
Cox Lwaka Tamba & Jesse Wachira Mwangi 

International Journal of Scientific and Statistical Computing (IJSSC), Volume (3) : Issue (2), 2012  47 

Computational Pool-Testing with Retesting Strategy 

 

Cox Lwaka Tamba                clwaka@yahoo.com 
Faculty of Science/Department of Mathematics/Division of Statistics 
Egerton University 
P.o. Box 536-20115, Egerton, Kenya 

 
Jesse Wachira Mwangi                   jdmwangi@egerton.ac.ke 
Faculty of Science/Department of Mathematics/Division of Statistics 
Egerton University 
P.o. Box 536-20115, Egerton, Kenya            
 

.   
Abstract 

Pool testing is a cost effective procedure for identifying defective items in a large population. It also 
improves the efficiency of the testing procedure when imperfect tests are employed. This study 
develops computational pool-testing strategy based on a proposed pool testing with re-testing 
strategy. Statistical moments based on this applied design have been generated. With advent of 
digital computers in 1980‘s, pool-testing with re-testing strategy under discussion is handled in the 
context of computational statistics. From our study, it has been established that re-testing reduces 
misclassifications significantly as compared to Dorfman procedure although re-testing comes with a 
cost i.e. increase in the number of tests. Re-testing considered improves the sensitivity and specificity 
of the testing scheme. 
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1. INTRODUCTION 
The idea of pool testing was initiated by Dorfman (1943) during World War II as an economical 
method of testing blood samples of army inductees in order to detect the presence of infection. 
Pooling procedures involve putting together individuals to form a group/pool and then testing the 
group rather than testing each individual for evidence of a characteristic of interest. A negative 
reading indicates that the group contains no defective items and a positive reading indicates the 
presence of at least one defective individual in the group. There are two objectives of pool testing: 
classification of the units of a population as either defective or non-defective (Dorfman, 1943) and 
estimation of the prevalence of a disease in a population (Sobel and Elashoff, 1975). Pooling 
procedures have proved to reduce the cost of testing when the prevalence rate is low. This is 
because if a pool tests negative, it implies all its constituent members are non-defective and hence it 
is not necessary to test each member of the pool. A procedure of classifying the population into 
defective and non-defective when each unit i of the population has a different probability pi of being 
defective (which is called a generalized binomial group test) problem has been studied (Hwang, 
1975). The generalized binomial group test problem reduces to a binary pool testing problem which is 
the Dorfman, (1943) procedure when all the units have the same probability p of being defective. 
Hwang (1976) has also considered a pool testing model in the presence of dilution effect. Dilution 
effect in this case refers to a situation where a pool which contains a few defective items may be 
misidentified as containing no such items, especially when the size of the pool is large.  

Johnson et al. (1992) has studied the cost effectiveness of pooling algorithm for the objective of 
identifying individuals with a characteristic of interest using hierarchical procedures. In this procedure, 
each pool that test positive is divided into two equal groups, which are tested, groups that tested 
positive are further subdivided and tested and so on. This work has been extended by considering 
pooling algorithms when there are errors and showed that some of these algorithms can reduce the 
error rates of the screening procedures (the false positives and false negatives) compared to 
individual testing (Litvak et al., 1994). Computational statistics has been used in pool testing to 
compute the statistical measures when perfect and imperfect tests are used has been considered 
(Nyongesa and Syaywa, 2011; Nyongesa and Syaywa, 2010; Tamba et al., 2012).  
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Pool testing has vast applications (Sobel and Groll, 1966). It has been applied industries, and recently 
it has been applied in screening the population for the presence of HIV antibody (Kline et al., 1989 
and Manzon et al., 1992). Pool testing has been used in screening HIV antibody to help curb the 
further spread of the virus (Litvak et al., 1994).  

 In this study, we consider the computation of statistical measures based on a pool testing with re-
testing strategy via computer package MATLAB. The tests used in this procedure are assumed 
imperfect i.e. the specificity and sensitivity are less than 100%. The rest of the paper is arranged as 
follows: Section 2 formulates the problem while the pool-testing with re-testing strategy is discussed in 
Section 3. Section 4 provides the number of tests and moments while the results in this design are 
provided in Section 5. Misclassifications in the proposed testing design are discussed in Section 6. 
Section 7 provides the discussion and conclusion to this study. 

2. PROBLEM FORMULATION 
Consider a population of size N pooled into n pools each of size k. Each pool is subjected to an initial 
test. We re-test each pool irrespective of whether it tests positive or negative on the initial test. Pools 
that test positive on re-testing of pools that initially tested positive and negative, their constituent 
members are tested individually. We wish to establish the number of defective individuals in the 
population N. For efficiency and cost effectiveness, pool the population N into n independent pools 
each of equal sizes say k. The procedure is described diagrammatically below. 
 
Pools 
 
 
 
 
 
 
 
 
 

 

 
Figure 1: Diagrammatic description of the Pool Testing with Re-testing Strategy 
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The indicator functions provided above are essential in the subsequent developments. The 

constituent members of the i
th
 pool will be represented by 

1 2
( , ,..., ,..., )i i ij ikζ ζ ζ ζ or simply

1
{ }

k

ij jζ = . 

Clearly, 

1 2
Pr( 0) Pr( 0, 0,..., 0,..., 0)i i i ij ikD ζ ζ ζ ζ= = = = = =                                                    (1) 

by definition. For analysis purposes, we shall assume that the constituent member of a pool act 
independently of each other, hence 

Pr( 0) (1 )
k

iD p= = −                                                             (2) 

where p is the prevalence rate.  

3. POOL TESTING WITH RE-TESTING STRATEGY 

Let N be a universal set and  ξ   be a δ −  field on N . Let
11

X ,
12

X ,
21

X  and 
22

X  be random 

variables defined on N . Now subdivide N into n  partitions representing pools each of size k . We 

perform a test on each pool as discussed above. Basically, let 
11

X  be the number of pools that test 

positive on re-testing initial declared positive pools, 
12

X  be the number of pools that test negative on 

re-testing initial declared positive pools, 
21

X  be the number of pools that test positive on re-testing of 

pools that initially tested negative test and 
22

X  be the number of pools that test negative on retesting 

initially declared negative pools. Let p be the probability measure on ξ  such that an individual is 

positive (prevalence rate). We derive new set functions 
1

π ,
2

  π , 
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π  and 
4

π onξ , where 
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2
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3
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4
Pr( 0, 0)i iT Tπ = = = . To obtain these probabilities, we require the application of the law of total 

probability (Ross, 1997). First, 

 
2

1 (1 ) (1 ) [1 (1 ) ] .
k k
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where η is the sensitivity of the test kit and φ  the specificity of the test kit. By sensitivity, we mean the 

probability of correctly classifying a defective pool or defective individual while φ  is specificity of the 

test kits and by specificity here means the probability of correctly classifying a non-defective pool or 
non-defective individual. Ideally, we have introduced the error element in our model. The error 
component will be assumed to be based on the manufacturers’ specifications and will remain constant 
in the entire experiment. That is, sensitivity and specificity will remain constant at group level and 

individual level. Clearly [ ]0,1p ∈  and so 
2

1
1 φ π η− ≤ ≤  which implies that 

1
π  is a continuous 

function bounded below by 1 φ− and above by
2η . Next, 
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3
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and the probability 
'
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1 2 3
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Utilizing the probabilities
1

π ,
2

  π , 
3

π  ,
4

π  and Model (7) above, we propose a computer intensive 

pool-testing with re-testing strategy. With the advent of the digital computers in early 1980’s, 
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computational statistics has evolved (Martinez and Martinez, 2002; L’Ecuyer, 2004). In a similar 
format we wish to develop a computational pool-testing with re-testing model. The next section 
discusses the moments of the number of tests in the testing scheme. 

4. THE NUMBER OF TESTS AND MOMENTS 
 Model (7) is of major interest in this study. The overall number of tests in this design is 

11 21
1 2Z n kX kX= + + + ,                                                                                              (8)      

where n is the number of pools and k is the pool size.   It then follows that, 

[ ] [ ]1 3
1 2 .E Z n kn π π= + + +                                                              (9) 

In the field experiments, the sensitivity and specificity of the test kits are normally provided by the 

manufacturers’ specifications. Therefore, for given η andφ , we can compute (9) and similarly, the 

variance of the number of test is 

[ ]2

1 1 3 3 1 3
( ) (1 ) (1 ) 2Var Z k n n nπ π π π π π= − + − −                (10) 

 from which, the standard deviation is given by [ ]2

1 1 3 3 1 3
(1 ) (1 ) 2k n n nπ π π π π π− + − − .  

We shall utilize Equations (9) and (10) to generate the mean, standard deviation in the proposed pool-
testing with re-testing strategy. Next, we consider misclassification arising from this testing design. 

5. MISCLASSIFICATIONS 
Note that since we allowed testing with errors in our design as is the case real life problem i.e. the test 
kits in use are not 100% perfect, two possible misclassifications can arise in practice; false- positive 
and false- negatives. A false- positive refers to a non- defective item being classified as defective 
whereas a false- negative means that a defective item is classified as non-defective. The probability of 
correctly classifying a defective individual is referred to as sensitivity. The sensitivity of the testing 
procedure is derived as, 

Sensitivity=
' '

Pr( 1, 1, 1| 1) Pr( 0, 1, 1| 1)i i ij ij i i ij ijT T T T T Tδ δ= = = = + = = = =  

     =
2η .                   (12) 

The probability of false positives arising from this model is 
2

1 .
p

f η= −
                                                    

(13) 

We know that η <1 in practice, this implies that 
2η <η , hence pool-testing scheme lowers the 

sensitivity in general. The sensitivity of this procedure is the same as that of the pool testing without 
re-testing. (c.f Tamba et al., 2012). We derive the probability of correctly classifying a non-defective 
individual herein referred as specificity of the testing procedure. 

( ) ( ) ( )

' '

' '

1 12

Pr( 1, 0 | 0) Pr( 0, 0 | 0)

Pr( 1, 1, 0 | 0) Pr( 0, 1, 0 | 0)

2 1 1 1 1

i i

i i

i ij i ij

i ij ij i ij ij

k k

Specificity T T T T

T T T T T T

p p

δ δ

δ δ

φ φ η ηφ
− −

= = = = + = = = +

= = = = + = = = =

      = − − + − + + − −      

         (14) 

One minus the specificity of the testing scheme yields the probability of false negative as 

( ) ( ) ( )
1 12

1 2 1 1 1 1 .
k k

nf p pφ φ η ηφ
− −    = − − − + − + + − −       

                     (15) 

To investigate the performance of this design we shall utilize Equation (13) and (15), in computing the 

false-positive and false-negative. The pool size in (14) appears to be 1k −  since the 
th

j individual is 

known to be non- negative and we have employed sampling without replacement. 

6. RESULTS 
To this end, we have presented formulas that can be used to compute the central moments of the 
number of tests in group testing with re-testing scheme. We illustrate the procedure by computing the 
central moment measures for various sensitivity and specificity. In the tables we have used the word 
total testing cost to imply the overall cost of performing the procedure.  
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Table 1:  Various characteristics for pool testing with re-testing strategy with 1000 runs, N 

=100, k=10, 99η φ= = % 

Characteristics 
 

p=0.01 p=0.05 p=0.1 
µ  σ  µ  σ  µ  σ  

Number of 
defectives 

9.7590 2.1833 29.5240 4.6742 54.0840 6.2065 

Number of 
defective groups 

4.7710 1.8682 15.9250 2.4625 21.7910 1.4881 

Number of group 
tests 

51.0000 - 51.0000 - 51.0000 - 

Number of 
individual tests 

95.5420 37.3640 318.5000 49.2500 435.8200 29.7620 

Total number of 
tests 

146.4200 37.3640 369.5000 49.2500 486.8200 29.7620 

Total testing cost 29.2840 37.3640 73.9000 49.2500 97.3640 29.7620 

Percentage  
savings 

70.7160 37.3640 26.1000 49.2500 2.6360 29.7620 

Table 2:  Various characteristics for pool testing with re-testing strategy with 1000 runs, N 

=500, k=20, 99η φ= = % 

Characteristics 
 

p=0.01 p=0.05 p=0.1 
µ  σ  µ  σ  µ  σ  

Number of 
defectives 

6.0190 1.0691 9.4710 2.0904 13.8480 2.7201 

Number of 
defective groups 

1.3370 0.7994 4.0610 1.4019 6.3180 1.3284 

Number of group 
tests 

21.0000 - 21.0000 - 21.0000 - 

Number of 
individual tests 

13.3700 7.9944 40.6100 14.0190 63.1800 13.2840 

Total number of 
tests 

34.3700 7.9944 61.6100 14.0190 84.1800 13.2840 

Total testing cost 34.3700 7.9944 61.6100 14.0190 84.1800 13.2840 

Percentage 
savings 

65.6300 7.9944 38.3900 14.0190 15.8200 13.2840 

Table 3:  Various characteristics for pool testing with re-testing strategy with 1000 runs, N 

=100, k=10, 95η φ= = % 

 
 

Characteristics 
 

p=0.01 p=0.05 p=0.1 

µ  σ  µ  σ  µ  σ  

Number of 
defectives 

2.0010 0.9232 6.0020 2.2183 10.8000 3.0205 

Number of 
defective groups 

1.0060 0.9172 4.0700 1.4931 6.5840 1.4860 

Number of 
group tests 

21.0000 - 21.0000 - 21.0000 - 

Number of 
individual tests 

10.0600 9.1720 40.7000 14.9310 65.8400 14.8600 

Total number of 
tests 

31.6600 9.1720 61.7000 14.9310 86.8400 14.8600 

Total testing 
cost 

31.6600 9.1720 61.7000 14.9310 86.8400 14.8600 

Percentage 
savings 

68.3400 9.1720 38.3000 14.9310 13.1600 14.8600 
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Characteristics 
 

p=0.01 p=0.05 p=0.1 
µ  σ  µ  σ  µ  σ  

Number of 
defectives 

29.4820 2.2064 47.3720 4.27323 70.2500 6.1414 

Number of 
defective groups 

5.2730 1.8166 15.5170 2.2012 21.0340 1.4323 

Number of group 
tests 

51.0000 - 51.0000 - 51.0000 - 

Number of 
individual tests 

105.4600 36.3320 310.3400 44.0240 420.6800 28.6460 

Total number of 
tests 

156.4600 36.3320 361.3400 44.0240 471.6800 28.6460 

Total testing cost 31.2920 36.3320 72.2680 44.0240 94.3360 28.6460 

Percentage 
savings 

68.7080 36.3320 27.7320 44.0240 5.6640 28.6460 

Table 4:  Various characteristics for pool testing with re-testing strategy with 1000 runs, N 

=500, k=20, 95η φ= = % 

Table 5: Number of false positives in the pool testing strategy for different pool sizes 

99η φ= = % 

Table 6: Number of false positives in the pool testing strategy for different pool sizes 

95η φ= = % 

 

 

 

 

 

Probability, 
p 

N =100, k=10 N =500, k=20 N =1000, k=20 
µ   σ  µ   σ  µ   σ  

0.01 0.5652 0.7142 2.8714 1.6098 5.7724 2.2825 

0.02 0.6572 0.7701 3.3189 1.7307 6.6502 2.4499 

0.03 0.7399 0.8172 3.7829 1.8477  7.4711 2.5967 

0.04 0.8429 0.8722 4.2054 1.9482 8.4221 2.7570 

0.05 0.9141 0.9083 4.6254 2.0431 9.2276 2.8838 

0.1 1.3625 1.1089 6.8062 2.4784 13.6571 3.5105 

0.15 1.7953 1.2729 9.0324 2.8551 18.0663 4.0379 

 
 
 

N =100, k=10 N =500, k=20 N =1000, k=20 
µ   σ  µ   σ  µ  σ  

0.01 0.0388 0.1949 0.1964 0.4387 0.3941 0.6215 

0.02 0.0593 0.2410 0.2940 0.5368 0.5912 0.7612 

0.03 0.0767 0.2741 0.3915 0.6194 0.7825 0.8757 

0.04 0.0987 0.3110 0.4902 0.6932 0.9809 0.9805 

0.05 0.1171 0.3387 0.5805 0.7543 1.1705 1.0711 

0.1 0.2147 0.4587 1.0749 1.0264 2.1483 1.4510 

0.15 0.3143 0.5552 1.5672 1.2393 3.1239 1.7498 
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Table 7: Number of false negatives in the pool testing strategy for different pool sizes 

99η φ= = % 

 
Probability, 
p 

N =100, k=10 N =500, k=20 N =1000, k=20 
µ   σ  µ   σ  µ   σ  

0.01 0.6007 0.7726 4.8543 2.1918 9.7127 3.1004 

0.02 0.9303 0.9597 7.8444 2.7771 15.6995 3.9287 

0.03 1.2270 1.1003 10.2817 3.1709 20.5605 4.4836 

0.04 1.4941 1.2123 12.2386 3.4512 24.4819 4.8812 

0.05 1.7317 1.3033 13.8131 3.6594 27.6312 5.1757 

0.1 2.5874 1.5842 17.8083 4.1317 35.6026 5.8419 

0.15 3.0186 1.7049 18.5098 4.2034 39.0662 5.9485 

Table 8: Number of false negatives in the pool testing strategy for different pool sizes 

95η φ= = % 

Remark : In all the above tables we have; , tanmean s dard deviationµ σ= =  

In the next section, we provide the discussion of our findings and the conclusion to the study.  

7. DISCUSSION AND CONCLUSION 
This study has presented a computational pool testing strategy with re-testing. It has been shown 
from the results; Tables 1, 2, 3 and 4 that when the pool size and prevalence rate are small, 
significant savings are realized. This is an empirical result since pool testing is only feasible when the 
prevalence rate is small otherwise individual testing is preferred. Similarly large pools are prone to 
increase the dilution effect and hence increase the misclassifications. It has been established that re-
testing pools increases the cost of testing however, the misclassifications significantly reduce as 
compared to the Dorfman procedure when imperfect tests are used (Tamba et al., 2011). The results 
in Tables 5, 6, 7 and 8 show that the higher the efficiency of the tests, the lower the misclassifications. 
This implies that pool testing should be carried out when specificity and sensitivity of the testing 
procedure are high. It has also been noted that this re-testing strategy improves the specificity and 
sensitivity of the testing procedure. Misclassifications are high when the prevalence rate is high and 
the efficiency of the test kits is low. 
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