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Abstract 

 

A retail category inventory management model that considers the interplay of 
entropic product assortment and trade credit financing is presented. The  proposed 
model takes into consideration of key factors like discounted-cash-flow. We establish 
a stylized model to determine the optimal strategy for an integrated supplier-retailer 
inventory system under the condition of trade credit financing  and  system  entropy. 
This paper applies the concept of entropy cost estimated using the principles of 
thermodynamics.  
The classical thermodynamics reasoning is applied to modelling such systems. The 
present paper postulates that the behaviour of market systems very much resembles 
those of physical  systems. Such an analogy suggests that improvements to market 
systems might be achievable by applying the first and second laws of 
thermodynamics to reduce system entropy(disorder). 
This paper synergises the above process of entropic order quantity and trade credit 
financing in an increasing competitive market where disorder and trade credit have 
become the prevailing characteristics of modern market system. Mathematical 
models are developed and numerical examples illustrating the solution procedure 
are provided. 
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1. INTRODUCTION 
In the classical inventory economic order quantity (EOQ) model, it was tacitly assumed that the 
customer must pay for the items as soon as the items are received. However, in practice or when the 
economy turns sour, the supplier allows credit for some fixed time period in settling the payment for 
the product and does not charge any interest from the customer on the amount owned during this 
period.Goyal(1985)developed an EOQ model under the conditions of permissible delay in 
payments.Aggarwal and Jaggi(1995) extended Goyal’s(1985) model to consider the deteriorating  
items .Chung(1999) presented an EOQ model by considering trade credit with DCF 
approach.Chang(2004) considered the inventory model having  deterioration under inflation when 
supplier credits linked to order quantity. Jaber et al.(2008) established an  entropic  order quantity 
(EnOQ) model for deteriorating items by applying  the laws of thermodynamics.Chung and Liao(2009) 
investigated an EOQ model by using a discounted-cash-flows(DCF) approach and trade credit 
depending on the quantity ordered. 
 
The specific purpose of this paper is to trace the development of entropy related thought from its 
thermodynamic origins through its organizational and economic application to its relationship to 
discounted-cash-flow approach. 
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2. Model Development 

2.1 Basis of the Model: 
The classical economic order quantity (EOQ) or lot sizing model chooses a batch size that minimises 
the total cost calculated as the sum of two conflicting cost functions, the order/setup cost and the 
inventory holding costs. The entropic order quantity (EnOQ) is derived by determining a batch size 
that minimizes the sum of the above two cost and entropic cost. 
 

Notations 
 
T : the inventory cycle time, which is a decision variable; 
C,A : the purchase cost and ordering cost respectively 
h : the unit holding cost per year excluding interest change; 
D : the demand rate per unit time. 
D(T) : the demand rate per unit time where cycle length is T. 
r : Discount rate (opportunity cost) per time unit. 
Q : Procurement quantity; 
M : the credit period; 
W : quantity at which the delay payment is permitted; 
σ(t) : total entropy generated by time t. 
S : rate of change of entropy generated at time t. 
E(t) : Entropy cost per cycle; 
PV1(T) : Present value of cash-out-flows for the basic EnOQ model; 

PV2(T) : present value of cash-out-flows for credit only on units in stock when MT ≤ . 

PV3(T) : Present value of cash-out-flows for credit only on units in stock when MT ≥ . 

))),(
0

tPtP
 : unit price and market equilibrium price at time t respectively. 

(T)PV∞  : the present value of all future cash-flows. 
*T  : the optimal cycle time of 

(T)PV∞ when T>0. 
 
ASSUMPTIONS 
(1) The demand is constant. 
(2) The ordering lead time is zero. 
(3) Shortages are not allowed. 
(4) Time period is infinite. 
(5) If Q<W, the delay in payment is not permitted, otherwise, certain fixed trade credit period M is 
permitted. That is, Q<W holds if and only if T<W/D. 
(6) During the credit period, the firm makes payment to the supplier immediately after use of the 
materials. On the last day of the credit period, the firms pays the remaining  balance. 
 

2.2 Commodity flow and the entropy cost: 
 The commodity flow or demand/unit time is of the form 
 D= -k(P(t)-P0(t))(1) 
 The concept represented by equation (1) is analogous to energy flow (heat or work) between 
a thermodynamics system and its environment where k (analogous to a thermal capacity) represents 
the change in the flow for the change in the price of a commodity and is measured in additional units 
sold per year per change in unit price e.g. units/year/$. 
 
 Let P(t) be the unit price at time t and P0(t) the market equilibrium price at time t, where 

P(t)<P0(t)  for every ],0[ Tt ∈ . At constant demand rate P(t)=P and P0(t)=P0 noting that when P<P0 
, the direction of the commodity flow is from the system to the surroundings. The entropy generation 
rate must satisfy 
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To illustrate, assume that the price of a commodity decreases according to the following relationship 



P.K. Tripathy & S. Pradhan 

International Journal of Computer Science and Security, (IJCSS), Volume (1): Issue (2) 29 

 

 
t

T

a
PtP −= )0()(

 where, )()0( TPPa −=  as linear form of price being time dependent. 

 

=−








−
−== TP

TPTP

aT

a

TP

T

D
tE

0

0

2

0

)0(
1ln

)(
)(

σ
Entropy cost per cycle. 

 
Case-1:Instantaneous cash-flows (the case of the basic EnOQ model) 
 The components of total inventory cost of the system per cycle time are as follows: 

(a) Ordering cost = 
rT
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(b) Present value of the purchase cost can be shown as 
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(c) The present value of the out-of-pocket inventory carrying cost can be shown as 

 




 +−+−+− ∫ ∫∫

+−+−−
.........)()()(

0 0

)2()(

0

T T
rTrtTr

T
rt

dtetTDdtetTDdtetTDhc
 

 =

( )
( )

( )







−

+
+

+

+
+







−−

−−

−

)0(
11

12
)0(

0202
Pp

r

kT

e

hc

er

ehcka

rT

a
PP

r

hck
rTrT

rT

 
So, the present value of all future cash-flow in this case is 
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Case -2:Credit only on units in stock when MT ≤ . 
 During the credit period M, the firm makes payment to the supplier immediately after the use 
of the stock. On the last day of the credit period, the firm pays the remaining balance. Furthermore, 
the credit period is greater than the inventory cycle length. The present value of the purchase cost can 
be shown as 
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The present value of all future cash flows in this case is 
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Case-3: Credit only on units in stock when MT ≥  
 The present  value only on units in stock can be shown as 
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Therefore the present value of all future cash-flows in this case is 
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 Now our main aim is to minimize the present value of all future cash-flow cost )(TPV∞ . That 
is  

 Minimize 
)(TPV∞  

 subject to T>0. 
We will discuss the situations of the two cases, 
 
(A) Suppose M>W/D 
 In this case we have 
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It was found that  

 0)()( 21 >− TPVTPV  and 
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 for T>0 and MT ≥  respectively. 
which implies 
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Now we shall determine the optimal replenishment cycle time that minimizes  present value of cash-

out-flows. The first order necessary condition for  )(1 TPV  in (1) to be minimized is expressed as 
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Likewise, the first order necessary condition for 
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 in equation(3) to be minimized is 
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Furthermore, we let 
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Lemma-1 

(a) If 01 ≥∆ , then the total present value of PV1(T) has the unique minimum value at the point 

T=T1 where 
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(b) If 
01 <∆

, then the value of 
)/,0(1 DWT ∈

 which minimizes PV1(T) does not exist. 
 
Proof: 

 Now taking the second derivative of PV1(T) with respect to )/,0(1 DWT ∈ , we have 
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We obtain from the above expression 
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Lemma-2 
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Lemma-3 
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Proof: 
 The proof is same to the lemma-2. 
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 (i) 022 >−− rTe rt

 

 (ii) 0312 >−+ rTrT ee  
Proof: 

 (i) 
( ) rTerTe rTrT −−=−−−

1222
 

  

( )
rT

rT
rt −










++++= 1.....

!2
12

2

 

 

( ) ( )










+++= .....

!3!2
2

32
rTrT

rt

 which is always +ve as value of r and T are always positive. 

 (ii) 
rTrT ee 312 −+  
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( ) ( ) ( ) ( )










++++−+++++= ...

!3!2
131.....

!3

3

!2

2
21

3232
rTrT

rT
rTrT

rT

 

  

( ) ( )
....

6

6

2
1

32

+++−−=
rTrT

rT
 

  

( )
( ) ( )43

2

5.10
2

1 rTrT
rT

rT +++−−=
 which is also give a positive value a r and T 

are always positive. 

By this two position it is easy to say that 21 ∆>∆
. 

 Then the equations (7) – (9) yield 

 
01 <∆

 iff 0)/(
/

1 <DWPV  iff DWT /
*

1 >  (10) 

 
02 <∆

 iff 0)/(
/

2 <DWPV  iff DWT /
*

2 >  (11) 

 
0

3
<∆

 iff 
0)(

/

2
<MPV

 iff 
MT >*

2  (12) 

 
0

3
<∆

 iff 
0)(

/

3 <MPV
 iff 

MT >*

3   (13) 
 
From the above equations we have the following results. 
Theorem-1 

(1) If 
0,0 21 ≥∆>∆

 and 
03 >∆

, then 
{ })/(),(min)(

*

1

*
DWPVTPVTPV ∞∞∞ = . Hence 

*T  is 
*

1T  or W/D associated with the least cost. 

(2) If 
0,0 21 <∆>∆

 and 
03 >∆

, then )()(
*

2

*
TPVTPV ∞∞ = . Hence 

*T  is 
*

2T  . 

(3) If 0,0 21 <∆>∆  and 
0

3
≤∆

, then 
)()(

*

3

*
TPVTPV ∞∞ =

. Hence 
*T  is 

*

3T
 . 

(4) If 0,0 21 <∆≤∆  and 
0

3
>∆

, then )()(
*

2

* TPVTPV ∞∞ = . Hence 
*T  is 

*

2
T  . 

(5) If 0,0 21 <∆≤∆  and 
0

3
≤∆

, then 
)()(

*

3

*
TPVTPV ∞∞ =

. Hence 
*T  is 

*

3T
 . 

Proof: 

(1) If 0,0 21 ≥∆>∆  and 
0

3
>∆

, which imply that 0)/(
/

1
>DWPV , 0)/(

/

2
≥DWPV , 

0)(
/

2 >MPV  and 
0)(

/

3
>MPV

. From the above lemma we implies that 

 (i) 
)(3 TPV

 is increasing on ),[ ∞M   

 (ii) )(2 TPV is increasing on ),/[ MDW  

 (iii) 
)(

1
TPV

 is increasing on )/,[
*

1 DWT  and decreasing on ],0(
*

1T  
 

Combining above three, we conclude that )(TPV∞  has the minimum value at 
*

1
TT =  on )/,0( DW  

and )(TPV∞  has the minimum value at DWT /= . Hence, 

{ })/(),(min)(
*

1

* DWPVTPVTPV ∞∞∞ = . Consequently, 
*T  is 

*

1
T  or W/D associated with the least 

cost. 
 

(2) If 
0,0 21 <∆>∆

 and 
0

3
>∆

, which imply that 
0)/(

/

1
>DWPV

, 
0)/(

/

2
<DWPV

, 

0)(
/

2
>MPV  and 

0)(
/

3 >MPV
 which implies that DWT /

*

1
≤ , DWT /

*

2
> , MT <*

2  and 

MT <*

3  respectively. Furthermore from the lemma 

 (i) 
)(3 TPV

 is increasing on ),[ ∞M   
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 (ii) 
)(2 TPV

is decreasing on ],/[
*

2TDW  and increasing on ],(
*

2 MT  

 (iii) 
)(1 TPV

 is decreasing on 
],0(

*

1
T

 and increasing on 
]/,(

*

1
DWT

. 

From the above we conclude that 
)(TPV∞  has the minimum value at 

*

1
TT =

on )/,0( DW  and 

)(TPV∞  has the minimum value at 
*

2
TT =

 on ),/[ ∞DW . Since 
)(1 TPV

> 
)(2 TPV

 and T>0. Then 

)()(
*

2

*
TPVTPV ∞∞ =  and 

*T
is 

*

2T  
 

(3) If 
0,0

21
<∆>∆

 and 
03 ≤∆

, which implies that 0)/(
/

1 >DWPV , 0)/(
/

2 <DWPV , 

0)(
/

2 ≤MPV and 
0)(

/

3
≤MPV

which imply that DWT /
*

1 < , DWT /
*

2 > , MT ≥*

2  and 

MT >*

3 respectively. Furthermore, from the lemma it implies that 
 

(i) 
)(

3
TPV

 is decreasing on 
),(

*

3
TM

 and increasing on 
),(

*

3
∞T

 

 (ii) 
)(2 TPV

is decreasing on ),/( MDW   

 (iii) 
)(1 TPV

 is decreasing on 
),0(

*

1
T

 and increasing on 
]/,(

*

1
DWT

. 
 

 Combining all above, we conclude that 
)(TPV∞  has the minimum value at 

*

1TT = on 

)/,0( DW  and 
)(TPV∞  has the minimum value at 

*

3
TT =

 on ),/[ ∞DW . Since, 
)(2 TPV

is 

decreasing on ),0(
*

2
T , DWT /

*

1
<  and DWMT /

*

2
>≥  we have )()(

*

22

*

11
TPVTPV > , 

)()(
2

*

12
MPVTPV >  and 

)()(
*

333 TPVMPV >
. Hence we conclude that )(TPV∞  has the minimum 

value at 
*

3
TT =

 on ),0( ∞ . Consequently, 

*T
 is 

*

3
T

. 
  

(4) If 
0,0 21 <∆≤∆

 and 
03 >∆

, which implies that 0)/(
/

1 ≤DWPV , 0)/(
/

1 ≤DWPV , 

0)(
/

2
>MPV

and 
0)(

/

3
>MPV

which imply that 
DWT /

*

1
≥

, 
DWT /

*

2
>

, 
MT <*

2  and 

MT <*

3 . Furthermore, we have 
 

(i) 
)(

3
TPV

 is increasing on ),[ ∞M   

 (ii) )(2 TPV is decreasing on ],/[
*

2
TDW  and increasing on ],(

*

2
MT  

 (iii) )(1 TPV  is decreasing on )/,0( DW . 
 

Since 
)/()/( 21 DWPVDWPV >

, and 
)()/(

*

22
TPVDWPV >

 

 So we conclude that 
)(TPV∞  has the minimum value at 

*

2
TT =

 on ),0( ∞ . Consequently, 

*T  is 
*

2
T

. 
 

(5) If 
0,0 21 <∆≤∆

 and 
0

3
≤∆

, which gives that 
0)/(

/

1
≤DWPV

, 
0)/(

/

2
<DWPV

, 

0)(
/

2
≤MPV and 

0)(
/

3 ≤MPV
 and which imply that DWT /

*

1
≥ , DWT /

*

2
> , MT ≥*

2  and 

MT ≥*

3 respectively. Furthermore, from the lemma it implies that 

(i) 
)(3 TPV

 is decreasing on 
),(

*

3
TM

 and increasing on 
),[

*

3
∞T

 

 (ii) 
)(

2
TPV

is decreasing on ],/[ MDW   
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 (iii) 
)(

1
TPV

 is decreasing on )/,0( DW . 
 

Since 
)/()/(

21
DWPVDWPV >

, combining the above we conclude that 
)(TPV∞  has the 

minimum value at 
*

3
TT =

 on ),0( ∞ . Consequently, 
*T  is 

*

3
T

. This completes the proof. 

(B) Suppose DWM /≤ . 

 Here 
)(TPV∞  can be expressed as follows: 

 



≤

<<
=∞

TDWifTPV

DWTifTPV
TPV

/)(

/0)(
)(

2

1

 

 and let 

4

/

/

3
)(

∆=
∂

∂

= DWT
T

TP

 (14) 
 By using proposition 1, we have 

 041 >∆−∆ , which leads to 41 ∆>∆ . 
 From (14), we also find that 

 04 <∆  iff 
0)/(

/

3 <DWPV
 iff 

DWT /
*

3 >
 (15) 

 
Lemma-4 

(a) If 04 ≤∆ , then the present value of 
)(

3
TPV

possesses  the unique minimum value at the 

point 3TT =
, where 

),/[3 ∞∈ DWT
 and satisfies 

0
)(

3 =
∂

∂

T

TP

. 

(b) If 04 >∆ , then the present value of 
)(

3
TPV

 possesses  a  minimum value at the boundary 

point DWT /= . 
 
Proof: The proof is similar to that of  Lemma-2. 
 

Theorem-2 

(1) If 01 >∆  and 04 ≥∆ , then { })/(),(min)(
*

1

*
DWPVTPVTPV ∞∞∞ = . Hence 

*
T  is 

*

1
T  or 

W/D is associated with the least cost. 

(2) If 01 >∆  and 04 <∆ , then 
{ })(),(min)(

*

3

*

1

*
TPVTPVTPV ∞∞∞ =

. Hence 
*T  is 

*

1
T  or 

*

3T
 

is associated with the least cost. 

(3) If 01 ≤∆  and 04 <∆ , then 
)()(

*

3

*
TPVTPV ∞∞ =

. Hence 
*T  is 

*

3T
. 

 
Proof: 

(1) If 01 >∆  and 04 >∆ , which imply that 0)/(
/

1
>DWPV  and 

0)/(
/

3 ≥DWPV
, and also 

DWT /
*

1 <  and 
DWT /

*

3
≤

. Furthermore, we have 
 

 (i) 
)(3 TPV

 is increasing on ),/[ ∞DW   

 (ii) 
)(

1
TPV

is decreasing on ],0(
*

1T  and increasing on )/[
*

1 DWT < . Combining the 

above we conclude that 
)(TPV∞  has the minimum value at 

*

1TT =  on )/,0( DW  and 
)(TPV∞  

has the minimum value at DWT /=  on ),/[ ∞DW . Hence, 

{ })/(),(min)(
*

1

*
DWPVTPVTPV ∞∞∞ =

. Consequently, 
*

T  is 
*

1
T

 or W/D associated with the least 
cost. 
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(2) If 01 >∆  and 04 <∆ , which imply that 0)/(
'

1
>DWPV  and 

0)(
/

3
<MPV

 which implies 

that DWT /
*

1
<  and 

DWT /
*

3 >
 and also 

 

 (i) 
)(3 TPV

 is decreasing on 
],/[

*

3
TDW

  and increasing on 
),[

*

3
∞T

 

 (ii) 
)(

1
TPV

 is decreasing on ],0(
*

1T  and increasing on ]/,(
*

1 DWT . Combining (i) and 

(ii) we conclude that 
)(TPV∞  has the minimum value at 

*

1TT = on )/,0( DW  and 
)(TPV∞  has the 

minimum value at 
*

3
TT =

 on ),/[ ∞DW . Hence,  
{ })(),(min)(

*

3

*

1

*
TPVTPVTPV ∞∞∞ =

. 

Consequently, 
*

T  is 
*

1T  or 
*

3
T

 associated with the least cost. 
 

(3) If 
01 ≤∆

 and 
04 ≤∆

, which implies that 
0)/(

/

1
≤DWPV

 and 
0)(

/

3
<MPV

 and 

DWT /
*

1
≥  and 

DWT /
*

3 >
 and also 

 

(i) 
)(

3
TPV

 is decreasing on.
],/[

*

3TDW
 and increasing on 

),[
*

3 ∞T
. 

 (ii) )(1 TPV is decreasing on )/,0( DW  

 From which we conclude that )(TPV∞  is decreasing on )/,0( DW  and )(TPV∞  hs the 

minimum value at 
*

3TT =
on ),/[ ∞DW . Since, 

)/()/(
31

DWPVDWPV >
, and conclude that 

)(TPV∞  has minimum value at 
*

3
TT =

on ),0( ∞ . Consequently 
*

T  is 
*

3
T

. 
This completes the proof. 
 
NUMERICAL EXAMPLES 
The followings are considered to be its base parameters A=$5/order, r=0.3/$, C=$1. a=1, k=2.4, 
P0(Market Price)=$3, Price at the beginning of a cycle P(0)=$1, D=-k(P(0)-P0)=-2.4(1-3)=4.8 
 
Example-1 
 If M=2, W=2, W/D<M 

 1∆
=31.47>0, 2∆

=-2.5020<0, 3∆
=-1.520559<0 

 
*

T =T3=2.55, 
)(3 TPV

=36.910259 
Example-2 
 If M=2, W=3, W/D<M 

 1
∆

=48.416874>0, 2
∆

=-0.112<0, 3∆
=-1.52<0 

 
*

T =T3=2.55, 
)(3 TPV

=36.910259 
Example-3 
 If M=5, W=3, W/D<M 

 1
∆

=48.51>0, 2
∆

=-0.112<0, 3∆
=2.1715>0 

 
*T =T2=3.1, )(2 TPV =36.302795 

Example-4 
 If M=20, W=6, W/D<M 

 1∆
=83.5186>0, 2∆

=1.47>0, 3
∆

=4.001>0 

 
*

T =
*

1
T  =0.7442, )(1 TPV =48.134529 

Example-5 
 If M=5, W=2, W/D<M 

 1∆
=36.5465>0, 2∆

=-2.5<0, 3
∆

=2.738>0 
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*

T =
*

2T  =3.1, 
)(2 TPV

=36.302795 
Example-6 
 If M=2, W=1, W/D<M 

 1
∆

=-1.546<0, 2
∆

=-15.079<0, 3∆
=-1.52<0 

 
*

T =
*

3
T

 =2.55, 
)(3 TPV

=36.910259 
Example-7 
 If M=10, W=1, W/D<M 

 1
∆

=-1.546<0, 4
∆

=-15.079<0, 3∆
=3.728554>0 

 
*

T =
*

2T  =3.1, 
)(2 TPV

=36.302795 
Example-8 
 If M=1, W=5, W/D<M 

 1∆ =164..83>0, 4∆ =2.946>0 

 
*

T = 1T  =0.7442, )(1 TPV =48.134529 
Example-9 
 If M=10, W=5, W/D<M 

 1∆
=83.518661>0, 4∆

=-1.837413<0 

 
*

T =
*

3
T

 =2.66, 
)(3 TPV

=34.98682 
 
Based on the above computational result of the numerical examples, the  following managerial 
insights are obtained and  following comparative evaluation are observed. If the supplier does not 
allow the delay payment, cash-out-flow is more but practically taking in view of real-world market, to 
attract the retailer(customer)credit period should be given and it observed that it should be less than 
equal to the inventory cycle to achieve the better goal. Furthermore, it is preferable for the supplier to 
opt  a credit period which is marginally small. 
 
CONCLUSION AND FUTURE RESEARCH 
This paper suggested that it might be possible to improve the performance of a market system by 
applying the laws of thermodynamics to reduce system entropy (or disorder). It postulates that the 
behaviours of market systems very much resembles that of physical system operating within 
surroundings, which include the market and supply system. 
 
In this paper, the suggested demand is price dependent. Many researchers advocated that the proper 
estimation of input parameters  in EOQ models which is essential to produce reliable results. 
However, some of those costs may be difficult to quantify. To address such a problem, we propose in 
this paper accounting for an additional cost (entropy cost) when analysing EOQ systems which allow 
a permissible delay payments if the retail orders more than or equal to a predetermined quantity. The 
results from this paper suggest that the optimal cycle time is more sensitive to the  change in the 
quantity at which the fully delay payment is permitted. 
 
An immediate extension is to investigate the proposed model to determine a retailer optimal cycle 
time and the optimal payment policy when the supplier offers partially or fully permissible delay in 
payment linking to payment time instead of order quantity.   
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