal is to survey knowledge sharing techniques for agile software
engineering.

1.1 Why Knowledge Sharing?
The problems of software development teams are:
1. knowledge loss via retirement or high turnover rates and
2. knowledge hoarding for interpersonal reasons or organizational climate.

If the organization suffers from knowledge loss and knowledge hoarding, it may mean the
organization is staff-dependent. For organizational success and continuity, organizations have to
be staff-independent. Being staff-independent means both knowledge loss and knowledge
hoarding protected. In order to be staff-independent, organizations should share the knowledge
among the development team.

2. KNOWLEDGE SHARING CHELLENGES

Knowledge is considered a principal component in developing software because software
development is a people-based activity where developers' knowledge impacts the process. To
achieve software complexity and quality demands, organizations need successful programmers

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 3

[8][34][42][50]. However, finding good programmers is a challenge for many small-level
organizations and research institutes. The reason can be either the cost of a good programmer or
the lack of desire of the programmer to become a part of a small development team [27].

Knowledge loss is a serious issue for every level of the software development team
[11][29][49][68]. However, the effects on small development teams are more catastrophic than
mid-level or large development teams. Most small development teams have a strong dependency
on their productive developers. Therefore, losing the knowledge of productive developers means
losing the development quality. Knowledge loss can be caused through retirement or high
turnover rates. In particular, external turnover of skilled developers is a rising dilemma for small
development teams [11][29].

Knowledge hoarding is another serious issue for software development teams
[10][11][30][41][63]. Individuals want to keep their knowledge hidden for interpersonal reasons.
Another reason for knowledge hoarding is the lack of organizational culture. Building a knowledge
sharing climate in the workplace is a demanding business activity.

The pace of technology change is another challenge for knowledge sharing [12][47]. Developers
may not find time to update their knowledge while trying to meet deadlines. They may not even
get around to sharing knowledge with colleagues [4][7][15][48][70]. It also brings the knowledge
creation standards to action because fast-paced technology compels explicit knowledge creation.
Still, applying version control to avoid garbage knowledge creation is required [69][72].

Agile development speeds up the software development process and has high response to
customer requirements and changes [3][20][36][37][52]. It provides an iterative and incremental
development fashion among self-organizing and cross-functional teams. Nonetheless, agile
approaches have a unique development through the means of the Agile Manifesto [21].
Accordingly, adapting to agile development is an arduous process for both developers and
organizations [54].

Although pair programming can be seen as a knowledge sharing technic for agile methods,
expecting programmers in a small development team to have the same level of knowledge is
unrealistic [35]. There is always different levels of developers in software organizations along with
their different expertise. Therefore, handling different types of developers is another challenge of
knowledge sharing [13][36][65].

3. KNOWLEDGE SHARING REVIEW

In today's economy, enterprises require knowledge more than ever before. Employees are being
classified through their skill set and experience, where the tacit knowledge of individuals is the
key factor [8]. The effect of knowledge hunger can be easily seen in agile software development
teams. Biawo-wen [10] claims that we are in the "knowledge economy era" and states the
knowledge necessity for agile software development teams in three steps:
1. knowledge is the only meaningful resource,
2. companies products and services are based on the transformation of the knowledge, and
3. software employees require more knowledge management than any other business
sectors.

However, implementing knowledge sharing is not an easy task for agile development teams
compared to its increasing demand. We classified knowledge sharing implementation issues
under three perspectives: sociological, documentation, and implementation.

3.1 Sociological Issues
Sociological perspective covers a hidden factor of knowledge sharing. In comparison with the
technical side, the human side of agile development teams has been ignored for a long time. It is

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 4

important to reveal the value of social structure in an agile development team in order to
comprehend the development process.

Occupational stress is one of the most important problems of knowledge sharing implementation
[7]. The connection between software development and agile developers relies on tacit
knowledge and human creativity. Occupational stress keeps tacit knowledge and human
creativity isolated in the body of an individual. Thus, the productivity and the desire of sharing
knowledge decrease very dramatically. In addition, Amin, Basri, Hassan, and Rehman [7] provide
the key factors of occupational stress as fear of obsolescence, individual team interactions, client
interactions, work family interface, role overload, work culture, technical constraints, family
support towards career, workload, and technical risk propensity.

Chau, Maurer, and Melnik [13] explore the theoretical link between agile team members as "Trust
and Care." Developing the organizational and individual trust in the teams and between the
teams is indispensable. Trusting increases knowledge generation, and sharing between the
colleagues where caring for teammates is also created. Agile methods, such as collective code
ownership, stand-up meetings, onsite customer, and pair programming, build the mutual trust and
care among collaborators. Moreover, Crawford, Castro, and Monfroy [16] discuss the importance
of not only trust but also freedom in order to accomplish knowledge sharing. Interactions among
the members of a team can become a fact voluntarily not by an order from executives [13][16].
On the other hand, Mathew, Joseph, and Renganathan [41] suggest that financial incentive
fosters the team members to share knowledge. Even more importantly, they claim all type of
personalities can be influenced financially. However, the research indicates negative results.

Chua, Eze, and Goh [15] have recently developed a conceptual framework for knowledge
sharing. This framework contains six hypotheses: kiasuism, subjective norm, affiliation, worker
empowerment, knowledge technology, and intention to share knowledge. Kiasuism is defined as
"getting the most out of every transaction and a desire to be ahead of others." Subjective norm is
described as a social pressure for high performance, and affiliation is explained as the fellowship
among the team members. Thus, conceptual framework recommends high level of subjective
norm, affiliation, worker empowerment, use of knowledge sharing technologies, supportive
attitude towards knowledge sharing, and low level of kiasuism for positive influence on knowledge
sharing.

The study by Jabar, Cheah, and Sidi [30] is noteworthy in that it combines organizational factors,
which are distributive, procedural and interactional justice, and individual factors, which are
perceived goal and perceived reward interdependence, to build the knowledge sharing attitude in
software development teams. They also argue that positive knowledge sharing attitude and
subjective norm evolve the knowledge sharing behavior in organizations.

In addition to using agile methods, such as pair programming and stand-up meetings [13] and
giving autonomy to software development teams [15], Law and Charron [36] introduces "Co-
location" and organizing social activities with associates. Two different Co-location techniques are
applied through the study, open environment and common cubicle zone. While open environment
offers face-to-face interaction, common cubicle zone boosts express communication along with
personal space and privacy. Birthday luncheons, game and tea parties in afternoon, and toys that
break the ice between team members are available as social activities. They encourage the
affinity and alliance among the team members with great synergy.

For managing one of the most popular social agile development issues, developer turnover, Rong
et al. [49] present a model based on information entropy to measure the turnover risk on a
software project. Information entropy theory helps to assess the uncertainty and uniformity of the
turnover risk. This argument quantitatively states the catastrophe of losing the key contributor of
the software team. It foresees the future turnover risk for managers to perform a precautionary
knowledge sharing approach. Furthermore, Whitworth and Biddle [67] define a qualitative
grounded theory based model to determine socio-psychological experiences in agile development

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 5

teams. They define the agile teams as "complex adaptive socio-technical systems," which contain
strong social forces. Their approach stresses the importance of agile methods to activate the
knowledge sharing process.

In addition, Izquierdo-Cortazar, Robles, Ortega, and Gonzalez-Barahona [29] demonstrate a
methodology to measure the quantitative impact of knowledge loss due to developer turnover. In
order to quantify the knowledge loss, this study introduces "orphaned" lines of code. When a
member of the agile development team leaves the software development team, his/her code
becomes orphaned. Thus, the knowledge sharing process becomes insecure by the amount of
orphaned lines and the project requires greater focus on software archaeology. The results of the
study indicate that the use of orphaned lines evaluates the "health" of the software project and
clues in managers before it is too late.

Yang and Wu [70] propose an agent-based modeling (ABM) concept to explore the knowledge
sharing motivation in the agile development team. ABM is a simulation system where researcher
can create, observe, and analyze the experimental personal behavior and motivation of sharing
knowledge within the development team. It uncovers the team members with high knowledge and
sharing behavior along with the organizational knowledge sharing climate and culture.

3.2 Documentation Issues
Another substantial perspective of knowledge sharing is the knowledge storing process. It is
clearly stated in the Agile Manifesto that agile developers should value working software over
comprehensive documentation [21]. However, knowledge transfer without documentation is a
challenging practice. Consequently, agile teams feel documentation is necessary through varied
approaches.

Analyzing the documentation approaches for different methodologies is essential for this reason.
Chau, Maurer, and Melnik [13] discuss the varied documenting techniques for both Tayloristic
and agile methods. Tayloristic methods require a large number of documents, which comprise all
possible requirements, design, development, and management issues. On the other hand, agile
methods argue "lean, mean, and just enough" documentation techniques. Additionally, agile
methods introduce collective ownership that any team member can participate and alter the
knowledge repository to keep it up-to-date [13]. Law and Charron [36] stress that keeping the
documentation updated and define the issue as "one webmaster syndrome." Using social
software development tools is a best practice to accomplish collaborative revising responsibility.
As a result, agile development teams utilize "work-in-progress" documentation fashion, which
requires collaborative authority.

Abbattista, Calefato, Gendarmi, and Lanubile [1] survey the literature on social software
development tools. They group the tools into seven categories based on their main functionality;
software configuration management, bug and issue tracking, build and release management,
product and process modeling, knowledge center, communication tools, and collaborative
development environments. Moreover, they argue that adequate technology support is
fundamental for active knowledge sharing. Finally, their results show that collaboration is a side
effect of social software development teams.

Among the social software development tools, Wiki is the most revised tool in terms of usage and
features. It is a practical tool for not only small development teams but also large enterprises [22].
Sousa, Aparicio, and Costa [58] remark using Wikis is essential as an organizational knowledge
sharing tool. Organizational Wiki facilitates sharing through knowledge map of the individuals,
conveys tacit knowledge between team members, transforms tacit to explicit knowledge, and
commutes explicit to tacit knowledge in order to sustain the sharing process.

Another documentation model assumes that utilizing an appropriate ontology to index Wikis
improves the knowledge sharing process. Tang, de Boer, and van Vliet [63] introduce Semantic
Wiki with a lightweight and adaptable ontology, which classifies concepts and supports

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 6

knowledge retrieval. A semantic Wiki allows custom-defined indexing and acknowledges agile
team members through an event-based notification system for their asynchronous knowledge
request.

The study by Amescua, Bermon, Garcia, and Sanchez-Segura [6] is noteworthy in that it
combines creating process asset libraries (PALs) and Wikis. Their study provides a set of
guidelines to create a PAL-Wiki. The PAL-Wiki captures, codifies, and disseminates the
knowledge about software agile processes and facilitates an active learning environment. The
results of the study report that the PAL-Wiki is easy to learn, use, and operate in order to provide
a knowledge sharing mechanism. This approach also motivates the agile software development
team to explore concepts independently. Furthermore, Law and Charron [36] present using
mockups as a Wiki documentation technique. They believe "a picture is worth a thousand words"
and in keeping the Wiki web site as visual as possible.

An alternative visual technique proposes Unified Modeling Language (UML) usage to minimize
documentation for agile development teams. Stettina, Heijstek, and Faegri [60] divide the
documentation process into two perspectives: documentation as a product and documentation as
a medium. The first perspective, documentation as a product, requires more textual and formal
documents through the iterative development process. At the end of the development, agile
development teams possess the documentation as a valued product, but team members identify
the progress as "a task that needs to be done." Although it increases the quality of the product, it
decreases the motivation to participate. On the contrary, the documentation as a medium
perspective requires UML-based documentation artifact creation during the agile development
progress. It derives team motivation, easy updates, and generalist team roles; however, it drops
the sustainability of the knowledge sharing documentation in the long run.

Prause and Durdik [47] inquire about the results of a reputation mechanism to answer the
documentation argument of agile development teams. According to their research, reputation is
considered the driving force to make selfish individuals cooperate and participate. Moreover,
reputation systems, which compute reputation scores of participants, encourage rating the
available documentation. Survey results of the study show 85% of experts believe the reputation
system is promising and will have a positive effect on agile documentation via "pro-social"
behavior of the agile development team members.

3.3 Implementation Issues
Implementing knowledge sharing for agile development teams is more troublesome due to the
nature of the agile process. Pair programming is one of the most respected agile development
techniques, with influential knowledge sharing as a side effect. We surveyed knowledge sharing
implementation methods with and without pair programming perspectives.

3.3.1 Implementation without Pair Programming
Chatti, Schroeder, and Jarke [12] examine the relation between knowledge management and
technology-enhanced learning to propose the Learning as a Network (LaaN) theory. The
knowledge vision of the system is a personal network and the learning concept is a knowledge
ecological approach. LaaN allows learning through the continuous creation of a personal
knowledge network.

Huang and Sun [26] introduce a mobile agent system to accomplish establishing, operating, and
disassembling management of the virtual enterprise. The virtual alliance of the knowledge
management system relies on six agents. The agents are named as communication control,
lifecycle management, knowledge processing, establishing management, operation management,
and disassembling management. They analyze, process, store, and share the knowledge among
the whole enterprise in an automated fashion.

Zhang, Tang, Liu, and You [72] declare another multi agent knowledge sharing architecture
based on the Internet and varied knowledge inventories. Domain knowledge, organization

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 7

knowledge, process knowledge, distributed case base, ontology, user interface, workflow, and
toolset agents are utilized to build a cooperative design. Share Knowledge Space and
Communication Control Center operate the knowledge exchange and interaction during the whole
development time. Moreover, agents have a knowledge sharing mechanism through application,
mind, message, and communication layers.

Jiang, Liu, and Cui [31] consider a five layered knowledge sharing framework in the interest of
organizational knowledge management. The system combines knowledge management strategy,
organizational learning, and business process reengineering theories. Basic construction, system
management, content management, knowledge management, and theory layers originate the
framework of the knowledge management system.

Tang, de Boer, and van Vliet [63] present a knowledge sharing perspective with roadmapping
process in order to succeed in timely knowledge traffic. Their research indicates that the
inadequacy of knowledge sharing is not the knowledge creation but the effective knowledge
transferring between the team members. A collaborative knowledge inventory, Semantic Wiki,
facilitates the communication capability. This roadmapping process, with an indexed pattern,
provides a direct knowledge search ability and notification system for formerly-demanded
knowledge.

Some discussions of the role of applying agile methodologies can be found in Landaeta, Viscardi,
and Tolk [35]. Through the strategic management of agile projects, software development teams
can share knowledge across the projects and create an organizational learning culture among the
agile team members. The extended agile methodology offers mentoring, coaching, and staffing
project teams with members of other projects and participation in both multi-project reviews and
retrospectives. Therefore, team members can share knowledge in crossed fashion via parallel
projects and active team members.

Kavitha and Ahmed [33] propose another knowledge sharing framework through a collaborative
environment connected by internet and intranet. The approach facilitates an incremental
organizational learning using knowledge enablers. Communities of Practice (CoPs),
questionnaire responses, email archives, work notes, informal knowledge sharing sessions,
voluntary contributions, project learnings, and discussion forums are the knowledge enablers for
the informal knowledge sharing framework. The experience recorder, idea map, and forums
capture the tacit knowledge from knowledge enablers and structure the knowledge repository
using frequently asked questions and lessons learned retrieval mechanisms.

3.3.2 Implementation with Pair Programming
Pair programming is an agile software development technique that allows two programmers to
collaboratively design, code, and test side-by-side [16][37][65]. Each pair has a particular role,
which is either driver or navigator. The driver is the one that produces the code or design and
performs test cases. The navigator actively determines the tactical and strategic weaknesses and
continuously helps the pair to improve development. Through the pairs' determination, the driver
and navigator switch roles and carry forward the development routine [45]. Moreover, changing
partners between other pairs, pair rotation, is highly recommended to achieve an efficient
knowledge sharing [33].

Sanders [52] provides pair programming adaptation experiences and pairing issues as an Agile
Coach. There are two essential concerns to switch the organizational development technique
from solo to pair programming. First, some agile leads believe pair programming doubles the
person hours to complete a task. Second, agile development team members are not interested in
pairing with others. According to Sanders [52] small changes, such as buying big monitors for
pairs and arranging designated area for pair programming, can effect the motivation of agile team
members. However, the privileges for pair programming teams should be influential, efficient, and
easy to implement. Increased programming motivation and code coverage in every sprint are the
results of pair programming migration.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 8

Chau, Maurer, and Melnik [13] describe pair programming as an informal training. Compared to
Tayloristic methods with formal training, agile methodologies have informal approaches, such as
pair programming and pair rotation. System knowledge, coding convention, design practices, and
tool usage tricks are tacit knowledge instances that participants can easily share through pair
programming. More often then not, the tacit knowledge instances are neither documented nor a
part of the formal training. Chau, Maurer, and Melnik [13] also present the pair programming
drawbacks, such as pair incompatibility and increased training cost through particular
circumstances compared to formal training options.

Ganis, Maximilien, and Rivera [22] report an "Agile@IBM" survey from 2008 and 2009 across all
of IBM. Agile@IBM covers the key agile practices, such as sustainable pace, whole team
planning, continuous integration, daily scrums, and pair programming. The results of the survey
indicate significant improvements in credibility of blooming agile practices, which are sustainable
pace (55.1%), whole team planning (44.8%), continuous integration (34.5%), and daily scrums
(26.2%). Nevertheless, there is a huge amount of credibility decrease (37.9%) in usage of pair
programming.

Law and Charron [36] demonstrate a knowledge sharing approach, which unites pair
programming, co-location, daily status meetings, and minimal documentation. To solve the pair
scheduling issue of pair programming, team members do code inspection in addition to pair
programming. Examining the source code for code alterations and error discovery are the core
part of the code inspection. Pair programming and code inspection mixture make both knowledge
sharing and cross knowledge training possible for agile team members. Yet, the experiment
results denote time-sharing penalties, motivation loss for novice team members, and a shift in
focus from pair programming to deadline-driven task development.

Srikanth, Williams, Wiebe, Miller, and Balik [59] examine the advantages and disadvantages of
pair programming and pair rotation on undergraduate level students. Their results are vital for
software development teams, which have junior level team members. Enhanced quality,
teamwork, communication, retention, confidence, comprehension, and learning are the pair
programming advantages for agile development pairs. However, pair programming presents
schedule issues, pair incompatibility and unequal participation. The bottom-line concern of pair
programming implementation is the skill level of pairs. A higher skill level gap produces a lower
level job satisfaction and productivity both for knowledge sharing and development processes.
Furthermore, researchers report the pair rotation advantages as gained knowledge of team
members and elevated desire to pair with new team members. On the other hand, pair rotation
kindles partner compatibility, motivation decrease due to good partner loss, and programming
fashion re-adjustment in consequence of new partner.

Poff [46] observes the organizational learning effect of pair programming on newly-hired team
members in an industrial setting. The study pairs the junior level team members, requires
voluntary mentoring from experienced team members, and aims to facilitate the technical and
environmental training of the newcomers. The experiment shows the new-hired pairs require
more man-hour and more mentoring than new-hired solo programmers. However, the novice-
novice collaboration increases overall productivity, allows more accurate project planning,
partially hastens technical and environmental knowledge sharing, and decreases programming
defects compared to newly-hired solo programmers.

Giri and Dewangan [23] introduce an improved version of IBM's Programming Aptitude Tests
(PATs) for pair programers. Through PAT scores, organizations can determine programming
abilities and potential of newly hired programmers. Researchers take advantage of the PAT
scores for team building and pairing agile development team members. Using total effort/time
measurement with PAT scores, Giri and Dewangan [23] calculate the "Relative Effort Afforded by
Pairs (REAP)" value as well. REAP values indicate one of the five different conditions: total
development time of pairs is less than individual, pairs and individuals have the same total
development time, pairs require more total man-hours but develop faster than individual, elapsed

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 9

development time for pairs and individuals is almost the same, or elapsed development time for
pairs is longer than individuals.

Lui and Chan [39] present a Software Process Fusion (SPF), which combines both solo and pair
programming. The approach divides the software processes as "Recipient" and "Donor." Agile
team members pair for Recipient Processes and work individually for Donor Processes. Thus,
pairing motivation never decrease via repeating the same task again. Team members decide the
transfer conditions for pairing or splitting. Researchers use the transfer conditions value to
calculate a Software Fusion Ratio (SFR). SFR shows the efficiency and productivity of SPF.

Another study considers the effects of pair programming at the development team level based on
productivity, defects, design quality, knowledge transfer, and enjoyment of work. Vanhanen and
Lassenius [65] report a productivity difference between pair and solo programming. The
productivity decreases while pairs are under the learning curve. However, the productivity level is
almost the same for both pair and solo programming practices after the learning period. Although
pair programmers code with less defects, their final product contains more issues because of the
system testing oversight. Pairs excessively depend on the peer review process of pair
programming, which causes over-reliance in the testing phase. Pair programming enables
knowledge transfer between peers and team; however, the pair programming abates
development teams' working enthusiasm. Moreover, Vanhanen and Lassenius [65] emphasize
that the task complexity does not affect the effort differences between solo and pair programming.

Sillitti, Succi, and Vlasenko [57] examine the impact of pair programming via the developer's
focus. This study tracks the usage of nine popular applications: Microsoft Visual Studio, Browser,
Microsoft Outlook, Microsoft Office Word, Microsoft Office Excel, Microsoft Management Console,
Microsoft Windows Explorer, Microsoft Messenger, and Remote Desktop. Solo programmers
constantly utilize the Internet for information retrieval. Browser usage decreases from 9% to 6%
with pair programming. Microsoft Outlook, Microsoft Messenger and Remote Desktop usage also
decreases because pairs create a robust communication between each other. In addition,
programming motivation increase via pairing pressure. Microsoft Visual Studio utilization
increases from 34% to 64% with pair programming [39].

4. A PROPOSED TECHNIQUE
Small software development teams suffer from knowledge lost due to miscellaneous reasons.
Therefore, surveying knowledge sharing issues through sociological, documentation, and
implementation perspectives is essential to reveal the real motive. Agile practices offer state-of-
art solutions for knowledge building and sharing; however, they have their own drawbacks.

A proposed knowledge sharing technique, Knowledge Temple, is a feasible improvement to
bridge the gap between the well-known pair programming issues. It is a hybrid technique,
incorporating knowledge sharing and building models, such as cognitive apprenticeship, on-the-
job-training, solo programming, pair programming, parallel peer programming, pair rotation, and
knowledge repository creation. This hierarchical approach provides an iterative and incremental
solution to share and create knowledge in a collaborative and cooperative fashion.

In Knowledge Temple, individuals work as a small team, a Temple, which has three members
with different levels of experience (Figure 1). Every Temple has its own master and two
apprentices. In order to achieve an active learning and development environment, every Temple
has its own rules and procedures to share the knowledge and increase productivity. This flexible
environment creates a collaborative team culture along with cooperative and self-responsible
individuals.
The Temple Master leads development and utilizes two apprentices to enhance productiveness.
S/he is in charge of communication, revision control, and documentation tools, tracks the
collaborative development and progress of apprentices, and ensures the knowledge sharing

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 10

process. Moreover, the Temple Master reports to the project manager the progress of work on a
weekly basis and discusses potential problems.

Temple Apprentices are free with their internal affairs; however, they are master-dependent on
foreign affairs. In other words, the apprentices are responsible for accomplishing determined
duties from their Temple master. These duties can be documentation, programming, testing,
learning required information, or attending on-the-job training sessions. Yet, they decide their
individual duties and the manner of operation.

FIGURE 1: Knowledge Temple Paradigm.

Knowledge Temple offers:
• novice-novice inspiration to solve motivation issues,
• development flexibility for expert developers to increase the individual and collaborative
 productivity,
• schedule flexibility for all the team members to answer the development progress needs,
• hands-on knowledge sharing for agile learners both master and apprentice supported,
 and
• good use of new knowledge sharing technologies to allow cooperative knowledge
 transformation and development.

Consequently, the Temple assures high productivity from the Temple Master and collaborative
knowledge sharing among the Temple Apprentices.

5. CONCLUSION
In this paper, we review the agile knowledge sharing field and discuss major knowledge sharing
issues. Software development is a process, which highly depends on developers’ implementation
and design experiences. In other words, the tacit knowledge of the developer determines the
software development quality. Different software development methodologies introduce different
solutions to the knowledge sharing problem within the development team. The effects of
knowledge loss and knowledge hoarding are huge for any level software development teams;
however, it may create damage that cannot be put back in place for small agile development
teams. Knowledge sharing issues are surveyed and categorized into: 1) sociological issues, 2)
documentation issues, and 3) implementation issues with/without pair programming. Application
environments require various solutions and bring diverse opportunities for software development
teams. Finally, a proposed technique, Knowledge Temple, is introduced as a feasible
enhancement to well-known knowledge sharing problems for small agile software development
teams.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 11

6. REFERENCES
[1] Abbattista, F., Calefato, F., Gendarmi, D., and Lanubile, F. In- corporating social software

into distributed agile development environments. In Automated Software Engineering -
Workshops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International Conference on
(2008), pp. 46–51.

[2] Abdullah, R., and Talib, A. Knowledge management system model in enhancing knowledge
facilitation of software process improvement for software house organization. In Information
Retrieval Knowledge Management (CAMP), 2012 International Conference on (2012), pp.
60–63.

[3] Akbar, R., and Hassan, M. A collaborative-interaction model of software project
development: An extension to agile based methodologies. In Information Technology
(ITSim), 2010 International Symposium in (2010), vol. 1, pp. 1–6.

[4] Allison, I. Organizational factors shaping software process improvement in small-medium
sized software teams: A multi-case analysis. In Quality of In- formation and
Communications Technology (QUATIC), 2010 Seventh Interna- tional Conference on the
(2010), pp. 418–423.

[5] Amaral, L., and Faria, J. A gap analysis methodology for the team software process. In
Quality of Information and Communications Technology (QUATIC), 2010 Seventh
International Conference on the (2010), pp. 424–429.

[6] Amescua, A., Bermon, L., Garcia, J., and Sanchez-Segura, M.-I. Knowledge repository to
improve agile development processes learning. Soft- ware, IET 4, 6 (2010), 434–444.

[7] Amin, A., Basri, S., Hassan, M., and Rehman, M. Software engineering occupational stress
and knowledge sharing in the context of global software development. In National
Postgraduate Conference (NPC), 2011 (2011), pp. 1– 4.

[8] Bergersen, G. R., and Sjoberg, D. I. K. Evaluating methods and tech- nologies in software
engineering with respect to developers’ skill level. In Eval- uation Assessment in Software
Engineering (EASE 2012), 16th International Conference on (2012), pp. 101–110.

[9] Bessam, A., Kimour, M.-T., and Melit, A. Separating users’ views in a development process
for agile methods. In Dependability of Computer Systems, 2009. DepCos-RELCOMEX ’09.
Fourth International Conference on (2009), pp. 61–68.

[10] Biao-wen, L. The analysis of obstacles and solutions for software enterprises to implement
knowledge management. In Information Management and En- gineering (ICIME), 2010 The
2nd IEEE International Conference on (2010), pp. 211–214.

[11] Boehm, B., and Turner, R. People factors in software management: lessons from
comparing agile and plan-driven methods. Crosstalk-The Journal of De- fense Software
Engineering,(Dec (2003).

[12] Chatti, M., Schroeder, U., and Jarke, M. Laan: Convergence of knowl- edge management
and technology-enhanced learning. Learning Technologies, IEEE Transactions on 5, 2
(2012), 177–189.

[13] Chau, T., Maurer, F., and Melnik, G. Knowledge sharing: agile methods vs. tayloristic
methods. In Enabling Technologies: Infrastructure for Collabo- rative Enterprises, 2003.
WET ICE 2003. Proceedings. Twelfth IEEE Interna- tional Workshops on (2003), pp. 302–
307.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 12

[14] Chowdhury, A., and Huda, M. Comparison between adaptive software development and
feature driven development. In Computer Science and Net- work Technology (ICCSNT),
2011 International Conference on (2011), vol. 1, pp. 363–367.

[15] Chua, J. L. Y., Eze, U., and Goh, G. G. G. Knowledge sharing and total quality
management: A conceptual framework. In Industrial Engineering and Engineering
Management (IEEM), 2010 IEEE International Conference on (2010), pp. 1107–1111.

[16] Crawford, B., Castro, C., and Monfroy, E. Knowledge management in different software
development approaches. In Advances in Information Sys- tems, T. Yakhno and E.
Neuhold, Eds., vol. 4243 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2006, pp. 304–313.

[17] Devedzic, V., and Milenkovic, S. Teaching agile software development: A case study.
Education, IEEE Transactions on 54, 2 (2011), 273–278.

[18] Dorairaj, S., Noble, J., and Malik, P. Knowledge management in distributed agile software
development. In Agile Conference (AGILE), 2012 (2012), pp. 64–73.

[19] Duka, D. Agile experiences in software development. In MIPRO, 2012 Pro- ceedings of the
35th International Convention (2012), pp. 692–697.

[20] Dyba, T., and Dingsoyr, T. What do we know about agile software devel- opment?
Software, IEEE 26, 5 (2009), 6–9.

[21] Fowler, M., and Highsmith, J. The Agile Manifesto. Software Develop- ment Magazine 9(8)
(Aug. 2001). http://agilemanifesto.org.

[22] Ganis, M., Maximilien, E., and Rivera, T. A brief report on working smarter with agile
software development. IBM Journal of Research and Devel- opment 54, 4 (2010), 1–10.

[23] Giri, M., and Dewangan, M. A study of pair programming in the context of facilitating the
team building. In Advanced Computing Communication Tech- nologies (ACCT), 2012
Second International Conference on (2012), pp. 20–23.

[24] Hazeyama, A., Ogaxne, Y., and Miura, M. Cognitive apprenticeship- based object-oriented
software engineering education support environment. In Advanced Learning Technologies,
2005. ICALT 2005. Fifth IEEE International Conference on (2005), pp. 243–244.

[25] Honig, W. Teaching successful ”real-world” software engineering to the ”net” generation:
Process and quality win! In Software Engineering Education and Training, 2008. CSEET
’08. IEEE 21st Conference on (2008), pp. 25–32.

[26] Huang, M., and Sun, B. Research on modeling and implementating of knowl- edge
management system in virture enterprise. In Machine Learning and Cy- bernetics, 2009
International Conference on (2009), vol. 3, pp. 1424–1428.

[27] Hui, A., and Jing, Z. Evaluation on the cost and performance of knowledge management. In
Intelligent Computation Technology and Automation, 2009. ICICTA ’09. Second
International Conference on (2009), vol. 4, pp. 201–205.

[28] ISO/IEC/IEEE. Systems and software engineering – developing user docu- mentation in an
agile environment. ISO/IEC/IEEE 26515 First edition 2011- 12-01; Corrected version 2012-
03-15 (2012), 1–36.

[29] Izquierdo-Cortazar, D., Robles, G., Ortega, F., and Gonzalez- Barahona, J. Using software
archaeology to measure knowledge loss in soft- ware projects due to developer turnover. In

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 13

System Sciences, 2009. HICSS ’09. 42nd Hawaii International Conference on (2009), pp.
1–10.

[30] Jabar, M., Cheah, C.-Y., and Sidi, F. The effect of organizational justice and social
interdependence on knowledge sharing. In Information Retrieval Knowledge Management
(CAMP), 2012 International Conference on (2012), pp. 64–68.

[31] Jiang, H., Liu, C., and Cui, Z. Research on knowledge management system in enterprise.
In Computational Intelligence and Software Engineering, 2009. CiSE 2009. International
Conference on (2009), pp. 1–4.

[32] Jones, K., Kristof, D., Jenkins, L., Ramsey, J., Patrick, D., Burn- ham, S., and Turner, I.
Collaborative technologies: Cognitive apprentice- ship, training, and education. In
Collaborative Technologies and Systems, 2008. CTS 2008. International Symposium on
(2008), pp. 452–459.

[33] Kavitha, R. K., and Irfan Ahmed, M. A knowledge management frame- work for agile
software development teams. In Process Automation, Control and Computing (PACC),
2011 International Conference on (2011), pp. 1–5.

[34] Kopczynska, S., Nawrocki, J., and Ochodek, M. Software development studio - bringing
industrial environment to a classroom. In Software Engineering Education based on Real-
World Experiences (EduRex), 2012 First International Workshop on (2012), pp. 13–16.

[35] Landaeta, R., Viscardi, S., and Tolk, A. Strategic management of scrum projects: An
organizational learning perspective. In Technology Management Conference (ITMC), 2011
IEEE International (2011), pp. 651–656.

[36] Law, A., and Charron, R. Effects of agile practices on social factors. In Proceedings of the
2005 workshop on Human and social factors of software en- gineering (New York, NY,
USA, 2005), HSSE ’05, ACM, pp. 1–5.

[37] Levy, M., and Hazzan, O. Knowledge management in practice: The case of agile software
development. In Cooperative and Human Aspects on Software Engineering, 2009. CHASE
’09. ICSE Workshop on (2009), pp. 60–65.

[38] Lingard, R., and Barkataki, S. Teaching teamwork in engineering and computer science. In
Frontiers in Education Conference (FIE), 2011 (2011), pp. F1C–1–F1C–5.

[39] Lui, K., and Chan, K. Software process fusion by combining pair and solo programming.
Software, IET 2, 4 (2008), 379–390.

[40] Marrington, A., Hogan, J., and Thomas, R. Quality assurance in a student-based agile
software engineering process. In Software Engineering Con- ference, 2005. Proceedings.
2005 Australian (2005), pp. 324–331.

[41] Mathew, C., Joseph, K., and Renganathan, R. Accelerating organisa- tional learning in the
backdrop of knowledge hoarding: A case study with refer- ence to eco-tourism destinations.
In Management Issues in Emerging Economies (ICMIEE), Conference Proceedings of
2012 Intenrational Conference on (2012), pp. 63–68.

[42] Ming, C. Research on knowledge management of software enterprises —with lenovo for
case study. In Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd
IEEE International Conference on (2009), pp. 291–294.

[43] Murray, S., Ryan, J., and Pahl, C. A tool-mediated cognitive apprentice- ship approach for
a computer engineering course. In Advanced Learning Tech- nologies, 2003. Proceedings.
The 3rd IEEE International Conference on (2003), pp. 2–6.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 14

[44] Neves, F., Correia, A., Rosa, V., and de Castro Neto, M. Knowledge creation and sharing
in software development teams using agile methodologies: Key insights affecting their
adoption. In Information Systems and Technologies (CISTI), 2011 6th Iberian Conference
on (2011), pp. 1–6.

[45] Palmieri, D. W. Knowledge Management Through Pair Programming. PhD thesis, North
Carolina State University, 2200 Hillsborough, Raleigh, NC 27695, 2002.

[46] Poff, M. Pair Programming to Facilitate the Training of Newly-hired Pro- grammers. Florida
Institute of Technology, 2003.

[47] Prause, C., and Durdik, Z. Architectural design and documentation: Waste in agile
development? In Software and System Process (ICSSP), 2012 Interna- tional Conference
on (2012), pp. 130–134.

[48] Read, A., and Briggs, R. The many lives of an agile story: Design pro- cesses, design
products, and understandings in a large-scale agile development project. In System
Science (HICSS), 2012 45th Hawaii International Confer- ence on (2012), pp. 5319–5328.

[49] Rong, J., Hongzhi, L., Jiankun, Y., Tao, F., Chenggui, Z., and Jun- lin, L. A model based on
information entropy to measure developer turnover risk on software project. In Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on (2009), pp. 419– 422.

[50] Rong-guang, Q., and Shi-jie, L. Research on comprehensive evaluation of enterprises
knowledge management capabilities. In Management Science and Engineering (ICMSE),
2010 International Conference on (2010), pp. 1031–1036.

[51] Salleh, K. Tacit knowledge and accountants: Knowledge sharing model. In Computer
Engineering and Applications (ICCEA), 2010 Second International Conference on (2010),
vol. 2, pp. 393–397.

[52] Sanders, A. Ten tales of positive change. In Agile Conference (AGILE), 2011 (2011), pp.
181–186.

[53] Sauer, T. Using design rationales for agile documentation. In Enabling Tech- nologies:
Infrastructure for Collaborative Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on (2003), pp. 326–331.

[54] Savolainen, J., Kuusela, J., and Vilavaara, A. Transition to agile de- velopment -
rediscovery of important requirements engineering practices. In Re- quirements
Engineering Conference (RE), 2010 18th IEEE International (2010), pp. 289–294.

[55] Selic, B. Agile documentation, anyone? Software, IEEE 26, 6 (2009), 11–12.

[56] Serrano, M., Montes de Oca, C., and Cedillo, K. An experience on using the team software
process for implementing the capability maturity model for software in a small organization.
In Quality Software, 2003. Proceedings. Third International Conference on (2003), pp. 327–
334.

[57] Sillitti, A., Succi, G., and Vlasenko, J. Understanding the impact of pair programming on
developers attention: A case study on a large industrial experimentation. In Software
Engineering (ICSE), 2012 34th International Conference on (2012), pp. 1094–1101.

[58] Sousa, F., Aparicio, M., and Costa, C. J. Organizational wiki as a knowledge management
tool. In Proceedings of the 28th ACM International Conference on Design of
Communication (New York, NY, USA, 2010), SIGDOC ’10, ACM, pp. 33–39.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (6) : Issue (1) : 2015 15

[59] Srikanth, H., Williams, L., Wiebe, E., Miller, C., and Balik, S. On pair rotation in the
computer science course. In Software Engineering Education and Training, 2004.
Proceedings. 17th Conference on (2004), pp. 144–149.

[60] Stettina, C., Heijstek, W., and Faegri, T. Documentation work in agile teams: The role of
documentation formalism in achieving a sustainable practice. In Agile Conference (AGILE),
2012 (2012), pp. 31–40.

[61] Suganya, G., and Mary, S. Progression towards agility: A comprehensive survey. In
Computing Communication and Networking Technologies (ICCCNT), 2010 International
Conference on (2010), pp. 1–5.

[62] Sussy, B., Calvo-Manzano, J., Gonzalo, C., and Tomas, S. Teaching team software
process in graduate courses to increase productivity and improve software quality. In
Computer Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE
International (2008), pp. 440–446.

[63] Tang, A., de Boer, T., and van Vliet, H. Building roadmaps: a knowl- edge sharing
perspective. In Proceedings of the 6th International Workshop on Sharing and Reusing
Architectural Knowledge (New York, NY, USA, 2011), SHARK ’11, ACM, pp. 13–20.

[64] Tao, Y., Wang, J., Wang, X., He, D., and Yang, S. Knowledge-based flexible business
process management. In TENCON 2006. 2006 IEEE Region 10 Conference (2006), pp. 1–
3.

[65] Vanhanen, J., and Lassenius, C. Effects of pair programming at the devel- opment team
level: an experiment. In Empirical Software Engineering, 2005. 2005 International
Symposium on (2005), pp. 10 pp.–.

[66] Venkatagiri, S. Teach project management, pack an agile punch. In Software Engineering
Education and Training (CSEE T), 2011 24th IEEE-CS Conference on (2011), pp. 351–
360.

[67] Whitworth, E., and Biddle, R. The social nature of agile teams. In Agile Conference
(AGILE), 2007 (2007), pp. 26–36.

[68] Williamson, J. Knowledge needed by an agile enterprise. In Engineering Management
Conference, 2003. IEMC ’03. Managing Technologically Driven Organizations: The Human
Side of Innovation and Change (2003), pp. 393– 395.

[69] Xie, X., Zhang, W., and Xu, L. A description model to support knowledge management. In
Computer and Computational Sciences, 2006. IMSCCS ’06. First International Multi-
Symposiums on (2006), vol. 2, pp. 433–436.

[70] Yang, H.-L., and Wu, T. Knowledge sharing in an organization - share or not? In Computing
Informatics, 2006. ICOCI ’06. International Conference on (2006), pp. 1–7.

[71] Zanoni, J., Ramos, M., Tacla, C., Sato, G., and Paraiso, E. A semi- automatic source code
documentation method for small software development teams. In Computer Supported
Cooperative Work in Design (CSCWD), 2011 15th International Conference on (2011), pp.
113–119.

[72] Zhang, C., Tang, D., Liu, Y., and You, J. A multi-agent architecture for knowledge
management system. In Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08. Fifth
International Conference on (2008), vol. 5, pp. 433–437.

