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Abstract

The Fractional Fourier Transform (FrFT) is a powerful tool that utilizes the time-frequency plane
to separate signals-of-interest (SOIs) from interference and noise in non-stationary environments.
This requires estimation of the rotational parameter ‘a’, which is typically chosen as the value that
minimizes the mean-square error between the desired SOI and its estimate or that minimizes the
overlap of the projection of the sighal and noise onto the axis ‘t;. The FrFT has successfully been
used in many applications, but it is most suited for applications in which the time and frequency
content of an SOI and the undesired interference are different, and it has been shown to greatly
outperform the conventional Fast Fourier Transform (FFT). In this paper, we develop a simple
algorithm that applies the FrFT to separate multiple moving targets in a radar system from each
other, as well as from the clutter filled environment. The algorithm utilizes the fact that echoes
from moving targets are chirps, and therefore project onto the optimum rotational axis in the FrFT
domain just as a single CW tone projects in the FFT domain. By searching for peaks and
notching them out, we can remove high power moving targets, enabling us to extract low power
ones. This algorithm is robust in clutter because clutter does not correlate with the chirp signal in
the FrFT domain, and thus does not impair our ability to estimate the chirp signal peaks. We
show that the performance of the proposed algorithm is robust using up to three simultaneous
moving targets in clutter for signal-to-clutter ratios (SCRs) of SCR = 0 and 10 dB when the
weakest target is 8 and 20 dB below the strongest one, respectively.
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1. INTRODUCTION

The Fractional Fourier Transform (FrFT) has been applied to problems in fields such as quantum
mechanics, optics [1], image processing, data compression, and signal processing for
communications ([2] and [3]). The FrFT is a very useful tool for separating a signal-of-interest
(SOI) from interference in a non-stationary environment [3]. The problem of separating multiple
moving targets of differing power levels received by a monostatic radar system in clutter lends
itself nicely to implementation by the FrFT because moving target echoes are chirp signals, which
can be easily separated in the FrFT domain. We propose an algorithm that is much simpler to
implement than a previous algorithm, which relied on computing peak to sidelobe ratios (PSRs) in
the FrFT domain to estimate the chirps [4]. The algorithm differs from that presented in [5], which
uses the FrFT to extract both stationary and moving targets assuming that they have high signal-
to-clutter ratios (SCRs) and high signal-to-noise ratios (SNRs) by using matched filtering and
correlation methods. The simpler problem of extracting a single target in clutter using time delay
correlation methods is presented in [6] and using clutter map cancellation in [7]. Extracting a
single weak target in clutter by performing clutter subtraction is given in [8]. Finally, multiple
strong targets are separated with the FrFT using multiple channels in a bi-static SAR in [9] and in
[10].
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In this paper, we propose to use the FrFT to extract multiple targets in clutter, where some targets
are very weak. To do this we first remove strong targets by rotating to the proper axis ‘t;’ using
rotational parameter ‘a’, in which the target chirp becomes a strong tone. By simply searching for
the maximum peak over all values of ‘a’, we easily find and notch out strong moving target
echoes, and can therefore pull out the weaker ones.

The paper outline is as follows: Section 2 briefly reviews the FrFT and its relation to the Wigner
Distribution, which is a useful visual tool for understanding the FrFT. Section 3 describes the
signal model and conventional echo detection for weak target detection as described in [4].
Section 4 discusses the proposed detection algorithm using the FrFT. Section 5 has simulation
results showing the robust performance of the proposed FrFT method. Conclusions and remarks
on future work are given in Section 6.

2. BACKGROUND: FRACTIONAL FOURIER TRANSFORM (FrFT)

The FrFT of a function f(x) of order ‘a’ is defined as [3]

F*[f(z)] =f. Ba(z, z') f(z")dx',
- (1)

where the kernel B,(x,X') is defined as
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¢ = am/2, and ¢ = sgn[sin(0)] This applies to the range 0 < o] < T, or 0 < |a| < 2. In discrete
time, we can model the N x 1 FrFT of an N x 1 vector x as

X, =Fx, (3)

where F?is an N x N matrix whose elements are given by ([11] and [3])

N
F%m,n| = Z ug [m]e Tk, [n],
k=0,k+£(N —14(N)z2) (4)

and where um] and u[n] are the eigenvectors of the matrix S defined by [11]
Co 1 0o ... 1
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and

2T
C,, = 2cos( Tf.-ﬂ) _ 4

(6)

Numerous methods are presented in the literature for implementing the FrFT efficiently (see for
example [12] and [11]).
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The Wigner Distribution (WD) is a time-frequency representation of a signal, and may be viewed
as a generalization of the Fourier Transform, which is solely the frequency representation. The
WD of a signal x(t) can be written as

Wa(t, f) = f 2t +7/2)a* (t = 7/2)e 2 dr.
. (7)

It is well-known that the projection of the WD of a signal x(t) onto an axis t, gives the energy of
the signal in the FrFT domain ‘a’, |Xa(t)|2 (see e.g. [2] or [13]). Letting a = a11/2, this is written as

|Xa(t)]? = ] We(teos(a) — fsin(a), tsin{a) + fcos(a))df.
o ®)

In discrete time, the WD of a signal x[n] is written as [14]

Ia

7 mn Jl.f‘i _ L iTkn T T kT ,jr"%km
W r[z‘fs J 2‘\‘] = € Z; T ’??3]3 [?E — TFI]C I . (9)
m=I[4

where I = max(0,n—(N-1)) and I, = min(n,N —1). This particular implementation of the discrete WD
is valid for non-periodic signals. Aliasing is avoided by oversampling the signal x[n] using a
sampling rate of fs [samples per second] that is at least twice the Nyquist rate [14].

Radar echoes from moving targets are chirp signals, and we show the WD of a chirp signal x(t) in
Fig. 1. The figure illustrates how the FrFT may be used to detect chirp signals. If we rotate to the
axis ‘t; and compute the energy in the FrFT, the chirp projects onto the axis as a strong tone,
which can be detected and notched by finding the peak of the energy, using Eq. (8). Then lower
power chirps, at other rotational axes, can be detected by repeating the process.
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FIGURE 1: Wigner Distribution of chirp signal x(t).

3. SIGNAL MODEL AND CONVENTIONAL TARGET DETECTION WITH FrFT
We follow the signal model presented in [4]. Assume that there is an airborne radar platform such
as a plane moving along the y-axis at constant speed V and a moving target i at an initial distance
Ro, away, at time t = 0, moving with speed v; and acceleration a;, potentially in a different direction
as the plane (see Fig. 2). After a time t the platform and target have moved a total distance of Vt

and Vit + %”ﬂ‘tg, respectively. The components of the speed of the target along the x- and y-axes
are v;; and v, and similarly a,; and a.; for the acceleration. At time t, target i is now at a distance
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from the platform whose horizontal component has decreased by Vit + 30rit* and likewise the

vertical component has decreased by Ve.il 30e,it’. Accordingly, the distance between the target
and radar can be approximated by [4]

2
. . : , f
.Ir?fl:‘f_: = fp g — vt + [I1 - n!‘;._a]') - f;ru-_,:uy_a_—.
2Rn ; (10)
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FIGURE 2: Radar detection platform and moving target scenario

As discussed in [4], the echo of the moving target as received by the radar system can be
approximated by a chirp signal that takes the form

‘o ) g g2
.Ti(t) :i'_.\.}‘z"f-i.iit.\j"h!i .

(11)
where
n} ¥
fai= L\”
) (12)
Ki=——[-(V —v.:)? + Ro.aril,
' ,\Ro_a[ ' o) o (13)

A is the wavelength of the radar, related to its frequency f by A = ¢/f, and ¢ = 3x10° m/s is the
speed of light. We further assume there are no strong point scatterers, so that the ground (i.e.
surface) clutter may be adequately modeled as additive white Gaussian noise (AWGN), using a
desired SCR. If we now assume a scenario with multiple moving targets, with K targets total, we
can write the composite received echo signal as

K
r(t) = Z Az (t) +n(t),
i=1 (14)

where n(t) is a combination of clutter and noise using a given SCR and each amplitude A is
chosen to model strong and weak targets. If we assume, without loss of generality, that signal i =
1 is the main target, we can model the amplitudes A, for i = 2, 3, ..., K using an assumed carrier-
to-interference ratio (CIR) by writing A; = 107°R/2°,

The algorithm given in [4] is based on the fact that a chirp signal in the FFT domain is spread out
over a band of frequencies, whereas at the optimum rotational parameter ‘a’ (as shown in Fig. 1),
the projection of the signal onto that axis, given by the magnitude squared of its FrFT, is
maximized. This signal is therefore estimated by computing a peak and comparing it to the
sidelobe level to determine a detection. It is then removed by applying a narrow, bandstop filter.
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Next, by rotating back to the time domain, the operation is performed again to find the second
strongest signal, the third strongest, etc.

4. PROPOSED ECHO SEPARATION METHOD USING FrFT'

The proposed algorithm modifies that in [4] with four simplifying calculations: (1) We compute the
rotational parameter of the strongest signal, a4, at which the energy of the Wigner Distribution is
maximum by computing the peak of the FrFT at all angles and simply choosing the maximum.
This avoids sidelobe computation at each ‘a’, which is unnecessary in an environment of moving
targets in noise and clutter; (2) Once the value of a; is calculated, instead of computing a
bandstop filter to remove the strong signal, we simply rotate to the axis a4, in which the desired
signal is now a tone, find the peak along this new rotational axis and set it to zero, thereby
notching out the target to search for subsequent lower power targets. This also greatly simplifies
the algorithm by avoiding the complexity of filtering; (3) Instead of performing two rotations to look
for the next strongest signal, i.e. first to —a; and then to a,, we simply rotate to a, — a4, hence
performing the next rotation in one step; (4) We only perform the FrFT at all angles ‘a’ once, since
we can notch signals out and look for the next peak without another search.

We summarize the proposed algorithm in Table 1. We let the step size for a, Aa, be equal to 0.01
and collect N = 1,000 samples of the composite echo signal x(t). Note that once each signal is
isolated, conventional signal processing can be performed to compute any desired parameters
associated with the target.

Initialize: ag,ope =00 1= 1;

1. Fora=0: Aa: 2 % Loop over all a
X (a) = F2x(t): % Compute FrFT of x(t), given in Eq. (14)
Xmaz,i(a) = maz(|X(a)|); % Compute max value

End
2. aj opt = arg max X, i(a): % Find peak over all a
G!
- Xpeak,i(ta; ope) = Fl%i.ope =i 1-ﬂ!”]::_~{'i:]; % Rotate to signal i
X A

Xmaz.i(a)|a; ,,, = 0: % Notch out peak i

. Xpeak,i(ta; oy )lmaz = 0: % Notch out signal i

. Tig1(t) = F\%10pt — i1 0pt :'X?}(_=QL._!- (fa; ope ): % Rotate back to a =0
. Increment : = ¢ + 1 and repeat Steps 2-5 for: = 2,3, ... K.

(Step 6 is optional for plotting the intermediate time domain signal.)

1 o L

TABLE 1: Proposed weak target extraction algorithm.

5. SIMULATIONS

We model the three targets given in [4], whose parameters are repeated for convenience in Table
2. In the first example, we assume that only targets 1 and 2 are present, with SCR = 10 dB, and
CIR; = 6 dB. The results are shown in Fig. 3, where we plot Xnaxi, Xpeaki, and FFT{xu4(t)} from
Steps 1, 3, and 6 in Table 1, dropping the indices for convenience. Note the good detection and
signal removal performance. We also point out that a target whose optimum detection parameter
is ‘a’ will still project energy onto an axis a + Ae, where here Ae is about 0.01 — 0.02; we call this
signal leakage. This means that we can only resolve signals that are separated by 0.025 in 'a'
(note that the step size in [4] is not provided; a larger step size could be a cause of the need for a
more complex algorithm). To reduce Ae requires a smaller Aa, at a processing cost in Step 1 of
the proposed algorithm.

! patent Pending
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Target, i | vpilm/s] | vei|lm/s] | ari[m/s=|
1 0.67 5 2.54
2 1.67 —5 3.07
3 2.33 3 1.03

TABLE 2: Parameters of simulated targets.
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FIGURE 3: K =2 Targets; SCR =10 dB, CIR, =6 dB

The second example in Fig. 4 shows two users where now the SCR has been reduced to 0 dB
and CIR; has been increased to 8 dB, and the detection algorithm continues to perform well. Note
from the first plot in the figure that notching out x4(t) still results in a small peak about a4 o (from
the signal leakage and noise). As CIR, continues to increase, i.e. signal xy(t) continues to get
weaker compared to x,(t), then we may not be able to accurately estimate its rotational parameter
because the small peak near a; o,y may dominate. If such a condition is expected to occur, we can
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FIGURE 4: K =2 Targets; SCR=0dB, CIR, =8 dB

reduce Aa or slightly modify the proposed algorithm to null one or two samples about the peak at
a1 opt to @void the problem. Then, the algorithm will correctly select a; ot

In the next example, we add the third target, using SCR = 0 dB, CIR, = 3 dB, and CIR; = 8 dB.
The result is given in Fig. 5 where we see the detection is still achieved, and the last plot shows
that performance of the algorithm notching out successive signals is as good as before, even for
a third signal.

In the last example, we let SCR = 10 dB, CIR, = 5 dB, and CIR; = 20 dB. In this case, the
simulation shows that using Aa = 0.01 is not sufficient to accurately estimate a; . So, we set Aa
= 0.0001, with good results as shown in Fig. 6. Note from the third plot that because the signal is
already so weak, that notching out the signal does not change the spectrum much, as is
expected. From this example, we see that to detect weak signals, we can simply make Aa
smaller. There is a limit, however, since if the signal becomes too weak, then it cannot be
estimated in the clutter, no matter how small Aa is. Signals that are 20 dB below the strongest
signal and 10 dB below the clutter are about the weakest that can be detected and notched by
this algorithm. That is, if CIR; goes higher 20 dB or SCR goes lower than 10 dB, the algorithm
may start to have errors in finding az . and hence detecting and notching the third signal. This
can be noted in the figure as the peak in the black curve in the first plot is just barely above the
floor, and it would be obscured by higher clutter levels or if the signhal were weaker. Further study
is required to address this problem.

This algorithm provides significant improvement over that given in [4], which appears to assume
the weak target is no more than 7-8 dB below the strong one, although this is not explicitly stated.
Hence, this method can operate at 12-13 dB lower CIR and is a more computationally efficient
algorithm since it does not require peak-to-sidelobe energy calculations. Prior techniques based
on a combined Wigner Distribution (WD) and Radon Transform (RT) did not perform well in the
presence of multiple targets, e.g. [15]. Other methods improve upon that in [15] but at the
expense of loss of time or frequency resolution in signal separation.
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FIGURE 5: K = 3 Targets; SCR =0dB, CIR2 =3 dB, CIR: = 8 dB.

Two important points are as follows. First, we note that the proposed algorithm can also be
applied when users have equal or near equal power. In this case, the users who appear to have
slightly stronger power in X Will be notched first. Second, note that instead of notching strong
users to look for weaker ones, we can extract the strong user for further processing. This can be
done by notching everywhere except for the peak in step 4 above. That is, we set

Xpeak,i(tai,opt)l +max = O: (1 5)

where this notation indicates that we set all values except for the maximum value to zero. This
new signal now contains the strong target and can be rotated back to the time domain just as in
step 5 above.

6. CONCLUSION

In this paper, we present a simple, robust algorithm for extracting both strong and weak targets in
a moving target environment with clutter. The algorithm applies the Fractional Fourier Transform
(FrFT). Since target echoes are chirp signals, when rotated to the fractional domain ‘a’ that
maximizes the energy in the FrFT (i.e. their projection onto the axis 'ty in the Wigner Distribution),
they become tones. Tones from stronger signals are notched out and the resultant signal is
rotated again to notch out the next strongest signal. Hence, very weak signals in clutter can be
extracted. We show the algorithm works in finding and notching users that are up to 20 dB below
the strongest one and up to 10 dB below the clutter; if clutter power is the same as signal power,
we show that we can still extract users that are 8 dB weaker. Future work includes determining
how to pull out weak targets that are more than 20 dB weaker than a strong target and more than
10 dB weaker than the clutter. Evaluating performance of the algorithm with greater than three
targets is also a potential area for further study.
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