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Abstract 

 
This paper proposes a hybrid method to calculate the maximum entropy 
(MaxEnt) density subject to known moment constraints, which combines the 
linear equation (LE) method and Newton’s method together. The new approach 
is more computationally efficient than ordinary Newton’s method as it usually 
takes fewer Newton iterations to reach the final solution. Compared with the 
simple LE method, the hybrid algorithm will produce a more accurate solution. 
Numerical examples confirm the excellent performance of the proposed method. 
 
Keywords: Maximum entropy principle (MEP), maximum entropy density, Lagrange multiplier, Newton’s 
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1. INTRODUCTION 
The maximum entropy (MaxEnt) density is obtained by maximizing an entropy measure subject to 
known moment constraints. The underlying theoretical basis of the MaxEnt density is Jaynes’ 
Maximum Entropy Principle (MEP), which states that among all the distributions that satisfy 
certain constraints (say the moment constraints), one should choose the distribution that 
maximizes the entropy [1, 2, 3]. The distribution determined by MEP fits the known data without 
committing extensively to unseen data.   
 
The MaxEnt density provides flexible and powerful tool for density approximation and estimation 
since it nests a wide range of statistical distributions as special cases, yet, according to the MEP, 
it yields the most uniform (unbiased) density estimation conditioned on the available a priori 
knowledge. In fact, most known distributions can be regarded as the MaxEnt distribution with 
certain moment constrains [2]. The MaxEnt density has found applications in many areas (see [2] 
for typical examples). 
 
The computation of the MaxEnt density, however, is not an easy task. This is in part, because 
that the maximization of the entropy is usually achieved through the use of Lagrange multipliers 
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whose numerical solution requires involved nonlinear optimization. Most existing approaches 
adopt the iterative Newton’s method [4-7]. The Newton’s method is too computationally 
demanding and is sensitive to the choice of the initial values. To reduce the computational 
complexity, Erdogmus et al. [8] have proposed a simple method to compute the Lagrange 
multipliers by solving a set of linear equations (LE). The main drawback of Erdogmus’ LE method 
is its poor accuracy. In [9], an efficient numerical approximation of the MaxEnt density has been 
proposed by Balestrino et al. This method, however, does not compute the exact maximum 
entropy density (i.e. generalized exponential family).   
 
In this work, we propose a hybrid approach to compute the MaxEnt density, which combines 
together LE and Newton’s methods. The new approach is more computationally efficient than 
standard Newton’s method while produces more accurate solution than LE method. The 
organization of the paper is as follows. In section II, the MaxEnt densities and some theoretical 
background are briefly described. In section III some existing algorithms for computing the 
MaxEnt density are reviewed, and a hybrid method is proposed. In section IV, numerical 
examples are presented to demonstrate the efficiency of the new approach. Finally, section V 
gives the conclusion.  
 

2. MAXIMUM ENTROPY DENSITIES 
  
This section gives some theoretical background about the maximum entropy (MaxEnt) densities. 
The entropy definition in this work is the Shannon’s information entropy, which is given by [1]  

     logSH p p x p x dx �                                                        (1) 

where  p x is the probability density function (PDF) of a random variable X . Shannon’s entropy 

measures the uncertainty (or dispersion) contained in  p x .   
 
In general, the MaxEnt density is obtained by maximizing the entropy (1) subject to certain 
moment constraints. Specifically, we have to solve the constrained non-linear optimization 
problem:  

     max log
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where ( ) 1p x dx � is the normalization constraint, ( ) ( )k kg x p x dx � ( 1, 2, ,k K  ) are 

the K moment constraints, with known functions ( )kg x and known real constants k . Usually the 

moment constraints take the form ( ( ) k
kg x x ) 

( ) ,   1, 2, ,k
kx p x dx k K �                                                     (3) 

which are the so called arithmetic moment (or power moment) constraints.  
 
By Lagrange’s method and the calculus of variation, we can easily derive the analytical solution of 
the optimization (2), which is expressed as [2]  

   0
1

exp
K

MaxEnt k k
k

p x g x 


 
   

 
                                                   (4) 

where 0 , 1 ,…, K are the Lagrange multipliers that satisfy  
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The existence and uniqueness of the MaxEnt density is not guaranteed when arbitrary 
combinations of moments are used as the side conditions. For the Hausdorff moment problem in 
which the PDF is defined over 0,1 , and the moment constraints are restricted to the arithmetic 
moments, a necessary and sufficient condition for the existence and uniqueness of the MaxEnt 
density is as follows [10]   

 
0

1 0
m

k
k

k

m
k




 
  

 
 , 0,1,2,m                                                       (6) 

The above condition is not restrictive as it is satisfied by almost all the PDF defined over 0,1 .  In 
[6], it is shown that the arithmetic sample moments for any finite sample always satisfy this 
condition. 
 
Another important problem involved in MaxEnt density is the convergence problem. Let  0p x be 

a nonnegative function integrable in 0,1 whose arithmetic moments are 0 1, ,  , and let  Kp x , 

1,2,K   be the MaxEnt density sequence associated with the same moments, then [10] 

       
1 1

00 0
lim KK

F x p x dx F x p x dx


                                                    (7) 

where  F x is some continuous function in 0,1 . This convergence result suggests that for any 
finite sample, the MaxEnt density can be used to approximate the underlying distribution 
arbitrarily well provided that the sample size is large enough to allow precise estimates of the 
moments.  
 

3.  A HYBRID ALGORITHM TO COMPUTING THE MAXIMUM ENTROPY 
DENSITIES 

  
To compute a MaxEnt density MaxEntp , we have to determine the Lagrange multipliers 0 , 1 ,…, 

K  by solving the non-linear system of 1K  equations (5).  One may use the familiar Newton’s 
method which solves the Lagrange multipliers by iteratively updating [4-6] 

1
1t t


    H                                                                       (8) 

where  1, , T
K   denotes the Lagrange multipliers vector, 0
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objective function,   and H are the gradient and Hessian that take the form 
( , 1, 2, ,i j K  ) 
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The Newton’s method described above is straightforward but has at least two disadvantages: (1) 
it is computationally expensive due to a lot of numerical integrals involved, (2) it is sensitive to the 
choice of the initial values ( 0 ) and only works for a limited set of moment constraints1. Wu 
proposed in [6] a sequential updating method (sequential Newton’s method) to calculate the 
MaxEnt density, which increases the chance of converging to the optimum solution but is still 
computationally costly.    
 
In order to reduce the computational burden for computing the MaxEnt density, Erdogmus et al. 
[8] proposed an approximate approach to calculate the Lagrange multipliers by solving a linear 
system of equations. Specifically, let 0i   , we have 

   0
1

exp
K

i i k k
k

g x g x dx  


 
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 
�                                              (11) 

Applying the integrating by parts method and assuming the function    k kG x g x dx�  

satisfies     0kG x p x



 , it follows that 

   
1 1

K K

i j p i j j ij
j j

G x g x   
 

    E                                           (12) 

where    ij p i jG x g x    E , pE denotes the expectation operator over  p x . Thus the 

Lagrange multipliers can be expressed as the solution of a linear system of equations, that is  
1                                                                         (13) 

where  1, , T
K   , ij    .   

 
In this work we refer to (13) as the linear equations (LE) method for solving the Lagrange 
multipliers of MaxEnt density. It should be noted that in practical applications, one may obtain 
only approximate solution of (13). In fact, as the expectation in ij is over the maximum entropy 

                                                
1 For this disadvantage, Ormoneit and White [5] suggested two possible reasons: (a) numerical errors may build up during the 

updating process; (b) near-singularity of the Hessian may occur for a large range of  space.        
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distribution which is unknown (to be solved), we have to approximate it using the sample mean 
from actual data distribution:  

   
1

1ˆ
L

ij i l j l
l

G x g x
L




                                                          (14) 

Therefore, the LE method may produce a solution with less accuracy although it is very 
computationally simple.  
  
Now we propose a more efficient hybrid method for computing the MaxEnt density, which 
combines the previous two methods (Newton’s and the LE). Specifically, the hybrid method 
consists of two steps: 

Step 1: use the simple LE method to calculate an approximate solution   ( 1ˆ    ) for 
the Lagrange multipliers .  
 
Step 2: apply Newton’s method to search a more accurate solution, with the estimated 
Lagrange multipliers  as the initial values for iteration.  

 
The obvious advantages of the proposed approach over previous methods are as follows: 
(i) More computationally efficient than the standard Newton’s method: As the estimated 
Lagrange multipliers are close to the optimum values, it takes only few (usually one or two) 
Newton iterations to reach the final solution.     
(ii) No choice of the initial values: In the hybrid method, the initial values for Newton’s 
iteration are not chosen randomly but instead, are calculated by the LE method. Then there is no 
problem such as sensitivity to the choice of the initial values and not converging to the optimum 
solution. 
(iii) More accurate than the LE method: Due to the refinements by Newton’s method, the 
new approach will produce more accurate solution than the simple LE method.  
 
The hybrid algorithm can be interpreted as a Newton’s method for computing the minimum cross-
entropy 2 (MinxEnt) density [2]. The MinxEnt density is obtained by minimizing the cross-entropy 
between  p x  and an a priori density  q x , subject to the same moment constraints on  p x . 
This yields the following optimization:          
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                                             (15) 

where  KLD p q denotes the cross-entropy (or Kullback-Leibler information divergence, KLID). 

For the case in which the a priori distribution is a uniform distribution, the MinxEnt density will 
reduce to the MaxEnt density. The analytical solution for optimization (15) takes the form [2] 
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If the a priori density  q x is chosen as the MaxEnt density produced by the LE method, we have 
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2 The cross-entropy is also named the Kullback entropy, relative entropy, discrimination information, directed divergence, or the 

Kullback-Leibler information divergence (KLID).   
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where 1ˆ    . And hence 

   0
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where i i i     , 0,1, ,i K  . In this case, the parameters i can be solved by Newton’s 

method with initial values 0    , that is  
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     
 
 is the dual objective function. This is actually the proposed hybrid 

algorithm (i.e. Newton’s method with initial values calculated by the LE method).   
 

4. NUMERICAL EXAMPLES 
 
This section presents numerical examples to demonstrate the efficiency of the hybrid algorithm 
for computing the MaxEnt density estimates.  Consider the case in which the sample data is 
generated from a mixed-Gaussian distribution with two peaks located at 1 . Fig. 1 plots the 
empirical density (histogram) of 5000 samples generated.     
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FIGURE 1: Empirical density of data sample obtained from a mixed-Gaussian distribution with peaks located 
at 1 .  

. 
From the sample, the first eight empirical power moments ( ( ) , 1, 2, ,8k

kg x x k   ) have been 

calculated, and used as the known constants, k , in computing the MaxEnt density. Fig. 2 
illustrates a comparison among LE, Newton and hybrid (LE+Newton) algorithms. In Fig. 2, the 
number N stands for the total number of Newton iterations. The initial values of Newton’s method 

are set as parameters of the standard Gaussian distribution ( 0 log 2  , 2 0.5  , 

1 3 4 8 0        ). From Fig. 2, it is evident that the hybrid algorithm converges much 
faster than ordinary Newton’s method and achieves better accuracy than LE method in density 
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estimation. Note that the hybrid algorithm takes just one Newton iteration to approach the final 
solution. To further compare the convergence performance between Newton’s and hybrid 
methods, we plot in Fig. 3 the Kullback-Leibler information divergence (KLID) between the 
estimated and final MaxEnt density.     
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FIGURE 2: MaxEnt density estimates from the data reported in Fig.1.  
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FIGURE 3: Convergence performance of LE+Newton and standard Newton’s method.  

 
Consider another set of sample data which are generated from mixed-Gaussian distribution with 
peaks located at 2  (see Fig. 4 for the empirical density). In this case, Newton’s method fails to 
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converge. However, the LE and hybrid methods still work. As shown in Fig. 5, the hybrid 
algorithm takes only one Newton iteration to reach the final solution and again, achieves better 
results than LE method.  
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FIGURE 4: Empirical density of data sample obtained from a mixed-Gaussian distribution with peaks located 
at 2 .  
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FIGURE 5: MaxEnt density estimates from the data reported in Fig.4.  
  

5. CONCLUSION 
 
A hybrid approach has been proposed to compute the MaxEnt density, which combines the linear 
equation (LE) method and Newton’s method together. First, a rough solution is calculated by the 
simple LE method. Afterward, a more precise solution is obtained by Newton’s method with the 
rough solution as starting values. The advantages of the proposed approach over standard 
Newton’s method are: (i) increased computational efficiency (faster convergence), (ii) no need for 
the choice of initial values, (iii) higher numerical stability (converging to the optimum solution). 
The efficiency of the hybrid algorithm has been confirmed by numerical examples.         
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