
Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 85 

DSP Based Implementation of Scrambler for 56Kbps Modem  
 

Davinder Pal Sharma                                davinder.sharma@sta.uwi.edu 

Department of Physics 
University of the West Indies 
St. Augustine, Tinidad & Tobago  
 

Jasvir Singh        j_singh00@rediffmail.com 
Department of Electronics Technology 
Guru Nanak Dev University  
Amritsar -143105, India 
 

_____________________________________________________________________________ 

Abstract 

Scrambler is generally employed in data communication systems to add 
redundancy in the transmitted data stream so that at the receiver end, timing 
information can be retrieved to aid the synchronization between data terminals. 
Present paper deals with simulation and implementation of the scrambler for 
56Kbps voice-band modem. Scrambler for the transmitter of 56Kbps modem was 
chosen as a case study. Simulation has been carried out using Simulink of 
Matlab. An algorithm for the scrambling function has been developed and 
implemented on Texas Instrument’s based TMS320C50PQ57 Digital Signal 
Processor (DSP). Signalogic DSP software has been used to compare the 
simulated and practical results. 
 

Keywords: Scrambler, 56Kbps Modem, Matlab, Signalogic, Digital Signal Processor. 

_____________________________________________________________________________ 

 
1. INTRODUCTION 
Often, it is required by the user to ensure that the transmitted signal should has sufficient 
randomness or activity so that timing recovery, adaptive equalization and echo cancellation can 
be reliably performed. Mostly users type characters on PC relatively slow due to which computer 
terminal transmits null characters most of the time. A long sequence of null characters results in a 
highly correlated line signal. Such signals can foil timing recovery and other functions, all of which 
assume that the transmitted symbols are uncorrelated. Scrambling is intended to minimize strong 
correlations among the information bits so as to make them appear more random. It is a method 
of achieving dc balance (dc null) and eliminating long sequences of zeros to ensure timing 
recovery without redundant line coding. Scrambler does not add anything in signal, as it is not 
based on redundancy. Scrambler performs one-to-one mapping between input data bits and 
coded data bits. The objective is to map the bit sequences, which are problematic and likely to 
occur, into a coded sequence that looks more random and less problematic. 
 
Scrambler is a digital device, which maps a data sequence into a channel sequence. If the data 
sequence is periodic, it converts it into a periodic channel sequence with period, which is many 
times the data period. A simple scrambler adds a Maximum-Length Shift-Registers (MLSR) 
sequence to the input bit stream to randomize or whiten the statistics of the data, making it more 
random. Scrambler consists of linear sequential filters with feedback paths, counters, storage 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 86 

elements and peripheral logic in their discrete form. The counters, storage elements and 
peripheral logic, monitor the channel sequence but react infrequently so that the scrambler 
behaves principally as linear sequential filter [1]. 

 
There are many applications of scrambler. This is used for encryption of data in security systems, 
to remove non-linearity of common carrier systems which causes inter-channel interference and 
to remove systematic jitter caused by self-retiming circuits in base-band Pulse Code Modulation 
(PCM) systems. In data communication systems, main purpose of the scrambler is to add 
redundancy in the transmitted data stream so that at the receiver, timing information can be 
retrieved from received data i.e. to aid the synchronization between two modems. The present 
study deals with the implementation of the scrambler used for synchronization purpose. 

 

 

2. THEORETICAL BACKGROUND 
In the beginning, scrambler was used to reduce the effect of jitter in the PCM systems. Jitter is a 
very serious problem as it reduces the Signal-to-Noise Ratio (SNR) and causes more errors to be 
introduced at the receiver. In addition, jitter also effects the functioning of the repeaters, which 
has a commutative effect. The proceeding timing circuits generates systematic jitter, which 
degrades the transmission quality because the r.m.s. value of the jitter increases in proportion to 
the square root of the number of repeaters. A self-retiming circuit is used in conventional base-
band PCM systems to minimize the jitter in which a timing waveform is extracted from an 
equalized pulse train [2]-[3]. 
 
There are certain impairments that vary with the statistics of the digital source in digital 
transmission systems and these statistics of the data source is related to the problem of timing 
recovery, equalization and cross talk. One of the methods to isolate the system performance from 
the source statistics is to use redundant transmission codes. These codes could not provide 
complete isolation however they generate additional problems by increasing the symbol rate. 
Alternative method to cope up with this problem is scrambling, which whitens the statistics of 
digital source. Any source is said to white if it generates statistically independent and 
equiviprobable symbols using which system impairment can be easily analyzed. All the first order 
and second order statistics of any binary source can be whiten to any degree at the cost of an 
arbitrarily small controllable rate [4]. 
 

 

3. BASIC SCRAMBLING ACTION 
Data transmission through any communication system will be errorless if the timing of each 
device attached to the system is accurate enough. But it is difficult to ensure the accuracy of the 
timing in a larger system having many devices or having very large data packets. The solution to 
this problem of highly accurate clocks can be found by using synchronous communication 
techniques. In synchronous systems, it is necessary to extract timing information from the 
received data, which in turn reduces the burden of internal clock circuitry. There are many 
methods using which timing information from the received data can be retrieved. Line coding 
techniques like Return to Zero coding and Manchester coding are the few familiar techniques that 
may be used for this purpose [1]. The problem with the usage of these line-coding techniques is 
that the timing benefits come at the expense of bandwidth, so these techniques are not used in 
Public Switched Telephone Network (PSTN), which is severely band-limited network, so one has 
to choose other options. Scrambling is a technique that can be used in conjunction with simpler 
line coding algorithms such as simple binary and RS232C protocol to achieve above-mentioned 
goal without sacrificing the bandwidth requirement.  
 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 87 

In digital system, it is common practice to encounter long strings of 1’s and 0’s within the 
transmitted data that results in constant output levels. Timing information cannot be retrieved 
from such outputs because there will be no state-transition during these sequences which may 
result in transmission errors at the receiver. Scrambler can eliminate this problem by detecting 
undesirable sequences of bits and inserting state transitions in a pseudo random manner.  If 
there is a long sequence of 1’s, 0’s will be pseudo randomly inserted in to the stream. It ensures 
that the probability of receiving a ‘1’ is equal to the probability of receiving ‘0’ and minimizes the 
probability of periodic or repetitive data transmission, which in turn make clock recovery easier 
[5]. Simple scrambling action of a scrambler is shown in Fig. (1). While it may not be possible to 
prevent the occurrence of all undesirable sequences with absolute certainty, at least most of the 
common replications in the input data stream can be removed by the use of a scrambler. It has 
been found that the transmission of short repetitive patterns could play havoc with both the 
equalizer and timing recovery systems [2]. 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

4. SYSTEM DESIGN 
There are many ways to implement scrambler but all rely on the same basic building blocks of 
linear feedback shift registers and modulo-2-addition functions. Many researchers have 
discussed the general theory of implementation of scramblers [2-4], [6-7]. In general, the serial 
data enters in linear feedback shift register, where each stage in the register delays the signal by 
one time unit as shown in Fig. (2). The delayed version of the output signal is then fed back and 
 

 

 

 

 

 

 

 

 

modulo-2-addition is performed with the input signal. The scrambler's input and output relation, in 
general, is given by [1]-[2] : 

(1) 

 
D 

 
D 

 

 
D 

 

hm 
 

y (n-2)  
 

y (n-m)  
 

h2 
 

h1 hm-1 

y (n-1)  

y (n)  

x (n)  

FIGURE 2: Basic Structure of a Scrambler 

1    0    1   0    1   0    1    0    0    0   0   0    1   1 

 

SCRAMBLER 

FIGURE 1:   Scrambling Action  

Unscrambled data 
stream having 

long string of 0s 

Scrambled output in 
which long string of 

0s has been 
removed 

1   0    1    1   1   0    0    0   1   1    0    1    0   0 

∑
=

−+=
m

k
knyhnxny k

1
)()()(



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 88 

Where y(n) is current output, y (n-k) is the output delayed by k times, x(n) is current input and hk 
is system transform function. All the constants and variable in eqn. (1) can only have the values 
‘0’ or ‘1’ and all additions performed are modulo-2-additions (exclusive-OR operations). 
Corresponding state vector s(n) to this eqn. can be written as  
 

 

(2) 

 

In general scrambler is of two types; Frame synchronized scrambler and self-synchronized 
scrambler. Frame-synchronized scrambler is used for cryptography purposes whereas self-
synchronized scrambler is used for clock or carrier recovery purpose and it is this scrambler, 
which is used in modem design.  
 
Both scramblers are based upon maximum-length shift-register sequence or M-sequences, which 
are periodic bit sequences with properties that make them appear to be random. These 
sequences can be generated using a feedback shift register, which is basically a linear sequential 
filter with feedback paths. Binary m-stage linear feedback shift register is shown in Fig. (3) [8]. 
Binary sequence of this maximum length is known as M-sequence or pseudo-random binary 
sequence because it satisfies several statistical tests for randomness. The auto-correlation 
function of such sequences resembles with the white noise. While implementing such device, the 
design problem is to select the shift register taps, which generate a M-sequence. The theory 
behind it is based on finite fields so it involves algebraic polynomials and finite field arithmetic 
(modulo-2-addition). Polynomials, which generate ‘M’ sequences, should be primitive. A 
polynomial y(x) of degree ‘m’ is primitive if it is irreducible i.e. has no factors except 1 and itself 
and if it divides xk+1 for k = 2m -1 and does not divide xk+1 for k< 2m-1. Sequence period of such 
primitive polynomials is 2m-1. Characteristic polynomial for M sequence generator is given by    
[2, 9]:            

                   (3) 
 

 

 

 

 

 

 

 

 

 

 

Let x(n) be the binary sequence at the input of scrambler. Taking D-transform (Huffman 
transform; like z-transform with D = z-1 ) of the incoming sequence as  

(4) 

)](),...,2(),1([)( mnynynyns −−−=
)](),...,(),([ 21 nmsnsns=

∑
∞

=
=

0
)()(

n
nDnxDX

∑
=

+=
m

k
xhy kk

1
1

xk-1 xk-2 xk-3 xk-m+1 xk-m 

 

h1 h2 h3 hm-1 hm 

FIGURE 3: Binary m-stage Feedback Shift Register 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 89 

Then the connecting polynomial for the scrambler given in Fig. (2) can be written as  

(5) 

Output transform with zero initial state is given by  

(6) 

Taking D-transform on both sides of the above equation, we have: 

(7) 

The output of the scrambler is therefore given by 

(8) 

So mathematical operation performed by the scrambler is basically equivalent to dividing the 
input information sequence by a Generating Polynomial (GP). The polynomial resulting in the 
fewest feedback connection is often the most attractive for scrambling purpose. Scrambling 
action of a simple five-tap scrambler specified by the generating polynomial  

(9) 

is shown in Fig. (4). 

 

 

 

 

 

 

 

 

 

 

There are many types of characteristic polynomials that can be used in modems. Some of the 
popular generating polynomials are those which have been used in the CCITT V.22 and CCITT 
V.27 protocols. The V.22 polynomial is the one in which seventeen-stage operation is 
recommended [6]. The CCITT V.27 protocol suggests a seven-stage register. Finally, the CCITT 
V.29 recommends the 23-stage register to implement generating polynomial. Everyone has his 
own preference regarding which polynomial to use but all rely on the same basic cells; shift 
registers and modulo-2-adders.  

∑
=

+=
m

k
kDkhDh

1
1)(

)(/)()( DhDXDY =

)()()( DXDhDY =

)(
1

)()( . nx
m

k
knyhny k =∑

=
−+

531)( −+−+= xxxy

FIGURE 4:  Input and Output Waveforms of a Five-tap Scrambler  

 Input 

Output 

   1    0  1     0      1     0        1       0     0      0    0     0         1   1 

1      0       1     1     1          0    0    0         1     1      0     1       0    0 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 90 

5. SCRAMBLER IN 56KBPS MODEM 
56Kbps modem uses PCM in the downstream (server to client). Clock recovery circuit of the 
modem generally uses high-Q resonant tank circuit, which averages the clock phase over several 
bit periods. Clock phase resulting from sampling a constant signal level will attain a static value 
and if this bit pattern changes to another pattern, the implementation of clock recovery circuit will 
force the clock phase to change and attain a new value. The serial PCM bit stream reflects the 
deterministic parts of the signal and this leads to clock phase jitter in the repeater. Its r.m.s. value 
increases linearly as square root of the number of cascaded repeaters. Since a clock phase 
change is equivalent to timing jitter, the data eye will not always be sampled at the optimum time 
and so there will be an increase in bit error probability. Scrambling is one of the effective methods 
for the suppression of this jitter [10-11].  
 
The data scrambler specified for the transmitter of 56Kbps digital modem is designed using the 
following generating polynomial [12]: 

  (10) 

This is a self-synchronizing scrambler, which means that it will not only provide clocking 
information throughout the transmission but also will be used to create the signals for the initial 
handshaking between the modems on the receiving and transmitting end. If there is an error free 
transmission then one can use the same generating polynomial with the feed-forward shift-
register device for de-scrambling but if there is any error then one have to use different 
polynomial. Block diagram of 56Kbps digital modem’s scrambler is given in Fig. (5).  

 

 

 

 

 

 

 

 

 

 

 

 

6. SIMULATION OF SCRAMBLER USING MATLAB 
Matlab has been used to study the scrambling action in the transmitter of 56Kbps digital modem 
which uses generating polynomial given by eqn. (10). Using Simulink toolbox of Matlab, a model 
of scrambler as shown in Fig. (6), corresponding to the eqn. (10) has been developed and its 
performance against input binary sequences with different probabilities of occurrence of 0’s (P) 
has been evaluated. Model contains a Bernoulli Random Binary Generator (BRBG) block, which 
generates random number using Bernoulli distribution [13].  
 
The Bernoulli distribution produces zeros with the probability P and ones with the probability 1-P. 
The Bernoulli distribution has mean value 1-P and variance P (1-P) [14].  The scrambler block 
scrambles the input signal (the output of BRBG) using scramble polynomial parameter ρ, which 

23181)( −+−+= xxxy

FIGURE 5:   Scrambler for 56Kbps Digital Modem 

Output 

Input 
D1 D2 D18 D19 D23 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 91 

defines the feedback connections in the scrambler i.e. feedback connection from 1st, 3rd and 5th 
delay elements can be represented as ρ = [0,-3,-5] or as ρ = [1 0 0 1 0 1].  
 
 
 
 
 
 
 
 
 
 

 
Simulation results corresponding to different values of P in time domain were obtained and from 
these results, the number of transitions in input data (Ti/p) and in output data (To/p) have been 
calculated.  The ratio of To/p to the Ti/p gives the Randomization Parameter R which can be 
considered as a measure of performance of the scrambler, R therefore describes how effectively 
scrambler randomizes the incoming binary signal. Fig. (7) gives the graphical representation of 
the results obtained and hence it can be concluded that scrambling action of the scrambler is 
more effective for the input data sequences having high value of probability of occurrence of 
zeros or ones i.e. the signal having long sequences of 0s or 1s. Scrambler is less effective for the 
input data sequences having frequent transitions and more over no scrambling is needed for such 
inputs because these sequences have sufficient number of transitions in it, using which clock 
information can easily be retrieved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. IMPLEMENTATION OF SCRAMBLER ON DSP CHIP 
Scrambler for 56Kbps server (digital) modem has been implemented on TMS320C50PQ57 DSP 
chip using MICRO-50EB evaluation module.  Experimental setup used for the present 
implementation is shown in Fig. (8). Evaluation module contains a 16 bit fixed point processor 
TMS320C50PQ57 along with 48-Kiloword (KW) of monitor EPROM, 16KW of program RAM, 32 
KW of data RAM & 32KW of I/O RAM. The highly paralleled architecture and efficient instruction 
set provide speed and flexibility which make the TMS320C50PQ57 DSP to capable of executing 
about 57 Million Instructions Per Second (MIPS). TMS320C50PQ57 DSP optimizes speed by 

FIGURE 7: Variation of Randomization Parameter (R) With the Probability of Occurrence of 
 (P) For Scrambler With GP Given in Eqn. (10). 

 

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
en

do
m

iz
at

io
n 

P
ar

am
et

er
 (R

)

Probability of occurrence of Zeros (P)

Bernoulli Random 
Binary Generator 
 

 
Scrambler 

 

 
 

   Scope 

 

FIGURE 6:  Matlab Model to Study the Relation between P and R in a Scrambler  



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 92 

implementing functions in hardware that other processors implement through micro-code or 
software. This hardware intensive approach provides high processing power previously 
unavailable on single chip. Its powerful instruction set, inherent flexibility, high-speed number-
crunching capabilities, and innovative architecture have made this high-performance, cost 
effective processor; the ideal solution to many telecommunications, commercial, industrial and 
military applications [15].  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

7.1.     Algorithm for Soft Implementation of the Scrambler 
Scrambler has been implemented using the circular buffers of the TMS320C50PQ57 DSP chip. 
The chip has special memory mapped registers and associated circuitry for two circular buffers. 
One of the eight auxiliary registers can be used as a pointer into the circular buffer. Circular buffer 
was implemented on the DSP on-chip memory block. Two memory-mapped registers are 
associated with each circular buffer that needs to be initialized with the start and end address. 
Block diagram of I/P sample circular buffer is given in Fig. (9), where x(n) is the input data at a 
time n, x(n-1) is input data delayed by single time unit and N is length of linear feedback or feed 
forward shift register. Initialized circular buffer can be used for producing delay and data can be 
read from any position pointed by the auxiliary register AR-1. Then XOR operation can be 
performed on delayed samples to achieve scrambling action. Before the initialization of circular 
buffer we have to initialize the DSP chip and I/O devices [9].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MICRO50EB 

DSP 
Module 

 
Personal 
Computer 

FIGURE 8: Experimental Setup for Soft Implementation of Scrambler of 56Kbps Digital 
Modem on DSP 

 
Matlab  

 
Signalogic 

DSP 
Software 

FIGURE 9:  Structure of Circular Buffer 

       
          

 
 

x (n-1) 

x (n) 

x (n-N+1) 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 93 

In present implementation TLC32044 AIC (Analog Interface Circuit) has been used as I/O device. 
The supporting algorithm for the initialization of DSP module and algorithm for implementation of 
scrambler of digital modem is given in Appendix (A) along with the algorithm of main scrambling 
routine using circular buffer. 
 
Assembly level program (source code) for the scrambler of 56Kbps digital modem has been 
written using algorithm given in Appendix (A).  Source code were loaded into the DSP and output 
data obtained was stored at appropriate data memory location with the slight modification in the 
program i.e. one more step of data storage in addition with the data transmission has been 
included in the main program. Stored data was loaded into the Signalogic DSP Software for time 
and frequency domain analysis of practically obtained results. In the similar fashion output data 
obtained from the simulation was loaded in to the software package and simulated and practical 
results were compared in time as well as frequency domain.  
 
Time domain comparison of scrambler's simulated and practical result is shown in Fig. (10). It can 
easily be concluded from this figure that the present practical result differs very slightly from the 
simulated results. The transition which was occurring at 3.375ms in the simulation study has been 
get shifted to 3.875 in actual practice but this shift does not disturb the scrambling action because 
total number of transitions are same. Similar study in frequency domain has been carried out for 
simulated and practical results. Spectral analysis i.e. variation of magnitude with frequency of 
simulated and practical results is presented in Fig. (11). It is clear from this figure that the 
practical and simulated results are almost same, which confirms the successful implementation of 
scrambler on DSP. 
 
Present implementation is more efficient than the earlier implementation reported by Steven 
A.Ttretter, C.J.Buechler and H. Sampath [16]. In the present implementation circular buffer is 
being used to produce delay and on chip memory of the DSP chip is being used due to which 
memory requirement as well as execution time have been reduced by using efficient algorithm 
discussed earlier. Comparison of various implementation parameters like program execution 
time, program and data memory used for the current and previous study is given in the Table (1). 

 

 
TABLE 1: Various Implementation Parameters 

8.    CONCLUSION 
Scrambler for 56Kbps digital modem has been simulated using Matlab and implemented using 
TMS320C50PQ57 DSP chip during the present study. From the simulation it has been found that 
scrambling action of proposed scrambler is more effective for the input data sequences having 
high value of probability of occurrence of zeros or ones i.e. the signal having long sequences of 
0s or 1s. Scrambler is less effective for the input data sequences having frequent transitions and 
more over no scrambling is needed for such inputs because it has sufficient number of transitions 
in it, from which, clock information can easily be retrieved. In present implementation circular 
buffer is being used to produce delay and on-chip memory of the DSP chip is used due to which 
program memory requirement as well as execution time has been get reduced using the efficient 
algorithm as compared to previous study. Simulated and practical results have been compared 
 

 
Implementation 

Program 
Execution Time 

(µsec) 

 
Program Memory Used 

(W) 

 
Data Memory Used 

(W) 
 

Present 

 

3.2 

 

64 

 

23 

 

Previous 

 

5 

 

100 

 

15 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
FIGURE 11:  Comparison of Simulated and Practical Results of Scrambler in Frequency Domain 

 

FIGURE 10:  Comparison of Simulated and Practical Results of Scrambler in Time Domain 



Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 95 

using Signalogic DSP Software in time as well as frequency domain and have been found same 
which confirms the successful implementation of scrambler on DSP. 
 

 

ACKNOWLEDGEMENTS 
One of the authors Davinder Pal Sharma is thankful to Guru Nanak Dev University, Amritsar, for 
providing DSP Research facilities at Department of Electronics Technology for present research 
work. 
 

 

9.    REFERENCES 
 

1. J. G.  Proakis, M.  Salehi. “Digital Communications”, McGraw Hill, (2007).   
 
2. R. D. Gitlin, J. F. Hayes. “Timing recovery and scramblers in data transmission”, Bell System 

Technical Journal 54(3): 569 – 593, 1975. 
 
3. H. Kasai, S. Senmoto and M. Matsushita, “PCM jitter suppression by scrambling”, IEEE 

Trans. on Communications, 22(8): 1114-1122, 1974. 

 
4. A. Huzii, S. Kondo. “On the timing information disappearance of digital transmission 

systems”, IEEE Trans. on Communications, 21(4):1072-1074, 1973. 
 
5. R.L. Freeman. “Practical Data Communications”, John Wiley and Sons Inc., (1995). 
 
6. C. H. Lin et.al. “Parallel scrambler for high speed applications”, IEEE Trans. on Circuit & 

Systems-II, 53(7): 558-562, 2006. 
 
7. M. Cluzeau. “Reconstruction of a linear scrambler”, IEEE Trans. on Computers, 56(9): 
 1283-1291, 2007. 
 
8. “Data Scrambler / Descrambler with Look Ahead”, IBM Technical Disclosure Bulletin, 28: 

1063-1064, 1985. 
 
9. S. A. Tretter. “Communication System Design Using DSP Algorithms: With Laboratory 

Experiments for the TMS320C6713 DSK”, Springer, 163-171 (2008). 
 
10. ITU-T Recommendation V.92. “Enhancement to Recommendation V.90”,   International Tele 

communication Union, 2000. 
 
11. D. Y. Kim et. al. “V.92: The last dial-up modem”, IEEE Trans. On Communications, 52(1): 

54-61, 2004. 
 
12. ITU-T Recommendation V.90. “A digital and analog modem pair for use on the PSTN at data 

signaling rates of up to 56000 bits/s downstream and 33600 bits/s upstream”, International 
Tele communication Union, 1998. 

 
13. “Simulink User Guide”, The Mathworks Inc. (2009), http://www.mathworks.com.  

 

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=John%20G.%20Proakis�
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Massoud%20Salehi�


Davinder  Pal  Sharma &  Jasvir Singh 
 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 96 

14. G. Zimmermann. “Probabilities of long sequences of identical bits after data scrambling”. In 

Proceeding of IEEE International Conference on Communications, 1990, 1521-1525.  

15. "Micro-50 EB user manual", DSP Series, Vi Microsystems Pvt. Ltd., (2000). 
 

16. S. A. Tretter et. al. " V.34 Transmitter and receiver implementation on the TMS320C50 
DSP", Digital Signal Processing Solutions, Texas Instruments, USA, 1997. 

 
 
 
 

 

APPENDIX (A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Select I/O device by 
setting appropriate bits 

Initialize I/O device 

Enable RINT interrupt 

IDLE 

Initialize the RINT & XINT 
vectors 

B 

RINT ISR 
 

Algorithm for 
initialization of DSP 

Module 
 

Get data from I/O and 
store it at 100H 

Load the address of last 
data in the window 

100H + (N-1)H 

Clear Acc. and 
P-register 

Do Scrambling (C) 

Transmit the resultant 
data to AIC 

IDLE 

B 

Algorithm for initialization 
of scrambling function of 
56Kbps digital modem. 

Initialize the Circular Buffer 

Move the data using 
RPT/DMOV 

Repeat  (N-1) time 

Set ARP for digital modem 
scrambler 

1st =100H, 2nd= 112H. 3rd= 117H 

Load data from DRR to start 
address of Circular Buffer 

Scrambled data 

XOR the ACC. with the data 
pointed by ARP 

Main scrambling routine 

C 


	Abstract
	SCRAMBLER
	FIGURE 1:   Scrambling Action
	Unscrambled data stream having
	long string of 0s
	Scrambled output in which long string of 0s has been removed

	FIGURE 2: Basic Structure of a Scrambler
	FIGURE 3: Binary m-stage Feedback Shift Register
	Input
	Output
	FIGURE 5:   Scrambler for 56Kbps Digital Modem
	Module
	Computer
	FIGURE 8: Experimental Setup for Soft Implementation of Scrambler of 56Kbps Digital Modem on DSP

	Data Memory Used
	Program Memory Used
	FIGURE 11:  Comparison of Simulated and Practical Results of Scrambler in Frequency Domain

