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Abstract 

 
The spectral analysis of non uniform sampled data sequences using Fourier 
Periodogram method is the classical approach.In view of data fitting and 
computational standpoints why the Least squares periodogram (LSP) method is 
preferable than the “classical” Fourier periodogram and as well as to the frequently-
used form of LSP due to Lomb and Scargle is explained. Then a new method of 
spectral analysis of nonuniform data sequences can be interpreted as an iteratively 
weighted LSP that makes use of a data-dependent weighting matrix built from the 
most recent spectral estimate. It is iterative and it makes use of an adaptive (i.e., 
data-dependent) weighting, we  refer to  it  as  the iterative adaptive approach 
(IAA).LSP and IAA are nonparametric methods that can be used for the spectral 
analysis of general data sequences with both continuous and discrete spectra. 
However, they are most suitable for data sequences with discrete spectra (i.e., 
sinusoidal data), which is the case we emphasize in this paper. Of the existing 
methods for nonuniform sinusoidal data, Welch, MUSIC and ESPRIT methods 
appear to be the closest in spirit to the IAA proposed here. Indeed, all these 
methods make use of the estimated covariance matrix that is computed in the first 
iteration of IAA from LSP. Comparative study of LSP with MUSIC and ESPRIT 
methods are discussed. 
  
Keywords: A Nonuniform sampled data, periodogram, least-squares method, iterative adaptive approach, 

Welch, Music and Esprit spectral analysis. 
 
  

 
 

1. INTRODUCTION 
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goal. We assume that the observations { }N
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nonzero mean has been removed from{ }N
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throughout this paper that the data sequence consists of a finite number of sinusoidal components 
and of noise, which is a case of interest in many applications. Note that, while this assumption is not 
strictly necessary for the nonparametric spectral analysis methods discussed in this paper, these 
methods perform most satisfactorily when it is satisfied. 

2. MOTIVATION FOR THE NEW ESTIMATOR 

There are two different non parametric approaches to find the spectral analysis of nonuniform data 
sequences. First is the classical periodogram approach and the second is Least Squares 
periodogram approach. The proposed enhanced method of Iterative adaptive approach is explained. 
 
2.1 Classical Periodogram Approach: The classical periodogram estimate for the power spectrum 

of non uniformly sampled data sequence { }N
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of length N can be interpreted by  
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           Where ω is the frequency variable and where, depending on the application, the 
normalization factor might be different from 1/N (such as 1/N

2
, see, e.g., [1] and [2]). It can be 

readily verified that can be obtained from the solution to the following least-squares (LS) data fitting 
problem: 
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In the above (2), if we keep 
)()()( ωφωβωβ j

e= , the LS criterion can be written as 
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          (3) 
Minimization of the first term in (3) makes sense, given the sinusoidal data assumption made 
previously. However, the same cannot be said about the second term in (3), which has no data 
fitting interpretation and hence only acts as an additive data independent perturbation on the first 
term. 
 
2.2 The LS Periodogram: It follows from the discussion in the previous subsection that in the case 
of real-valued (sinusoidal) data, considered in this paper, the use of Fourier Periodogram is not 
completely suitable, and that a more satisfactory spectral estimate should be obtained by solving the 
following LS fitting problem: 
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The dependence of   α and ω can be eliminated using a = α cos (φ) ; b= -α sin(φ)       (5)  
so that  LS criterion can be written as  
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The solution to the minimization problem in (6) is well known to be   rR
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The power of the sinusoidal frequency component ω  Can be given as  
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Hence the periodogram for Least Squares Criterion can be given as  
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The LSP has been discussed, for example, in [3]–[8], under different forms and including various 
generalized versions. In particular, the papers [6] and [8] introduced a special case of LSP that has 
received significant attention in the subsequent literature. 
 
 2.3 Iterative Adaptive Approach: The algorithm for the proposed estimate is discussed as with the 
notations. Let  denote the step size of the grid considered for the frequency variable, and let 

ω

ω

∆
= maxK denote the number of the grid points needed to cover the frequency interval  , 

where  denotes the largest integer less than or equal to x  ; also, let ωω ∆= kk for k=1,…,K. 
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Using this notation we can write the Least squares criterion in (6) as follows in the vector form at, 

kωω =
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Where   denotes the Euclidean norm. The LS estimate of  in (7) can be rewritten as 
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In addition to the sinusoidal component with frequency kω ,the data of Y also consists of other 

sinusoidal components with frequencies different from .kω  as well as noise. Regarding the latter, 

we do not consider a noise component of explicitly, but rather implicitly via its contributions to the 

data spectrum at ; for typical values of the signal-to-noise ratio, these noise contributions to 
the spectrum are comparatively small. Let us define 
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which can be thought of as the covariance matrix of the other possible components in Y, besides the 

sinusoidal component with frequency kω  considered in (13). 

 In some applications, the covariance matrix of the noise component of Y is known (or, 
rather, can be assumed with a good approximation) to be 
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In such cases, we can simply add∑ to the matrix kQ  in (16).Assuming kQ that is available, and 

that it is invertible, it would make sense to consider the following weighted LS (WLS) criterion, 
instead of (13), 
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It is well known that the estimate of  obtained by minimizing (18) is more accurate, under quite 

general conditions, than the LS estimate obtained from (13).Note that a necessary condition for  
to exist is that (2K-1)>N, which is easily satisfied in general. 
 The vector that minimizes (18) can be given by 
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Similar to that of (11) the IAA estimate which makes us of Weighted Least Squares an be given by 
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The IAA estimate in (20) requires the inversion of NXN matrix kQ
for k=1, 2,…, K and also N≥1 

which is computationally an intensive task. 
 To show how we can simply reduce the computational complexity of (19), let us introduce 
the matrix 
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A simple calculation shows that 
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Inserting (22) in (19) yields the another expression for the IAA estimate  
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This is more efficient than in (19) computationally. 
 

2.4 Demerits of Fourier Periodogram and LSP:   
The spectral estimates obtained with either FP or LSP suffer from both local and global (or distant) 
leakage problems. Local leakage is due to the width of the main beam of the spectral window, and it 
is what limits the resolution capability of the periodogram. Global leakage is due to the side lobes of 
the spectral window, and is what causes spurious peaks to occur (which leads to “false alarms”) and 
small peaks to drown in the leakage from large peaks (which leads to “misses”). Additionally, there 
is no satisfactory procedure for testing the significance of the periodogram peaks. In the uniformly 
sampled data case, there is a relatively well-established test for the significance of the most 
dominant peak of the periodogram; see [1], [2], and [13] and the references therein. In the 
nonuniform sampled data case, [8] (see also [14] for a more recent account) has proposed a test 
that mimics the uniform data case test mentioned above. However, it appears that the said test is 
not readily applicable to the nonuniform data case; see [13] and the references therein. As a matter 

of fact, even if the test were applicable, it would only be able to decide whether  are white 
noise samples, and not whether the data sequence contains one or several sinusoidal components 
(we remark in passing on the fact that, even in the uniform data case, testing the existence of 
multiple sinusoidal components, i.e., the significance of the second largest peak of the periodogram, 
and so forth, is rather intricate [1], [2]). The only way of correcting the test, to make it applicable to 
nonuniform data, appears to be via Monte Carlo simulations, which may be a rather computationally 
intensive task (see [13]) The main contribution of the present paper is the introduction of a new 
method for spectral estimation and detection in the nonuniform sampled data case, that does not 
suffer from the above drawbacks of the periodogram (i.e., poor resolution due to local leakage 
through the main lobe of the spectral window, significant global leakage through the side lobes, and 
lack of satisfactory tests for the significance of the dominant peaks). A pre- view of what the paper 
contains is as follows. 
  Both LSP and IAA provide nonparametric spectral estimates in the form of an estimated 

amplitude spectrum (or periodogram ). We use the frequencies and amplitudes corresponding to 

the dominant peaks of  (first the largest one, then the second largest, and so on) in a Bayesian 
information criterion see, e.g., [19] and  the  references therein, to  decide which peaks we should 
retain and which ones we can discard. The combined methods, viz. LSP   BIC and IAA   BIC, 
provide parametric spectral estimates in the form of a number of estimated sinusoidal components 
that are deemed to fit the data well. Therefore, the use of BIC in the outlined manner not only 
bypasses the need for testing the significance of the periodogram peaks in the manner of [8] (which 
would be an intractable problem for RIAA, and almost an intractable one for LSP as well—see [13]), 
but it also provides additional information in the form of an estimated number of sinusoidal 
components, which no periodogram test of the type discussed in the cited references can really 
provide. 
 Finally, we present a method for designing an optimal sampling pattern that minimizes an 
objective function based on the spectral window. In doing so, we assume that a sufficient number of 
observations are already available, from which we can get a reasonably accurate spectral estimate. 
We make use of this spectral estimate to design the sampling times when future measurements 
should be per- formed. The literature is relatively scarce in papers that ap- proach the sampling 
pattern design problem (see, e.g., [8] and [20]). One reason for this may be that, as explained later 
on, spectral window-based criteria are relatively in- sensitive to the sampling pattern, unless prior 
information (such as a spectral estimate) is assumed to be available—as in this paper. Another 
reason may be the fact that measure- ment plans might be difficult to realize in some applications, 
due to factors that are beyond the control of the experimenter. However, this is not a serious 
problem for the sampling pattern design strategy proposed here which is flexible enough to tackle 
cases with missed measurements by revising the measurement plan on the fly.  
 The amplitude and phase estimation (APES) method, proposed in [15] for uniformly 
sampled data, has significantly less leakage (both local and global) than the periodogram. We follow 
here the ideas in [16]–[18] to extend APES to the nonuniformly sampled data case. The so-obtained 
generalized method is referred to as RIAA for reasons explained in the Abstract. 
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2.5 The Iterative Adaptive Algorithm: The proposed algorithm for power spectrum estimation can 
be explained as follows 
 

• Initialization: Using the Least Squares method in (13) obtain the initial estimates of 
{ }kθ
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      Until a given number of iterations are performed. 

• Periodogram calculations: 
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3. PROPOSED SYSTEM AND SIMULATED DATA:  

    The system model for the proposed algorithm is shown in Figure 1. 

 

 

 
 

 
    FIGURE 1: Proposed system model for the simulated data. 

 
The system model for the proposed algorithm is shown in Figure 1. We consider a data 
sequence consisting of M=3 sinusoidal components with frequencies 0.1, 0.4 and 0.41 Hz, and 
amplitudes 2,4 and 5, respectively. The phases of the three sinusoids are independently and 

uniformly distributed over [ ]π2,0 and the additive noise is white normally distributed with mean 

of 0 and variance of 
2σ =0.01. We define the signal-to-noise ratio (SNR) of each sinusoid as 
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Where mα  is the amplitude of the m
th
 sinusoidal component hence SNR1=23 dB, SNR2=29 dB and 

SNR3= 31 dB in this simulation example. The input data sequence for the system model is as 
follows 

  )()4.02cos(4)4.02cos(3)1.02cos(2)( twttttx +++= πππ            (26) 

Where )(tw zero mean Gaussian is distributed white noise with variance of 0.01 and the sampling 

pattern follows a Poisson process with parameter
1

1.0
−= sλ , that is, the sampling intervals are 

exponentially distributed with mean 10
1

==
λ

µ s. We choose N=64 and show the sampling pattern 

in Fig. 3(a). Note the highly irregular sampling intervals, which range from 0.2 to 51.2 s with mean 
value 9.3 s. Fig. 3(b) shows the spectral window corresponding to Fig. 3(a). The smallest frequency 

at which the spectral 00 〉f  at which the spectral window has a peak close to 
2

N  is approximately 

10 Hz. Hence 2/0max ff = =5Hz. The step f∆  of the frequency grid is chosen as 0.005 Hz.  However, 

they are most suitable for data sequences with discrete spectra (i.e., sinusoidal data), which is the 
case we emphasize in this paper. Of the existing methods for nonuniform sinusoidal data, Welch, 
MUSIC and ESPRIT methods appear to be the closest in spirit to the IAA.  
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4. RESULT ANALYSIS: 
 

The results in Fig. 2 presents the spectral estimates averaged over 100 independent 

realizations of  Monte-Carlo trials of  periodogram and Welch estimates. Fig.  4  presents the 

spectral estimates averaged over 100 independent realizations of LSP and IAA estimates. Fig. 5 

presents the spectral estimates averaged over 100 independent realizations of Monte- Carlo trials 

of Music and Esprit estimates.  LSP nearly misses the smallest sinusoid while IAA successfully 

resolves all three sinusoids. Note that IAA suffers from much less variability than LSP from one 

trial to another. The plots were taken with the help MATLAB programming by the authors. LSP 

and IAA are nonparametric methods that can be used for the spectral analysis of general data 

sequences with both continuous and discrete spectra. However, they are most suitable for data 

sequences with discrete spectra (i.e., sinusoidal data), which is the case we emphasize in this 

paper. Of the existing methods for nonuniform sinusoidal data, Welch, MUSIC and ESPRIT 

methods appear to be the closest in spirit to the IAA proposed here. Indeed, all these methods 

make use of the estimated covariance matrix that is computed in the first iteration of IAA from 

LSP. MUSIC and ESPRIT, on the other hand, are parametric methods that require a guess of the 

number  of  sinusoidal  components  present  in  the  data,  otherwise  they  cannot  be  used 

furthermore. 
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  FIGURE 2: Average spectral estimates from 100 Monte Carlo trials of Fourier periodogram  
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  FIGURE 3: Average spectral estimates from 100 Monte Carlo trials of Welch estimates. 
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FIGURE 4: Average spectral estimates from 100 Monte Carlo trials of MEM estimates. 
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FIGURE6: Sampling pattern and spectral window for the simulated data case. (a) The sampling 

pattern used for all Monte Carlo trials in Figs. 2–4. The distance between two consecutive bars 
represents the sampling interval. (b) The corresponding spectral window 
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FIGURE7: Average spectral estimates from 100 Monte Carlo trials. The solid line is the 
 estimated spectrum and the circles represent the true frequencies and 
 amplitudes of the three sinusoids. (a) LSP  (b) IAA. 
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FIGURE8: Average spectral estimates from 100 Monte Carlo trials. (a) Music estimate 

and  (b) Esprit estimate. 
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          FIGURE9: Average spectral estimates from 100 Monte Carlo trials of Lomb 

                           periodogram. 
 

. 4. CONSLUSIONS: 

Of the existing methods for nonuniform sinusoidal data, the MUSIC and ESPRIT 
methods appear to be the closest in spirit to the IAA proposed here (see the cited paper for 
explanations of the acronyms used to designate these methods). Indeed, all these methods 
make use of the estimated covariance matrix that is computed in the first iteration IAA from 
LSP. In fact Welch (when used with the same covariance matrix dimension as IAA) is 
essentially identical to the first iteration of IAA. MUSIC and ESPRIT.In the case of a single 
sinusoidal signal in white Gaussian noise, the LSP is equivalent to the method of 
maximum likelihood and therefore it is asymptotically statistically efficient. Consequently, in 
this case LSP can be expected to outperform IAA. In numerical computations we have 
observed that LSP tends to be somewhat better than IAA for relatively large values of N or 
SNR; however, we have also observed that, even under these conditions that are ideal for 
LSP, the performance of IAA in terms of MSE (mean squared error) is slightly better (by a 
fraction of a dB) than that of LSP when or SNR becomes smaller than a certain threshold. 
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