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Abstract 

 
For stationary signals, there are number of power spectral density estimation 
techniques.  The main problem of power spectral density (PSD) estimation 
methods is high variance.  Consistent estimates may be obtained by suitable 
processing of the empirical spectrum estimates (periodogram).  This may be 
done using window functions. These methods all require the choice of a certain 
resolution parameters called bandwidth.  Various techniques produce estimates 
that have a good overall bias Vs variance tradeoff.  In contrast, smooth 
components of this spectral required a wide bandwidth in order to achieve a 
significant noise reduction. In this paper, we explore the concept of cepstrum for 
non parametric spectral estimation. The method developed here is based on 
cepstrum thresholding for smoothed non parametric spectral estimation. The 
algorithm for Consistent Minimum Variance Unbiased Spectral estimator is 
developed and implemented, which produces good results for Broadband and 
Narrowband signals.  
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1. INTRODUCTION 

The main objective of spectrum estimation is the determination of the Power Spectral density 
(PSD) of a random process. The estimated PSD provides information about the structure of the 
random process, which can be used for modeling, prediction, or filtering of the deserved process. 
Digital Signal Processing (DSP) Techniques have been widely used in estimation of power 
spectrum. Many of the phenomena that occur in nature are best characterized statistically in 
terms of averages [20]. 

Power spectrum estimation methods are classified as parametric and non-parametric. Former 
one a model for the signal generation may be constructed with a number of parameters that can 
be estimated from the observed data. From the model and the estimated parameters, we can 
compute the power density spectrum implied by the model. On the other hand, do not assume 
any specific parametric model of the PSD. They are based on the estimate of autocorrelation 
sequence of random process from the observed data. The PSD estimation is based on the 
assumption that the observed samples are wide sense stationary with zero mean. Traditionally 
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four techniques are used to estimate non parametric spectrum such as Periodogram, Bartlett 
method (Averaging periodogram), Welch method (Averaging modified periodogram) and 
Blackman-Tukey method (smoothing periodogram) [18] and [19]. 
 

2. CEPSTRUM ANALYSIS  

The cepstrum of a signal is defined as the Inverse Fourier Transform of the logarithm of the 

Periodogram. The cepstrum of })({ 1
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Consider a stationary, discrete-time, real valued signal })({ 1
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A commonly used cepstrum estimate is obtained by replacing pφ     with the periodogram pφ̂ . 
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to make unbiased estimate the cepstrum coefficients only at origin is modified, remaining are 
unchanged. 
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In this approach, we smooth 
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The spectral estimate corresponding to { }
k

c~  is given by 
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The proposed non parametric spectral estimate is obtained from  pφ
~

 by a simple scaling  
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Statistics of log periodogram 

The mean and variance of the k th component of the log periodogram of the signal,
2

log kY , 

assuming that the spectral component 
k

Y  is Gaussian, are, respectively, given by [1]-[6], 
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where 05772156649.0=γ is the Euler constant, and 
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Note from (8) that the expected value of the k th component of the log-periodogram equals the 

logarithm of the expected value of the periodogram plus some constant. This surprising linear 
property of the expected value operator is of course a result of the Gaussian model assumed 

here. From (9) the variance of the k th log-periodogram component of the signal is given by the 

constant.  
 
Statistics of Cepstrum 
The mean of the cepstral component of the signal is obtained from (8) and is given by [1], [2] and 
[7] 
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the variance of the cepstral components is obtained from (9) and given by for 2/..,.........0 Kn =  
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 and   for mnKmn ≠= ,2/....,,.........1,0,  
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The covariance matrix of cepstral components of the signal, assuming the spectral components 
of the signal are statistically independent complex Gaussian random variables. The covariance 
matrix of cepstral components given by (11) and (12) is independent of the underlying power 
spectral density which characterizes the signal under the Gaussian assumption. The covariance 
of cepstral components under the Gaussian assumption is a fixed signal independent matrix that 
approaches, for large K a diagonal matrix given by  
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 Cepstrum algorithm 

1. Let  a stationary, discrete-time, real valued signal })({ 1
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2. Compute the periodogram estimate of pφ using FFT. 
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3. First apply natural logarithm and take IFFT to compute the cepstrum estimate. 
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4. Compute the threshold by choosing the appropriate value of µ depending on the type of 

signal and determine the cepstral coefficients  
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5. Compute the spectral estimate corresponding to { }
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c~  is given by 
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6. Obtain the proposed non parametric spectral estimate by a simple scaling  
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Simulation Results 
In this section, we present experimental results on the proposed algorithm for simulated data to 
estimate the power spectrum. The performance of proposed method is verified for simulated data, 
generated by applying Gaussian random input to a system, which is either broad band or narrow 
band.The MA broad band signal is generated by using the difference equation [18] 
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where )(te is a normal white noise with mean zero and unit variance. The ARMA narrow band 

signal is generated by using the difference equation   
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The number of samples in each realization is assumes as N=256.  
After performing 1000 Monte Carlo Simulations, the comparison of the mean Power Spectrum, 
Variance and Mean Square Error for the broad band signal and narrow band signals, obtained 
using periodogram and cepstrum approach along with the true power spectrum are shown in 
Figure 1 (a) , (b) and (c) and Figure 2 (a), (b) and (c) respectively. 
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FIGURE 1: (a) PSD vs frequency for broadband signal 
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FIGURE 1: (b) Variance vs frequency for broadband signal 
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FIGURE 1: (c) Mean Square Error vs frequency for broadband signal 
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FIGURE 2: (a) PSD vs frequency for narrowband signal 
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FIGURE 2: (b) Variance vs frequency for narrowband signal 
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FIGURE 2: (c) Mean Square Error vs frequency for narrowband signal 

From the above results we can say that  
1. In the case of broad band signal the spectral estimates through cepstrum approach has 

very smooth response compared to the periodogram approach. However it can be 
observed that the mean square error is more in the case of periodogram and least with 
cepstrum thresholding approach. 

2. In the case of broad band signals, variance obtained through cepstrum thresholding 
approach is very small as compared to the periodogram approach. 

3. It is also observed that the mean square error estimated through cepstrum approach for 
narrowband signals is less compared to broadband signals. 

 
Comparison among the traditional methods and the cepstrum method  
In order to evaluate the performance of the cepstrum technique, which is compared with the 
traditional methods such basic Peridogram, Bartlett method, Welch method and Blackman and 
Tukey [21] for simulated ARMA narrow band signal, which is generated by using equation (15).  
 
 
 
 
 
 
 
 
 

TABLE 1: Comparison table for the parameters mean and variance (Record length N=128). 

 
From the comparison table 1, for short record length, with respect to mean and variance, the 
cepstrum technique produces better results in comparison with the traditional methods. For 
longer record length, with reduced computational complexity, the cepstrum method produces the 

The various  PSD 
techniques 

Mean Variance 

Cepstrum 0.0090 2.4023e-004 
Periodogram 0.0092 4.8587e-004 

Black-man and Tukey 0.0521 0.0047 
Welch 0.0138 8.9491e-004 
Bartlett  0.2474 0.0637 
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values of mean and variance as same as that of the Welch method, but these methods are better 
than the remaining techniques. For 1000 Monte carlo simulations, the ensemble power spectrum 
for various techniques is shown in figure 3.    
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FIGURE 3: an ensemble power spectrum of an ARMA narrowband signal by using the traditional methods 
and the cepstrum method 

 
Results for MST Radar data 
The concept of cepstrum is applied to atmospheric data collected from the MST Radar on 10

th
 

August 2008 at Gadhanki, Tirupati, India. 150 sample functions, each having 256 samples are 
used to know the performance of cepstrum in comparison with the standard periodogram. The 
better results are obtained through the cepstrum than the periodogram. The comparison of the 
mean Power Spectrum, Variance for Radar data, obtained using periodogram and cepstrum 
approach are shown in Figure 4 (a) and (b) respectively. It is observed that the smooth power 
spectra and less variance in cepstrum than that of the periodogram. 
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FIGURE 4: (a) Mean Power Spectra Vs Frequency for MST Radar data 
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FIGURE 4: (b) Variance Vs Frequency for MST Radar data 
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3. CONSLUSION & FUTURE WORK 

The problem in traditional methods is that the variance becomes proportional to square of power 
spectrum instead of converging into zero, thus the estimated spectrum is an inconsistent.  In this 
paper the new technique has been proposed, called cepstrum, which gives reduce variance while 
evaluating the smoothed nonparametric power spectrum estimation. The expression for mean 
and variance of the cepstrum has been presented. The total variance reduction is more through 
broadband signals when compared to narrowband signals. All results are verified by using MAT 
lab 7.0.1. The concept of Cepstrum can be also extended for higher order spectral estimations. 
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