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Abstract 
In this paper, a new approach for the design and implementation of FIR filter banks for 
multirate analysis and synthesis is explored. The method is based on the least thP  
algorithm and takes into consideration the characteristics of the individual filters. 
Features of the proposed approach include; it does not need to adapt the weighting 
function involved and no constraints are imposed during the course of optimization. 
Mostly, the FIR filter design is concentrated around linear phase characteristics but with 
the help of minimax solution for FIR filters using the least- thP algorithm, this optimal filter 
design approach helps us to enhance the properties of LTI systems with good stability. 
Hence thP  norm algorithm will be used in multirate to explore the stability and other 
properties. We have proposed the band analysis system for analysis and synthesis 
purpose to explore multirate filter banks. The Matlab toolbox has been used for 
implementing the filters and its properties are verified with various plots and tables. The 
results of this paper enable us to achieve good signal to noise ratio  rSNR with analysis 
and synthesis level operations.  
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1.       INTRODUCTION 
 
Over the last two decades, there has been a steady growth of interest in multirate processing of digital 
signals. Unlike the single-rate system, the sample spacing in the multirate system can vary from point to 
point [1]. In multirate filter banks the input signal is divided into channels using band pass filters, and the 
individual channels are down sampled to rates appropriate to the individual channel bandwidths. The 
problem of designing filter banks that can provide good frequency resolution while allowing for exact or 
near perfect reconstruction of the signal is quite challenging because so many dissimilar types of 
distortion must be minimized and/or eliminated in the same design context. The individual filter issues 
include the passband size and ripple, stopband size and ripple, transition width and shape, filter phase, 
filter type (IIR and FIR), filter order, and filter structure. The filter bank issues include the number of 
bands, frequency coverage, bank efficiency and aliasing, distortion issues include linear distortions 
(magnitude, phase, and aliasing distortions) and nonlinear distortions (quantization, coding and channel 
distortions) and the overall processing issues include the system delay and the ability to reject processing 
distortions [2]. There are several important issues to consider that impact the performance and cost 
effectiveness of analysis/synthesis filter banks in practical applications. First, the quality of the individual 
filters in both banks should be good. Typically, this means having high stop band attenuation, good 
transition band properties and/or good impulse response characteristics. Second, the overall analysis/ 
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synthesis system should reconstruct the input with negligible distortion in the absence of quantization. 
Third, the filter banks should have an efficient implementation. This impacts the speed of the system as 
well as the cost. Finally, the overall system delay should be considered. A variety of methodologies based 
on time domain as well as frequency domain representations are now available [2], [3], [4],                                                                                    
but all of these methods have limitations. This paper discusses a new approach using the least thP  algorithm to explore the stability and various properties by using the Matlab toolbox for designing various 
filter banks. The resulting design methodology is uniquely flexible and powerful. By imposing appropriate 
constraints, a very broad class of FIR analysis /synthesis systems can be designed. 
 
       The most efficient tools for the minimax design of FIR digital filters are the Parks-McClellan algorithm 
and its variants [5]-[7]. However, they only apply to the class of linear phase FIR filters. In many 
applications, nonlinear phase FIR filters (e.g. those with low group delay) are more desirable. For the 
minimax design of FIR filters with arbitrary magnitude and phase response several methods are available 
in the literature. Among others, we mention the weighted least-squares approach [8] in which the 
weighted function is adapted until a near equiripple filter performance is achieved; the constrained 
optimization approach [9] in which the design is formulated as a linear or quadratic programming problem; 
the semidefinite programming approach[10] where the design is accomplished by minimizing an 
approximation – error bound subject to a set of linear and quadratic constraints that can be converted into 
linear matrix inequalities. For the 1-D case, minimax design of 1-D FIR filters has been largely focused on 
the class of linear phase filters. This paper presents a least- thP approach to the design problem. Least –

thP optimization as a design tool is not new. It was used quite successfully for the minimax design of IIR 
filters. However, to date least- thP   based algorithms for minimax design of non linear phase 1-D FIR 
filters have not been reported. In the proposed method, a (near) minimax design is obtained by 
minimizing a weighted pL  error function without constraints, where the weighting function is fixed during 
the course of optimization and the power p  is taken as an even integer. The proposed method does not 
need to update the weighting function, and it is an unconstrained convex minimization approach. The 
approach developed here has some advantages over the method discussed in [2] in terms of 
computational efficiency, filter quality, implementation structure, mathematical verification of the 
properties such as causality, stability, etc using the pole zero and magnitude plots. 
 
In section 2, time domain analysis is described. In section 3, basic tools such as decimators, interpolators 
and multirate filter banks are reviewed. In section 4, the design procedure for implementing the filter 
banks is presented. Section 5 discusses the design examples to illustrate the effectiveness of the design 
procedure. Finally some concluding remarks are drawn in Section 6. 
 
2.      TIME DOMAIN ANALYSIS 
 
Linear Time Invariant (LTI) systems can be characterized in the time domain by its response to a specific 
signal called the impulse. This response is called the impulse response of the filter .The impulse response 
of the filter is the response of the filter at time n  to a unit impulse  n  occurring at time 0 and is most 
often denoted by  nh .The  impulse sequence is denoted by  n  and is defined by        

                   
 

0     ,  0           
0      ,  1     




n
nn

 

 If the input is the arbitrary signal  nx  that is expressed as a sum of weighted impulses, that is, 

                           knkxnx
k

 





 

Then the response of the system to  nx  is the corresponding sum of weighted outputs, that is  
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                             =    knhkx
k

,




  

Equation (1) is an expression for the response of a linear system to any arbitrary input sequence  nx . 
This expression is a function of both  nx  and the responses  knh ,  of the system to the unit impulses 
 kn   for   k . In fact, if the response of the LTI system to the unit impulse sequence  n  

is denoted as  nh , that is  
                        nTnh   
Then by the time – invariance property, the response of the system to the delayed unit impulse sequence 
 kn   is  

                  knTknh    
Consequently the formula in equation (1) reduces to  

                  
     knhkxny

k
 





                             (2) 

Now the LTI system is completely characterized by a single function  nh , namely, its response to the unit 
impulse sequence  n . The formula in equation (2) that gives the response  ny  of the LTI system as a 
function of the input signal  nx  and the impulse response  nh  is called the convolution sum and we 
say the input  nx  is convolved with the impulse response  nh  to yield the output  ny .Since LTI 
systems are characterized by their impulse response  nh , in turn  nh  allows us to determine the output 
 ny  of the system for any given input sequence  nx  by means of the convolution summation,                       

                     knxkhny
k

 




                                  (3) 

 
In general, any LTI system is characterized by the input –output relationship in Equation (3).Moreover the 
convolution summation formula in Equation (3) suggests a means for the realization of the system. In 
case of FIR systems, such a realization involves additions, multiplications and a finite number of memory 
locations. Consequently, a FIR system is readily implemented directly, as implied by the convolution 
summation. LTI systems can also be characterized in the time domain by constant coefficient difference 
equations. The difference equation is a formula for computing an output sample at time  n  based on past 
and present input samples and past output samples. In general a causal LTI difference equation is 
         
             NnyanyanyaMnxbnxbnxbny NM  ....21..........1 2110          

        =    jnyainxb
N

j
j

M

i
i  

 10

                             (4)                                   

 where x  is the input signal, y  is the output signal ,and the constants 

Mibi ......,3,2,1,0,  Niai ,.....,2,1,    are called the  coefficients, integers M and N represent the 
maximum delay in the input and output respectively. The difference equation (4) is often used as a recipe 
for numerical implementation in software and hardware.   
 
 The basic FIR filter is characterized by the following two equations: 
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Where  kh , k=0,1,2,….N-1, are the impulse response coefficients of the filter,  zH  is the transfer 
function of the filter and N is the filter length, that is, the number of filter coefficients. Equation (5) is the 
FIR difference equation .It is a time domain equation and describes the FIR filter in its non recursive form: 
the current output sample,  ny , is a function only of  past and present values of the input ,  nx . When 
FIR filters are implemented in this form that is by direct evaluation of Equation (5) they are always stable. 
Equation (6) is the transfer function of the filter. It provides a means of analyzing the filter that is for 
evaluating the frequency response.  
              
  3.         FILTER BANKS AND MULTIRATE SYSTEMS 
 

To analyze different systems mathematically, it is useful to have some blocks that are common 
among the systems and furthermore ease the analysis process. In the analysis of the multirate systems 
and filter banks, the basic building blocks are the interpolators and decimators that alter the sampling 
frequency at different parts of the system leading to the name “Multirate”. These systems provide new 
and effective tools to represent signals for understanding, processing and compression purposes. 
Multirate algorithms provide high computational efficiency and hence increase the number of potential 
applications. The main advantage of using multirate filter banks is the ability of these systems to separate 
the signal under consideration in the frequency domain into two or more signals or to compose two or 
more different signals into a single signal. When splitting the signal into various frequency bands, the 
signal characteristics are different in each band, and various numbers of bits can be used for coding and 
decoding the sub-signals. In many applications, the processing unit is used for treating the sub-signal in 
order to obtain the desired operation for the output signal of the overall system.  

 
       A filter bank is a collection of filters that are divided in two groups, the analysis filters and the 
synthesis filters. Analysis filters divide the incoming signal into sub-bands, while the synthesis filters 
merge the sub-bands in one signal. When the signal is divided into sub-bands, it is possible to process 
each sub-band separately. The analysis side also includes downsampling while the synthesis side 
includes upsampling. In the simplest form, the down-sampler reduces the input sample rate by an integer 
factor, M, by retaining only every thM  sample. On the other hand, the up-sampler increases the input 
sample rate by an integer factor, M, by inserting M-1 zeros between consecutive samples. Figure (1) 
shows a typical structure of an M channel Filter bank. 
 

                   FIGURE1: M CHANNEL FILTER BANK 

 
                      Analysis                                                             Synthesis 
                                                 Down-sampler                                         Up- sampler          
 
  
 
          
Input                                                                                                                                                              Output 
                               
 X(z)                                                                                                                                                                     Y(z)                                                         
                                            .                                                              .                                                                             
                                            .                                                              .  

H0(z) Processing F0(z)     M      M 

H1(z) Processing F1(z)    M      M 

HM-1(z) Processing FM-1(z)    M       M 



M.Y.Gokhale  &  Daljeet Kaur Khanduja 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 102 

        

 

                                     .                                                              .                                                     

 4.   DESIGN FORMULATION 

4.1. The thP  Norm and Infinity Norm 

Least  thP  norm provides optimal non linear phase designs that can minimize any norm from 2 (minimum 
error energy) to infinity (minimax / equiripple error) 

The  thP  norm and infinity norm of a n  vector              vv   T
n21,vv   are defined as  
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then  
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It is well known that [11] the  thP  norm and the infinity norm are related by  






p

Lim
p

v        v           
                                                   (7)  

To get a sense of how 
pv  approaches


v , we compute for   T 50          . . .  3   2   1   v  

Its thp norm 207.18      
2

v , 58.80      
10

v  ,   50.44     
50

v  ,  49.07      
100

v  

49.02      
200

v   , and of course    49      


v  

For an even p , the  thP  norm is a differentiable function of its components but the infinity norm is not. 

So, when the infinity norm is involved in a (design) problem, one can replace it by thP norm (with p  
even) so that powerful calculus based tools can be used to help solve the altered problem. Obviously, 
with respect to the original design problem the results obtained can only be approximate. However as 
indicated by equation (7), the difference between the approximate and exact solutions become 
insignificant if power of p  is sufficiently large.         

4.2.   Description Of The Design Procedure 

To design a filter that meets the performance needs, such as having the required pass bands, stop 
bands, or transition regions, and is also the optimal solution, the optimal solution filter minimizes a 
measure of the error between the desired frequency response and the actual filter response using the 
least thP  norm algorithm. Consider two filter frequency response curves; 
 wD  -- The response of ideal filter, as defined by signal processing needs and specifications. 

 wH  -- The frequency response of the filter implementation to be selected.  
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In figure (2), the response curves for  wD  and  wH  , both low pass filters are shown. Least thP  

algorithm seeks to make  wH  match  wD  as closely as possible by a given measure of closeness. 
More precisely, we define a weighted error  
 
        wDwHwWwE   

where  wE  is the error between the ideal and actual filter response values and  wW is the weighting 

function. The optimal filter design problem is to determine  wH  that minimizes some measure or norm 

of  wE  given a particular weighting function  wW and a desired response  wD .  wW , the weighting 
function, determines which portions of the actual filter response curve are most important to the filter 
performance, whether pass band response or attenuation in the stop band. Usually, to measure the error 

the pL norm is used. This norm is given by   p
wE



 and this is the quantity to be minimized.  

 
FIGURE 2:    RESPONSE CURVES FOR IDEAL AND ACTUAL LOWPASS FILTERS 

 

 
 
 
Since the minimization in the   norm is complicated, the minimization under the 2 norm is used in the 
design procedure. 2L norm minimizes the energy of the ripples, resulting in a small “total” error and 

attenuates the energy of a signal as much as possible.  The usefulness of the 2L  norm in practice is due 

to the fact that it can easily be found also in the frequency domain (Parseval Theorem). The pL norm is 

computed over a region   that uses a subset of the positive Nyquist interval [0, π].   covers the 
positive Nyquist interval except for certain frequency bands deemed to be "don't care" regions or 
transition bands that are not included in the optimization. The optimal filter design problem is to find the 
filter whose magnitude response,  wH  minimizes 



M.Y.Gokhale  &  Daljeet Kaur Khanduja 

Signal Processing – An International Journal (SPIJ), Volume (4) : Issue (2) 104 

          dwwDwHwWwE
p

w

  
                                   (8) 

for a given  , p ,  wW and  wD .   
       
Up to a given tolerance, FIR filter that approximates a rather arbitrary frequency response  wD  in the 

minimax sense can be obtained by minimizing  wE  in equation (8) with a sufficiently large p .  
      
5.      DESIGN EXAMPLES 
 

FIGURE 3 :  BLOCK DIAGRAM USING PTH   NORM FILTER DESIGN 

 
 
 
                                              Analysis filtering 
 
 
           Input  signal 

 

 

 

      Output signal 

                                                                     

                                    Synthesis filtering                                       

Figure 3 shows proposed system used in application for thP   norm filter. A random input signal is 
preprocessed to remove unwanted parameters, then; decimation is used for multirate analysis purpose. 

Then thP    norm filter coefficients are applied to achieve the analysis parts. For reconstruction, using 
inverse filtering and interpolation the input signal is reconstructed to calculate reconstruction error to 
verify the system functionality. 

         The proposed design procedure can be used to design a wide variety of analysis/ synthesis filter 
banks with different structural and performance constraints. The imposition of constraints impacts the 
quality of the resulting overall analysis /synthesis system .The purpose of this section is to illustrate the 
effectiveness of the design procedure through a series of related examples. In all, four examples are 
included – three five band systems and one 16-band system. For comparative purposes, the magnitude 
responses of analysis and synthesis filters are presented. To check the perfect reconstruction quality of 
the designed filter bank the signal- to- reconstruction noise ratio  rSNR which in decibel units is defined 
as 









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 log10 10
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was used as a measure of reconstruction performance where  nx  and  nx̂ are the input and output 
signals and k is the system delay. The reconstruction performance is examined by calculating the 
 rSNR  for two types of input signals, namely, a ramp input (8000 samples) and a random input (8000 

samples) which are denoted by 1rSNR and 2rSNR .  
 
1.            Basic Five –Band System 

 
 In the basic five band system example , a simple structure is imposed on the analysis filters of the 
system .In this case , the fourth and fifth filters,  nh4  and  nh5  are defined to be time reversed and 

frequency shifted versions of the second and first analysis filters,  nh2  and  nh1 , respectively. The 
system filters are 55- tap and the system delay is 54 samples .Thus,   
        

     nNhnh n  11 24                                   (10) 

      nNhnh n  11 15                                  (11) 
In this example, the low pass filter for the analysis section 1641.0pw and 2827.0sw  (Normalized 0 

to 1) The second band is a band pass filter with 2345.0
1
pw and 3809.0

2
pw , 1086.0

1
sw and 

5012.0
2
sw .The third band is also a band pass filter with 4334.0

1
pw  and 5782.0

2
pw , 

2998.0
1
sw  and 6910.0

2
sw . The remaining filters in the bank can be obtained by frequency shifts 

and time reversals described in (10) and (11). Similarly, for the synthesis section, the low pass filter has 
1527.0pw and 2944.0sw .   The second band is a band pass filter with 2349.0

1
pw and 

3532.0
2
pw  , 1176.0

1
sw  and 5030.0

2
sw . Similarly, for the third and fourth band, 

4583.0
1
pw and 5533.0

2
pw , 6517.0

1
pw  and 7575.0

2
pw respectively and 

2966.0
1
sw and 7001.0

2
sw , 5097.0

1
sw and 8834.0

2
sw  respectively. The fifth band is a high 

pass filter with 7058.0sw  and 8846.0pw  
Figure(4) shows the frequency response of the analysis and synthesis filters for the resulting five – band 
system . The reconstruction error and signal to noise ratios of the five band systems are presented in 
Table 1. Table 2 contains the coefficients of the first three analysis and synthesis filters.   
 
FIGURE 4(a) Analysis and(b) Synthesis filters of the basic five band system with 55 tap analysis 
and synthesis filters and a system delay of 54 samples(Table 2) 
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2. Low Delay Five –Band System 
 
Due to filtering operations that are performed on the signal passing through the filter bank, a delay 
between the input and the output signals is introduced. In many applications, it is desirable to keep this 
delay as short as possible. In this example, the design system’s flexibility in adjusting the reconstruction 
delay of the system was utilized and the system delay is chosen to be 28 samples. In this system, the 
fourth and fifth band analysis filters were selected to be the frequency shifted versions of the first two 
analysis filters as 
 
     .       nhnh n

24 1                                          (12) 

             nhnh n
15 1                                           (13) 

 
For this example, three minimum phase filters were used as starting point filters since they have been 
found to be good starting point filters for low delay systems. For this case, for the analysis section, the 
first band which is a low pass filter has 1767.0pw  and 2871.0sw . The second and the third band 

pass filters have 4205.0
1
pw and 5752.0

2
pw , 2725.0

1
pw and 3657.0

2
pw respectively 

and 2977.0
1
sw and 6955.0

2
sw , 1059.

1
sw and 5017.0

2
sw respectively. Similarly for the 

synthesis section, the low pass filter has 1832.0pw  and 2940.0sw respectively. The second, third 

and fourth band filters have 
1pw 0.2095 and 3881.0

2
pw ,  5481.0  ,4297.0

21
 pp ww , 

7864.0  ,6128.0
21
 pp ww  respectively and 5036.0   ,1136.0

21
 ss ww ,  

7039.0  ,2990.0
21
 ss ww  8867.0   ,5078.0

21
 ss ww respectively. The fifth band is a high pass 

filter with 7060.0sw 0.7060 and 7996.0pw .Figure (5) shows the frequency response of the 
resulting analysis and synthesis filters .The reconstruction error and signal to noise ratios of this system 
are given in Table 1. Table 3 contains the coefficients of the analysis and synthesis filters.  
 
FIGURE 5: (a) Analysis and (b) Synthesis filters of the low delay five-band system with 55-tap 
filters and a system delay of only 28 samples (Table 3) 
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3.  COSINE MODULATED FIVE –BAND SYSTEM 
 
Cosine modulated filter banks are widely used and known to be highly efficient since each of the analysis 
and synthesis filters can be implemented with the aid of only one prototype filter and a Discrete Cosine 
Transform. In the cosine modulated five band systems, the analysis filters were chosen to be a cosine 

modulated version of a baseband filter. The baseband filter  nh0   had a nominal cutoff of 
10


and the 

analysis filters were defined as 
     

    













 

M
nknhnhk


2
1cos0   k= 1, 2…M                      (14) 

and the synthesis filters were defined as 

     







 






 

M
nn

kngng k
0

0 2
1cos , k= 1, 2…M           (15) 

 
where   ng0  is the baseband synthesis filter and 0n  is an integer whose value depends on the  length 

of the filters and the total system delay. In this example 0n  is 5. Figure (6) shows the frequency response 
of  the analysis and synthesis filters. The reconstruction error and signal to noise ratios of the five band 
systems are presented in Table 1. Table 4 contains the coefficients of the analysis baseband and 
synthesis baseband filters.    
                                                                   
 

FIGURE.6 (a) Analysis and(b)Synthesis  filters of the  system with cosine modulated 55-tap 
analysis  and synthesis filters and a system delay of 54  samples.(n0=5) (Table 4) 
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   4. COSINE MODULATED 16-BAND SYSTEM 
 
To illustrate the possibly of designing large systems, a 16- band example with 96 –tap analysis and 
synthesis filters is designed. This system is also based on cosine modulation and the system delay is 95. 

For this case, the baseband filter has a cut off frequency of 
32


 and 0n  is 1. Figure (7) shows the 

frequency response of the analysis and synthesis filters.. Table 5 contains the coefficients of the analysis 
baseband and synthesis baseband filters. 
   

FIGURE7 (a) Analysis and (b) Synthesis filters of the cosine modulated 16 band systems with 96 
tap filters (Table5) 
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TABLE 1:  Some System Specifications for the Five-Band Systems 
 
 

 Basic System Low Delay Cosine Modulated 
Filter Length          55         55           55 

Reconstruction Error       0.2501        0.1916        0.0022 

1rSNR  
      100dB         97dB         87dB 

2rSNR  
      100dB         97dB         87dB 

System Delay          54                  28               54 
 
Reconstruction error is calculated by considering the 8000 samples. The reconstruction error has also 
been tested with increasing number of samples which is an acceptable range that is minimum. 
 
     
6.             CONCLUSION 
 
In this paper a new least thP  norm approach for FIR filter design is presented which provides optimal non 
linear phase designs that can minimize any norm from 2 (minimum error energy) to infinity (minimax / 
equiripple error). The resulting design procedure is very flexible and allows the direct imposition of many 
combinations of constraints and the realization of many different types of tradeoffs. The necessary 
assumptions and the design procedure for designing the filter have been explained. Four design 
examples have been included to illustrate the design procedure. The criteria used for the designed filter 
keeping in mind the properties of filter design are not violated, that is, in other words we have verified the 
mathematical results with MATLAB tool for filter design and analysis and verified for filter stability using 
the pole-zero plot, and the causality property using the impulse response. However this chapter helps to 
achieve the multirate analysis and synthesis approach which helps its application paradigm. In [2], a time 
domain design algorithm is described for the design of FIR filter bank systems. However, the design 
process involves calculating the pseudo inverse of large matrices, which is time consuming. In the design 
methods proposed here there is no need to calculate inverses of matrices. This leads to improvement in 
the computational efficiency during the implementation of the system. From Table 2.1, it can be seen that 
all the rSNR ratios are over 80 dB, which are good enough for many applications. The tables show the 

filter coefficients and its responses and analysis and synthesis quality is verified with the help of rSNR  

which is good as shown in the result tables. Hence we conclude that the thP norm filter can be used for 
efficient multirate analysis and synthesis purpose.  
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TABLE 2 The Filter Coefficients of the Basic Five-Band System with 55-Tap Filters and 54 Samples 
of Delay 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 
 
 
 

 

 nh1   nh2   nh3   ng1   ng2   ng3   ng4   ng5  

 
-0.00028 
 0.00179 
 0.00390 
 0.00659  
 0.00914 
 0.01103 
 0.01094 
 0.00757 
 0.00016 
-0.00947 
-0.01808 
-0.02183 
-0.01849 
-0.00774 
 0.00777 
 0.02318 
 0.03188 
 0.02855 
 0.01153 
-0.01477 
-0.04073 
-0.05390 
-0.04417 
-0.00752 
 0.05103 
 0.11866 
 0.17794 
 0.21289 
 0.21406 
 0.18216 
 0.12732 
 0.06574 
 0.01345 
-0.01870 
-0.02844 
-0.02115 
-0.00692 
 0.00476 
 0.00843 
 0.00447 
-0.00287 
-0.00815 
-0.00819 
-0.00280 
 0.00517 
 0.01206 
 0.01448 
 0.01136 
 0.00410 
-0.00378 
-0.00942 
-0.01155 
-0.01018 
-0.00688 
-0.00227 

 
-0.00086 
-0.00055 
 0.00183 
 0.00274 
-0.00082 
-0.00358 
 0.00156 
 0.01014 
 0.00615 
-0.01356 
-0.02811 
-0.01523 
 0.01479 
 0.02857 
 0.01472 
-0.00049 
 0.00596 
 0.01727 
 0.00247 
-0.02925 
-0.03751 
-0.01337 
-0.00134 
-0.02725 
-0.04110 
 0.02507 
 0.13941 
 0.16984 
 0.03603 
-0.16648 
-0.24591 
-0.12170 
 0.08371 
 0.18187 
 0.11586 
-0.00788 
-0.06179 
-0.03122 
 0.00684 
-0.00116 
-0.02966 
-0.02791 
 0.00770 
 0.03515 
 0.02512 
-0.00636 
-0.02364 
-0.01380 
 0.00586 
 0.01439 
 0.00787 
-0.00149 
-0.00536 
-0.00351 
-0.00102 

 
 0.00079 
-0.00118 
-0.00092 
 0.00271 
-0.00105 
-0.00548 
 0.00570 
 0.00702 
-0.01036 
-0.00318 
 0.00888 
-0.00937 
 0.00483 
 0.02963 
-0.02885 
-0.04936 
 0.05160 
 0.05431 
-0.05419 
-0.03254 
 0.02141 
-0.01495 
 0.04521 
 0.07396 
-0.12571 
-0.12172 
 0.18909 
 0.13991 
-0.20962 
-0.12463 
 0.18139 
 0.08776 
-0.12135 
-0.04759 
 0.05737 
 0.01924 
-0.01320 
-0.00679 
-0.00242 
  0.00462 
-0.00296 
-0.00474 
 0.01424 
 0.00355 
-0.02065 
 0.00003 
 0.01819 
-0.00271 
-0.01124 
 0.00364 
 0.00439 
-0.00235 
-0.00058 
 0.00073 
-0.00007 

 
-0.00052 
-0.00018 
 0.00026 
 0.00114 
 0.00170 
 0.00185 
 0.00089 
-0.00133 
-0.00471 
-0.00769 
-0.00854 
-0.00482 
 0.00425 
 0.01780 
 0.03160 
 0.04008 
 0.03731 
 0.02068 
-0.00759 
-0.03897 
-0.06127 
-0.06168 
-0.03290 
 0.02355 
 0.09609 
 0.16608 
 0.21378 
 0.22604 
 0.20008 
 0.14551 
 0.07977 
 0.02207 
-0.01430 
-0.02511 
-0.01638 
 0.00051 
 0.01355 
 0.01577 
 0.00677 
-0.00817 
-0.02187 
-0.02843 
-0.02616 
-0.01698 
-0.00564 
 0.00370 
 0.00822 
 0.00814 
 0.00490 
 0.00114 
-0.00159 
-0.00246 
-0.00221 
-0.00129 
-0.0004 

 
 0.00000 
 0.00028 
 0.00122 
 0.00227 
 0.00100 
-0.00486 
-0.01216 
-0.01070 
 0.00683 
 0.02996 
 0.03177 
-0.00248 
-0.04680 
-0.04990 
 0.00482 
 0.06295 
 0.04863 
-0.03852 
-0.10023 
-0.04393 
 0.09353 
 0.16398 
 0.07047 
-0.11024 
-0.20118 
-0.11659 
 0.05184 
 0.14821 
 0.11738 
 0.03085 
-0.02625 
-0.04409 
-0.05647 
-0.06624 
-0.04277 
 0.01780 
 0.06977 
 0.06838 
 0.02203 
-0.02229 
-0.03408 
-0.02252 
-0.01036 
-0.00421 
 0.00263 
 0.01141 
 0.01437 
 0.00752 
-0.00269 
-0.00743 
-0.00511 
-0.00070 
 0.00143 
 0.00115 
 0.00033 
 

 
-0.00010 
-0.00004 
 0.00038 
 0.00045 
-0.00048 
-0.00202 
-0.00078 
 0.00588 
 0.00528 
-0.01259 
-0.01407 
 0.02061 
 0.02504 
-0.02538 
-0.03133 
 0.02019 
 0.02284 
 0.00047 
 0.00845 
-0.03668 
-0.06186 
 0.08060 
 0.12452 
-0.11847 
-0.17495 
 0.13660 
 0.19293 
-0.12833 
-0.17042 
 0.09765 
 0.11649 
-0.05704 
-0.05275 
 0.02089 
 0.00201 
 0.00132 
 0.02270 
-0.00828 
-0.02247 
 0.00511 
 0.00843 
 0.00103 
 0.00646 
-0.00516 
-0.01433 
 0.00584 
 0.01426 
-0.00424 
-0.00974 
 0.00218 
 0.00482 
-0.00076 
-0.00163 
 0.00014 
 0.00030 

 
  0.00010 
-0.00025 
-0.00006 
 0.00133 
-0.00253 
 0.00106 
 0.00394 
-0.00835 
 0.00583 
 0.00394 
-0.01223 
 0.01049 
-0.00160 
-0.00368 
 0.00247 
-0.00408 
 0.01345 
-0.01819 
 0.00454 
 0.01689 
-0.01957 
 0.00151 
 0.00285 
 0.02791 
-0.05354 
 0.00961 
 0.09474 
-0.15167 
 0.06661 
 0.11155 
-0.21520 
 0.13380 
 0.05910 
-0.18239 
  0.13937 
-0.00361 
-0.08522 
 0.07329 
-0.01874 
-0.00653 
-0.00205 
 0.00436 
 0.01580 
-0.03299 
 0.02229 
 0.00656 
-0.02450 
 0.01864 
-0.00160 
-0.00862 
 0.00741 
-0.00183 
-0.00129 
 0.00125 
-0.00037 
 

 
  0.00005 
 -0.00024 
  0.00055 
 -0.00101 
  0.00170 
 -0.00247 
  0.00326 
 -0.00369 
  0.00356 
 -0.00272 
  0.00156 
 -0.00104 
  0.00257 
 -0.00736 
  0.01545 
 -0.02508 
  0.03271 
 -0.03438 
  0.02746 
 -0.01300 
 -0.00362 
  0.01358 
 -0.00763 
 -0.01982 
  0.06735 
 -0.12526 
  0.17803 
 -0.20941 
  0.20817 
 -0.17275 
  0.11195 
 -0.04200 
 -0.01935 
  0.05876 
 -0.07151 
  0.06177 
 -0.03975 
  0.01688 
 -0.00145 
 -0.00359 
  0.00036 
  0.00620 
 -0.01126 
  0.01207 
 -0.00874 
  0.00331 
  0.00169 
 -0.00466 
  0.00521 
 -0.00403 
  0.00224 
 -0.00084 
  0.00001 
  0.00021 
 -0.00017 
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TABLE 3 The Filter Coefficients of The Low Delay Five-Band System With 55-Tap Filters and 28 
Samples of delay. 

 
 nh1   nh2   nh3   ng1   ng2   ng3   ng4   ng5  

 
 0.00190 
 0.00805 
 0.02201 
 0.04667 
 0.08248 
 0.12562 
 0.16758 
 0.19663 
 0.20140 
 0.17545 
 0.12082 
 0.04894 
-0.02218 
-0.07379 
-0.09309 
-0.07808 
-0.03834 
 0.00875 
 0.04494 
 0.05810 
 0.04643 
 0.01818 
-0.01276 
-0.03333 
-0.03663 
-0.02406 
-0.00359 
 0.01468 
 0.02329 
 0.02027 
 0.00915 
-0.00364 
-0.01216 
-0.01354 
-0.00873 
-0.00125 
 0.00491 
 0.00736 
 0.00594 
 0.00233 
-0.00125 
-0.00319 
-0.00312 
-0.00171 
-0.00007 
 0.00093 
 0.00109 
 0.00065 
 0.00007 
-0.00027 
-0.00026 
-0.00009 
 0.00001 
 0.00002 
 0.00000 

 
  0.00175 
  0.00636 
  0.00711 
 -0.00836 
 -0.03651 
-0.04130 
  0.01352 
  0.09908 
  0.11600 
  0.00115 
 -0.16195 
 -0.19730 
 -0.03783 
  0.16834 
  0.21061 
  0.06019 
 -0.10421 
 -0.12269 
 -0.03228 
  0.02299 
 -0.00250 
 -0.02436 
  0.01781 
  0.06859 
  0.05075 
 -0.01659 
 -0.05152 
 -0.02693 
  0.00619 
  0.00536 
 -0.00956 
 -0.00322 
  0.01748 
  0.02099 
  0.00249 
 -0.01291 
 -0.00987 
  0.00017 
  0.00222 
 -0.00171 
 -0.00197 
  0.00214 
  0.00410 
  0.00154 
 -0.00153 
 -0.00186 
 -0.00051 
  0.00030 
  0.00028 
  0.00009 
  0.00001 
  0.00000 
  0.00000 
  0.00000 
  0.00000 

 
  0.00298 
-0.00027 
-0.01557 
 0.00110 
 0.04663 
-0.00236 
-0.10054 
 0.00325 
 0.16916 
-0.00270 
-0.22931 
 0.00033 
 0.25098 
 0.00270 
-0.21455 
-0.00423 
 0.12603 
 0.00266 
-0.01833 
 0.00140 
-0.06507 
-0.00533 
 0.09451 
 0.00627 
-0.07012 
-0.00344 
 0.01878 
-0.00114 
 0.02513 
 0.00436 
-0.04069 
-0.00436 
 0.02905 
 0.00177 
-0.00648 
 0.00111 
-0.01013 
-0.00235 
 0.01388 
 0.00173 
-0.00832 
-0.00033 
 0.00113 
-0.00059 
 0.00270 
 0.00065 
-0.00273 
-0.00027 
 0.00125 
-0.00007 
-0.00012 
 0.00007 
-0.00011 
 0.00000 
 0.00003 

 
 0.00108 
-0.00425 
-0.00857 
-0.01285 
-0.01696 
-0.01997 
-0.01769 
-0.00791 
 0.01025 
 0.03269 
 0.05290 
 0.06150 
 0.05264 
 0.02592 
-0.00902 
-0.03698 
-0.04068 
-0.01070 
 0.05124 
 0.12888 
 0.19858 
 0.23596 
 0.22803 
 0.17663 
 0.09989 
 0.02243 
-0.03282 
-0.05565 
-0.04901 
-0.02759 
-0.00749 
-0.00053 
-0.00765 
-0.02217 
-0.03265 
-0.03149 
-0.01677 
 0.00518 
 0.02570 
 0.03633 
 0.03478 
 0.02326 
 0.00857 
-0.00362 
-0.00921 
-0.00877 
-0.00432 
 0.00021 
 0.00300 
 0.00250 
-0.00011 
-0.00327 
-0.00356 
-0.00221 
-0.00110 

 
-0.00295 
-0.00587 
-0.00062 
 0.01766 
 0.03382 
 0.01981 
-0.02759 
-0.06528 
-0.04579 
 0.01418 
 0.03997 
 0.00076 
-0.02992 
 0.03148 
 0.13803 
 0.13578 
-0.03700 
-0.23274 
-0.24357 
-0.04667 
 0.16439 
 0.20420 
 0.08849 
-0.02783 
-0.05216 
-0.02717 
-0.02377 
-0.03777 
-0.02607 
 0.00866 
 0.02090 
-0.00167 
-0.01830 
 0.00277 
 0.03647 
 0.03866 
 0.00634 
-0.02202 
-0.02161 
-0.00721 
-0.00332 
-0.00814 
-0.00540 
 0.00639 
 0.01167 
 0.00452 
-0.00354 
-0.00197 
 0.00377 
 0.00402 
-0.00163 
-0.00511 
-0.00304 
 0.00049 
 0.00116 

 
   0.00071 
 -0.00031 
 -0.00351 
  0.00128 
  0.00910 
 -0.00289 
 -0.01487 
  0.00425 
  0.01294 
 -0.00358 
  0.00799 
 -0.00058 
 -0.05575 
  0.00793 
  0.12590 
 -0.01553 
 -0.19814 
  0.01909 
  0.24294 
 -0.01575 
 -0.23694 
  0.00657 
  0.17779 
  0.00362 
 -0.08784 
 -0.00917 
  0.00281 
  0.00740 
  0.04763 
 -0.00047 
 -0.05475 
 -0.00638 
  0.03167 
  0.00862 
 -0.00170 
 -0.00545 
 -0.01685 
 -0.00027 
  0.01891 
  0.00463 
 -0.01062 
 -0.00546 
  0.00130 
  0.00337 
  0.00343 
 -0.00053 
 -0.00344 
 -0.00121 
  0.00150 
  0.00145 
 -0.00001 
 -0.00087 
 -0.00037 
  0.00026 
  0.00019 
 

 
  -0.00528 
    0.01147 
  -0.00038 
  -0.03232 
   0.05183 
  -0.01530 
  -0.06317 
   0.09787 
 -0.03482 
 -0.06085 
   0.06944 
   0.01323 
 -0.05356 
 -0.03852 
  0.15406 
 -0.11062 
 -0.09645 
  0.25329 
 -0.18569 
 -0.03318 
  0.18176 
 -0.15755 
  0.04920 
  0.02143 
 -0.04292 
  0.05808 
 -0.06377 
  0.02454 
  0.03697 
 -0.05407 
  0.00793 
  0.03844 
 -0.02994 
 -0.01417 
  0.03533 
 -0.01968 
 -0.00183 
  0.00618 
 -0.00628 
   0.01243 
  -0.01463 
   0.00156 
   0.01269 
  -0.01172 
  -0.00211 
   0.01015 
 -0.00667 
 -0.00113 
  0.00443 
 -0.00581 
  0.00588 
 -0.00356 
 -0.00209 
  0.00589 
 -0.00424 
 

 
   0.00179 
  -0.00658 
   0.01183 
  -0.01701 
   0.01976 
 -0.01840 
  0.01430 
 -0.01019 
  0.01057 
 -0.01710 
  0.02867 
 -0.03816 
  0.03837 
 -0.02398 
 -0.00079 
  0.02516 
 -0.03228 
  0.01022 
  0.04443 
 -0.11931 
  0.19249 
 -0.23710 
  0.23595 
 -0.18621 
  0.10473 
 -0.01769 
 -0.04708 
  0.07500 
 -0.06607 
  0.03616 
 -0.00470 
 -0.01138 
  0.00793 
  0.00990 
 -0.02900 
  0.03935 
 -0.03582 
  0.02298 
 -0.00781 
 -0.00157 
  0.00358 
  0.00044 
 -0.00483 
  0.00656 
 -0.00344 
 -0.00198 
   0.00751 
 -0.00936 
   0.00783 
 -0.00393 
   0.00148 
 -0.00033 
  0.00024 
 -0.00110 
  0.00154 
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TABLE IV                                                                              TABLE V 
The Filter Coefficients of the Cosine                               The Filter Coefficients of The Baseband  
Modulated Five Band System                                       Analysis and Synthesis of the 16-Band   
with 55-tap filters and 54 samples of                               Cosine Modulated System with 96-Tap  
delay ( 50 n  )                                                          filters.  10 n                                   

                                                   

 

 

 

 

 

 

    
   

 nh0   ng0  

                       
    0.0002 
    0.0007 
   -0.0003 
    0.0006 
    0.0012 
    0.0012 
    0.0013 
    0.0032 
    0.0026 
    0.0007 
   -0.0010 
   -0.0034 
   -0.0084 
   -0.0118 
   -0.0149 
   -0.0156 
   -0.0132 
   -0.0082 
    0.0002 
    0.0111 
    0.0285 
    0.0468 
    0.0652 
    0.0827 
    0.0970 
    0.1075 
    0.1123 
    0.1114 
    0.1056 
    0.0943 
    0.0789 
    0.0615 
    0.0438 
    0.0264 
    0.0114 
   -0.0001 
   -0.0077 
   -0.0122 
   -0.0138 
   -0.0117 
   -0.0099 
   -0.0066 
   -0.0028 
   -0.0008 
    0.0012 
    0.0020 
    0.0023 
    0.0011 
    0.0009 
    0.0008 
    0.0005 
   -0.0001 
    0.0005 
    0.0002 
    0.0004 

 
   -0.0011 
   -0.0011 
   -0.0012 
   -0.0016 
   -0.0017 
   -0.0011 
    0.0004 
    0.0029 
    0.0066 
    0.0115 
    0.0175 
    0.0242 
    0.0310 
    0.0365 
    0.0398 
    0.0396 
    0.0344 
    0.0239 
    0.0070 
   -0.0157 
   -0.0439 
   -0.0760 
   -0.1101 
   -0.1437 
   -0.1743 
   -0.1991 
   -0.2162 
   -0.2241 
   -0.2219 
   -0.2099 
   -0.1896 
   -0.1629 
   -0.1320 
   -0.1002 
   -0.0697 
   -0.0426 
   -0.0209 
   -0.0051 
    0.0047 
    0.0092 
    0.0093 
    0.0064 
    0.0020 
   -0.0027 
   -0.0069 
   -0.0093 
   -0.0104 
   -0.0100 
   -0.0086 
   -0.0068 
   -0.0049 
   -0.0031 
   -0.0016 
   -0.0005 
   -0.0005     

 nh0  
  ng0  

 

 
  0.00020 
  0.00034 
  0.00051 
  0.00071 
  0.00094 
  0.00121 
  0.00151 
  0.00185 
  0.00221 
  0.00260 
  0.00301 
  0.00344 
  0.00388 
  0.00432 
  0.00475 
  0.00516 
  0.00554 
  0.00587 
  0.00615 
  0.00636 
  0.00649 
  0.00652 
  0.00645 
  0.00626 
  0.00594 
  0.00549 
  0.00490 
  0.00415 
  0.00326 
  0.00221 
  0.00102 
 -0.00032 
 -0.00181 
 -0.00343 
 -0.00517 
 -0.00703 
 -0.00897 
 -0.01100 
 -0.01309 
 -0.01521 
 -0.01735 
 -0.01949 
 -0.02159 
 -0.02364 
 -0.02562 
 -0.02750 
 -0.02925 
 -0.03087 
  
 
 
 
 
 
 

 
 -0.03234 
 -0.03363 
 -0.03473 
 -0.03563 
 -0.03632 
 -0.03680 
 -0.03706 
 -0.03710 
 -0.03693 
 -0.03655 
 -0.03597 
 -0.03520 
 -0.03425 
 -0.03313 
 -0.03187 
 -0.03048 
 -0.02899 
 -0.02740 
 -0.02574 
 -0.02403 
 -0.02230 
 -0.02055 
 -0.01881 
 -0.01710 
 -0.01543 
 -0.01381 
 -0.01226 
 -0.01079 
 -0.00941 
 -0.00812 
 -0.00694 
 -0.00585 
 -0.00488 
 -0.00400 
 -0.00323 
 -0.00255 
 -0.00197 
 -0.00148 
 -0.00107 
 -0.00074 
 -0.00047 
 -0.00026 
 -0.00011 
 -0.00000 
  0.00007 
  0.00011 
  0.00013 
  0.00013 

 
   0.00010 
   0.00025 
   0.00032 
   0.00050 
   0.00073 
   0.00107 
   0.00135 
   0.00178 
   0.00226 
   0.00282 
   0.00364 
   0.00456 
   0.00569 
   0.00681 
   0.00835 
   0.00992 
   0.01190 
   0.01405 
   0.01637 
   0.01893 
   0.02176 
   0.02479 
   0.02795 
   0.03123 
   0.03480 
   0.03858 
   0.04232 
   0.04611 
   0.05009 
   0.05385 
   0.05762 
   0.06136 
   0.06480 
   0.06809 
   0.07102 
   0.07358 
   0.07580 
   0.07753 
   0.07891 
   0.07976 
   0.08005 
   0.07973 
   0.07892 
   0.07758 
   0.07574 
   0.07327 
   0.07032 
   0.06690 

 
  0.06316 
  0.05892 
  0.05445 
  0.04951 
  0.04462 
  0.03949 
  0.03438 
  0.02911 
  0.02404 
  0.01901 
  0.01435 
  0.00977 
  0.00556 
  0.00152 
 -0.00209 
 -0.00524 
-0.00792 
 -0.01031 
 -0.01229 
 -0.01387 
 -0.01496 
 -0.01573 
 -0.01612 
 -0.01624 
 -0.01608 
 -0.01576 
 -0.01504 
-0.01428 
-0.01337 
-0.01235 
-0.01116 
-0.01005 
 -0.00888 
 -0.00777 
 -0.00662 
 -0.00566 
 -0.00471 
-0.00380 
 -0.00319 
 -0.00255 
 -0.00198 
 -0.00153 
 -0.00108 
 -0.00070 
 -0.00045 
 -0.00024 
 -0.00000 
  0.00012 


