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Abstract 
 

The heart rate variability (HRV), refers to the beat-to-beat alterations in heart rate, is analyzed 
using RR-interval (RRI) series derived from the ECG signal as an interval between successive 
QRS complexes. For deciphering the true HRV spectrum using FFT, the RRI series should be re-
sampled. But re-sampling often induces a noticeable distortion in the HRV power spectral 
estimates. Thus, the re-sampling operation should be accurate enough in reproducing the finest 
variation in the given signal. This paper compared three most widely used interpolation 
techniques: linear, cubicspline, and Berger’s, as re-sampling methods, in an attempt to propose 
an optimal method of interpolation for HRV analysis. The linear and cubicspline methods based 
PSD estimates, for artificially generated non-uniformly sampled RRI series, introduce linear 
phase shifting, and thus lower the HRV frequencies. On the contrary, Berger’s method efficiently 
reproduced the inherent frequencies in the underlying signal except some amplitude distortion. 
Further, similar trends in PSD estimates were obtained for real RRI series as well. Thus, it was 
concluded that at the expense of some increase in computational complexity, the spectral 
distortion has been significantly reduced using the Berger’s interpolation based re-sampling 
method as compared to the linear and cubicspline methods.  

 
Keywords: HRV, Interpolation, Re-sampling, Distortion, Phase-shift. 
 

 

1. INTRODUCTION 
The analysis of variations in instantaneous heart rate time series using normal-to-normal inter-
beat intervals or RR-interval (RRI) of the heart is known heart rate variability (HRV). In recent 
years, the growing number of reports has shown that the analysis of HRV is a valid non-invasive 
tool capable of providing adequate information on autonomic modulation of the sinoatrial node in 
normal subjects and in patients with a variety of cardiac and non-cardiac diseases [1]-[5]. The 
availability of this tool to explore the changing dynamics of individual cardiovascular regulation 
profiles might lead to a deeper understanding of the role of the neural mechanisms in 
cardiovascular medicine, and help improve the efficiency of targeted medical treatment. With 
regard to this, the spectral analysis of HRV has gained an increasing attention and varieties of 
techniques have been proposed for its assessment. This analysis allows the estimation of 
location and strength of major oscillatory components of heart rate, which contribute to the signal 
variance, and it is now largely utilized in HRV studies [6]. Although theoretical properties and 
application methods of classical approach such as discrete Fourier transform (DFT), based on the 
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computation of periodogram, are extensively discussed in many books and articles on spectral 
analysis of time series [7], but yet there are several problems which are still encountered in 
practical analysis without definite guidelines to solve them. 
 
The power spectrum of RRI fluctuations obtained using FFT [8]-[10] presents two principal 

components: a low-frequency (LF) component around 0.1 Hz (0.04−0.15 Hz), whose changes in 
power have been related to the sympathetic activity [1], [9], [11] and a high-frequency (HF) 

component, in synchrony with respiration rate (0.15−0.4 Hz), which is considered to be an 
expression of the respiration disturbances mediated by the vagal activity [10], [11]. A portion of 
the spectral power is also concentrated in a very low-frequency (VLF) band (from 0.001 to about 
0.04 Hz), which is probably due to slow mechanisms of regulation such as humoral and 
thermoregulatory factors [1]. Further, for the accurate assessment of an HRV signal there are 
three main prerequisites that need to be taken care of (1) re-sampling frequency; (2) segment 
length; and most importantly (3) type of interpolation method used for re-sampling the RRI series. 
Out of these three, the first condition i.e. value of re-sampling frequency, has now almost got 
standardized to 4 Hz [12], secondly the segment length of 256 samples has also now become a 
standard [13]-[15]. But for the third requirement, after an extensive literature survey on ECG 
spectral estimation it has been observed that there is lot of inconsistency in the selection of an 
interpolating method for re-sampling the RRI series and also an adequate justification about 
which interpolating method is most suitable in HRV studies is usually lacking, and most of the 
studies are silent on this particular approach.  Thus, to analyze the frequency domain measures 
of HRV using non-parametric techniques, there is an urgent need to optimize the interpolation 
method used for re-sampling the RRI time series. 
 
Moreover, in general the re-sampling operation has been used for variety of purposes in many 
signal and image processing applications. When re-sampling a biomedical image or data, using 
interpolation, to a new set of coordinates there is often a significant loss in image or signal quality 
and it is reflected in terms of distortion in the spectral estmates. To preserve the signal quality, 
the interpolating function used for re-sampling (the RRI series) should be such that which induces 
the least distortion in the spectral estimates [16]. In spite of the fact that several interpolating 
functions have been used for re-sampling the discrete data but the functions which were most 
commonly used for re-sampling the RRI series are: linear interpolation [9], [10], [12]-[15], [17], 
[18], parabolic interpolation [19], [20], spline interpolation [18], [21]-[23], and Berger’s method of 
interpolation [21], [24], [25]. The choice of an interpolating function to be used for re-sampling 
depends upon the task being performed. Its choice becomes more critical when the re-sampling 
process is used prior to further signal processing.  
 
In this paper, to determine which interpolating method would provide the best re-sampling 
operation for RRI series, three methods were compared: A) linear, B) cubicspline, and C) 
Berger’s. Moreover, such comparative performance evaluation has not yet been reported in the 
literature and no such systematic experiments were published earlier which could infer that how 
and in what sense, these interpolation based re-sampling methods affects HRV metric 
calculations. Consequently, a need was felt to carry out a thorough comparative study to 
demonstrate the most suitable interpolation based re-sampling method for RRI time series. This 
study was conceived to analyze the effect of various interpolations based re-sampling methods in 
HRV quantification. The focus has been on the selection of an appropriate interpolating function 
for the true representation of HRV. We selected for this study an artificially simulated, uniformly 
and non-uniformly sampled test signals for the predefined set of frequency components in the 
autonomic range (0 to 0.5 Hz) [1], owing to their completely known characteristics and nature. 
Here uniformly sampled test signals are generated at a uniform sampling interval of 250 msec (for 
FFT based spectral estimation of evenly sampled data) and non- uniformly sampled test signals 
are generated at a sampling instants of actual RRI records (for FFT based spectral estimation of 
unevenly sampled data after an interpolation based re-sampling), from a sine wave. The 
emphasis is on the comparison of spectra keeping in view the smoothness and accuracy of 
spectral estimates. After the validation of results on test as well as on real signals it has been 
found that the spectral estimates obtained using Berger’s interpolation based FFT method are 
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more accurate in terms of reproduction of spectral peaks, resolution, smoothness and relative 
magnitudes of each spectral component, as compared to that of linear and cubicspline 
interpolation based PSD estimates. 
 
2. RE-SAMPLING 
Re-sampling is the process of transforming a discrete signal which is defined at one set of 
coordinate locations to a new set of coordinate points. It can be divided conceptually into two 
processes; interpolation of the discrete signal to a continuous signal and then sampling the 
interpolated signal. Frequently, re-sampling is used to increase the number of points in the signal 
to improve its behaviour for analysis. This process of filling in points between the data points is 
often thought of as interpolation. However, more accurately, the process of interpolation is fitting 
a continuous function to the discrete points in the signal. This continuous function can then be 
sampled at whatever points are necessary. In implementing re-sampling, interpolation and 
sampling are often combined so that the signal is interpolated at only those points which will be 
sampled.  
 

Re-sampling to a larger matrix is often used prior to HRV signal processing in order to make the 
analysis more certain about the frequency variations in the signal. Increasing the matrix size by 
re-sampling cannot increase the resolution of the signal or the information in the signal. (Signal 
processing can only reduce the information in the signal.) The purpose of the re-sampling is to 
reduce the high-frequency artifacts in the signal analysis. 
  
2.1. Interpolation and Sampling 
A signal can be exactly reconstructed from samples if the signal is band limited and sampling is 
done at a frequency above the Nyquist frequency. But, however, that unlike the continuous 
signal, the sampled signal is not band limited. Sampling can be viewed as replicating the 
frequency spectrum at multiples of two pi times the sampling frequency. Interpolation, in contrast, 
is the opposite of sampling. It produces a continuous signal from a discrete signal. In order to 
reproduce a band limited function from a set of samples, the interpolating function should be an 
ideal low-pass filter. An ideal low-pass filter removes the replicates of the frequency spectrum 
introduced by the sampling. This suggests that the interpolating function which should be used for 
re-sampling is an ideal low-pass filter [26].  
 

There are, however, practical considerations which make this theoretical re-sampling technique 
difficult in the context of HRV signal processing. First, the HRV signal which is to be analyzed is 
of finite extent. Therefore, this theoretical description which assumes that the signals are of 
infinite extent is only an approximation; and there will be variations from the theoretical results. 
Second, because of the computational burden in handling the RRI records, the filtering usually 
take place by convolving with the finite impulse response filters of short duration. For these 
reasons, an exact interpolation cannot be performed on heart rate series; and consideration must 
be given to tradeoffs between the accuracy and computational efficiency. 

 

3. METHODS USED 
The theory of three interpolation based re-sampling methods and the FFT method of power 
spectrum estimation that are implemented in this study are discussed below. 

 
3.1. Interpolation Based Re-sampling Methods 
The interpolation is a method of constructing new data points within the range of a discrete set of 
known data points. In order to convert the real RRIs into new values which are evenly spaced in 
time, the different interpolation functions that we used are as follows: 
 
3.1.1 Berger’s Method of Interpolation 
In this method a local window is defined over each point ti as the time interval extends from the 
previous sample to the next [24], [25]. Thus assigning each ti a new RR-value coinciding with the 
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number of RRIs associated with the local window as shown in figure 1. If the time interval is 
located between two successive beats, then the new RR-value is given by the equation (1). 

   
( ) ( )bmiii rfttr ∗∗−= −+ 211      (1) 

 
where rb is the value of RR-distance between two successive beats and fm is the re-sampling 
frequency. 
If the interval uncludes a beat, the ri would be calculated using equation (2). 
 

  
( ) ( )( ) 211 mbaiaiai frttrttr ∗−+−= +−     (2) 

 
where ra and rb are the RRIs associated with that beat and the following beat, respectively. 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1: Berger’s method of interpolation. Where a, b, and c are the local windows; I1, I2, I3, I4  are the 

distance between RR-peaks; t1, t2 are the time points. 
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3.1.2 Linear Interpolation 
Linear interpolation also known by lerping - is a method of curve fitting using linear polynomials. It 
is one of the simplest methods of interpolation. With this method the new sequence of values 
which are evenly spaced in time are derived at each time instant ti according to the re-sampling 
frequency of 4 Hz [25]. For each ti  its new associated RR-value is calculated using equation (3). 
 

   
( ) ( ) ( )( )ababaiai ttrrttrr −−∗−+=

    (3) 
 
 where ta and tb are the times associated with the beats before and after time ti. ra and rb are their 
associated RR-values and ri’s are the new evenly spaced  RR-values. 
 
3.1.3 Cubicspline Interpolation 
The basic idea behind cubicspline interpolation is based on the concept of drawing smooth 
curves through a number of data points. This spline consists of weights attached to a flat surface 
at the points to be interpolated. A flexible strip is then made to bend across each of these 
weights, resulting in a smooth curve. In mathematical spline, the weights are the coefficients of 
cubic polynomials used to interpolate the data. These coefficients bend the line so that it passes 
through each of the data points without any break in continuity. It uses the low degree 
polynomials in each of the intervals and chooses the polynomial pieces such that they fit together 
smoothly. Mathematically it can be expressed by the piece-wise function of the form given by 
equation (4) [21]-[23]. 
 

( )
( )
( )
( )








<≤

<≤

<≤

=

−− nnn xxxifxs

xxxifxs

xxxifxs

xS

11

322

211

    (4) 

 
where si  is the third degree polynomial defined using  equation (5) 
 

  
( ) ( ) ( ) ( ) iiiiiiii dxxcxxbxxaxs +−+−+−=

23

   (5) 
 
for i = 1, 2,…, 1−n  

 

The first and second derivatives of these 1−n  equations are fundamental to this process, and 

they are defined using equations (6) and (7). 
 

   ( ) ( ) ( ) iiiii cxxbxxaxs +−+−=′ 23
2     (6) 

    
( ) ( ) iiii bxxaxs 26 +−=′′

    
 (7) 
 
for i = 1, 2…,  1−n  

 

After solving the above defined generalized equations from (4)–(7), we get the new RR-values 
which are evenly spaced in time. 
 
3.2. FFT Based Method 
The FFT based technique has been used on Hann windowed data for the power spectrum 
estimation of the uniformly and non-uniformly sampled simulated test signal. The power spectrum 
which is computed using FFT is variance normalized [12]-[15] and is represented as amplitude 
spectral density functions defined using equation (8). 
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( ) ( ) ( )fkXfkXfkX R ∆+∆=∆ 2

1

2

    (8) 
  

( )fkX R ∆  and ( )fkX ∆1  are the real and imaginary parts of complex spectrum ( )fkX ∆ , computed 

according to equation (9) [14], [15]. 
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4. POWER SPECTRAL ANALYSIS 
The power spectral analysis of HRV provides an estimation of the variability, distributed as a 
function of frequency. In this paper, spectral analysis was first performed on uniformly sampled 
and non-uniformly sampled test signals generated using a sine wave model, in order to have 
control over the frequency variations, instead of on an actual data. Later on, the analysis was 
performed on actual RRI series data as well. 

 
4.1. Generation of Test Signals 
In order to induce desired frequency variations, uniformly sampled test signal x1(n), and non-
uniformly sampled test signals x11(n), x12(n), x13(n), and  x14(n) are generated for fixed set of 
frequency components: f1=0.008 Hz, f2=0.09 Hz, f3=0.13 Hz, f4=0.25 Hz, and  f5=0.4 Hz 
respectively in the autonomic range from 0 Hz-0.5 Hz, using a sine wave equation (10). For the 
generation of non-uniformly sampled test signals, actual RRI records of four healthy subjects 
have been used as sampling instants and the procedure that is adopted for acquiring the RRI 
data from healthy volunteers is as follows: The ECG data of standard Lead-II were obtained for 
the duration of 15 minutes, from selected healthy subjects using BIOPAC

®
 MP100 system in a 

quiet room, in comfortable light and temperature levels. To achieve the good signal quality, the 
subjects were made to rest in supine position for 10 minutes prior to recording, so that the subject 
may stabilize to the laboratory environment. The recorded signals were A/D converted at 500 Hz 
sampling frequency, 12-bit resolution, and then stored and processed on an Intel PIV-processor. 
The recognition of the QRS complexes in the ECG and the detection of R-wave were performed 
by means of the software developed by our group [27]-[29].  Finally the RRI series is derived from 
R-waves of ECG records. 
 

( ) ( ) ( ) ( ) ( )[ ]tnftnftnftnftnfAxn ∆+∆+∆+∆+∆= 54321 2sin2sin2sin2sin2sin πππππ
           

(10) 
 

where sampling frequency Hz
t

f s 41 =
∆

= , amplitude A=2, and n is the time-index. 

• Uniformly sampled test signal x1(n) is shown in figure 2(a). 

• Non-uniformly sampled test signals from x11(n) to x14(n) are generated, by using the sampling 
instants of RRIs series shown in figures 2(b), (d), (f), and (h), using equation (10) shown in 
figures 2(c), (e), (g), and (i) respectively. 

 

4.2. Spectral Estimation Results for Test Signals x1(n) and x11(n) to x14(n) 
The results in the form of comparative analysis between an idealized FFT based power spectrum 
of evenly sampled data (without any re-sampling) i.e. for signal x1(n), and an FFT based power 
spectrum of non-uniformly sampled data i.e. for signals x11(n) to x14(n), after re-sampling are as 
follows: 

 
4.2.1 PSD Estimation of Uniformly Sampled Test Signal x1(n) Using FFT Method Without 

Re-sampling (idealized case) 
The  FFT- based  PSD  plot of signal x1(n) is shown in figure 3(a).  Its  power  spectrum shows 
five distinct spectral peaks at exactly the f1, f2, f3, f4, and f5 frequency locations, as given in test 
signal. The power values of frequencies in the pre-selected frequency bands are given in table 1, 
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which maintains approximately same magnitude in the entire power spectrum. The trend followed 
by these values of power in the PSD plot is shown by drawing a dotted black coloured trend line 
as in figure 4. The shape of this line is straight which signifies that all the frequencies have been 
resolved with equal strength and representing a high spectral resolution and accuracy. 
 
4.2.2 PSD Estimation of Non-uniformly Sampled Test signal x11(n) Using Re-sampling 

Based FFT Method 
The spectra obtained by using standard techniques of spectral analysis, such as FFT, may be 
distorted if the input data are not evenly sampled over time [30], [31]. This is due to the fact that 
when sampling is a function of beats, rather than seconds, the sampling rate will lack 
interindividual and intertask consistency due to differences in heart rate. In this part of work, when 
power spectrum estimation of raw RRI has been done using FFT without any re-sampling, then it 
has been observed that there is almost zero power contained in the spectral peaks at all the five 
preselected frequency bands corresponding to the five fixed set of frequency components. These 
values of power are given in table 1 and are also shown by plotting 
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FIGURE 2: Test signals tachograms (a) Uniformly sampled test signal x1(n) (b) Timebase-I: actual RRI series from Subject-I 
(c) Non-uniformly sampled test signal x11(n) using sampling timebase-I (d) Timebase-II: actual RRI series from Subject-II (e) 
Non-uniformly sampled test signal x12(n) using sampling timebase-II (f) Timebase-III: actual RRI series from Subject-III (g) 
Non-uniformly sampled test signal x13(n) using sampling timebase-III (h) Timebase-IV: actual RRI series from Subject-IV (i) 
Non-uniformly sampled test signal x14(n) using sampling timebase-IV. 
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FIGURE 3: PSD plots of test signals x1(n) and x11(n) using FFT for fixed set of frequency components (a) 
For uniformly sampled test signal x1(n) (b) For non-uniformly sampled test signal x11(n) corresponding to 
Subject-I after Berger’s interpolation based re-sampling method (c) For non-uniformly sampled test signal 
x11(n) corresponding to Subject-I after linear interpolation based re-sampling method (d) For non-uniformly 
sampled test signal x11(n) corresponding to Subject-I after cubicspline interpolation based re-sampling 
method. 
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x1(n) (ii) For non-uniformly sampled test signal x11(n) corresponding to Subject-I without any re-sampling 
(iii) For non-uniformly sampled test signal x11(n) corresponding to Subject-I after applying Berger’s, linear 
and cubicspline based re-sampling methods.  
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TABLE 1: Power values of test signals for fixed set of frequency components. 

 

 
                             Pf 1 =0.000 Hz-0.01563 Hz, Pf 2 =0.08203 Hz-0.09766 Hz, Pf 3 =0.1211 Hz-0.1367 Hz, Pf 4 =0.2422 Hz-0.2578 

Hz, 
Pf 5 =0.3906 Hz-0.4064 Hz 

 
a trend line in figure 4. This represents a very high spectral distortion and is the case of total 
spectral smearing. This justifies the need of re-sampling the RRI series prior to HRV analysis. 
Thus, to avoid spectral distortions, RRI series were transformed into evenly sampled signals 
using interpolation. This interpolation based re-sampling of the RRI data using equal intervals, 
before spectral estimation, has also been recommended in the literature [32], [33]. The results in 
the form of PSD estimates using FFT after three interpolations based re-sampling methods are as 
follows: 
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4.2.2.1 Berger’s Interpolation Based Spectral Estimates 
The PSD plot of test signal x11(n) after applying Berger’s method of interpolation is shown in 

figure 3(b). This plot reproduces five distinct spectral peaks at ,,,, 4321 ffff and 5f  frequency 

locations as efficiently as in the case of FFT based method on uniformly sampled data (idealized 
case) and their relative amplitudes are also tallying to that of a plot of test signal x1(n). This 
means that the PSD plot obtained after applying this method on unevenly sampled data is almost 
the same as that for evenly sampled data, representing sufficiently smooth spectrum with 
negligible spectral leakage and distortion. 
 

The power values for the test signal x11(n) using Berger’s based FFT method, as given in table 1, 
are in close agreement to that obtained using FFT for uniformly sampled test signal (x1(n)). These 
values are shown by a trend line in figure 4, representing nearly the same pattern as that 
obtained after FFT on uniformly sampled signal, except a slight deviation at the end representing 
an amplitude distortion in comparison to idealized case. 
 
4.2.2.2 Linear Interpolation Based Spectral Estimates 
After applying a linear interpolating function on test signal x11(n), the FFT based power spectra 
which are obtained is shown in figure 3(c). In the PSD plot the spectral peaks are shifted towards 
the low frequency regions i.e. to 0.007 Hz, 0.07 Hz, 0.10 Hz, 0.19 Hz and 0.3 Hz instead of 
remaining fixed at 0.008 Hz, 0.09 Hz, 0.13 Hz, 0.25 Hz and 0.4 Hz locations as specified in the 
test signal. This signifies that the linear interpolation method induces a distortion in the spectral 
estimates in terms of shifting of spectral peaks to low frequency regions of the autonomic band. In 
addition to shifting of spectral peaks, multiple peaks are also arisen in the PSD plot that further 
adds to the spectral distortion.  
The frequency shift which is obtained here has been found to be linear and satisfies the 
mathematical relationship given by equation (11). The higher frequency components demonstrate 
a comparatively more frequency shift than the low frequency components. 
 

( ) ff ∆= 25.0β     (11) 

  
where β(f) is the obtained linear frequency-shift and ∆f is the frequency resolution. 
 
Moreover, the values of power in Pf2, Pf3, Pf4 and Pf5 frequency bands, as given in table 1, shows 
a large deviation from the values of power obtained for evenly sampled signal as well as for non-
uniformly sampled signal after Berger’s based interpolation. Further, the trend line (representing 
the trend in the values of power in PSD plot) obtained after linear interpolation based FFT method 
of spectral estimation drifts largely away from the trend line obtained for an evenly sampled data 
and after Berger’s based re-sampling method as shown in figure 4.  That means, with this method 
of re-sampling the energy contained in the spectral peaks gets shifted into the neighboring side 
lobes due to the linear phase shifting effect. 
 
4.2.2.3 Cubicspline Interpolation Based Spectral Estimates 
After applying cubicspline interpolating function on test signal x11(n) the following are the 
observations: 

 

• The frequency terms and the spectral peaks are linearly shifted towards the low frequency 
regions of the plot shown in figure 3(d), by the same amount and proportion as obtained in 
linear interpolation method. 

 

• The values of power as per table 1 are further reduced from the values obtained using linear 
interpolation based FFT method. Thus the spectral distortion gets increases. These values of 
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power are also represented by drawing a trend line shown in figure 4, which exhibits a large 
deviation from even sampling or idealized case as well as from Berger’s based method. 

 
Further, this study was extended to test signals x12(n), x13(n), and x14(n).  The results in terms of 
PSD plots are shown in figure 5, 6 and 7 and the values of power are given in table 1. These 
results demonstrate that the power values and PSD plots, obtained after Berger’s re-sampling 
based FFT method on non-uniformly sampled data closely resembles with that obtained after FFT 
method on evenly sampled data. Thus, the Berger’s interpolation based FFT method of spectral 
estimation for non-uniformly sampled data gives superior performance with clearly outlined peaks 
in predefined low- and high-frequency bands in comparison to other two variants (linear and 
cubicspline) in HRV studies. The same study was extended using the sampling bases of ten other 
healthy subjects with different sets of frequency components and the results support the earlier 
observations. 
 
Although patterns of heart rate variability hold considerable promise for clarifying issues in clinical 
applications, the inappropriate quantification and interpretation of these patterns may obscure 
critical issues and may impede rather than foster the development of HRV in clinical settings. 
Thus keeping this thing in consideration, actual recordings of RRI series of twenty healthy 
volunteers were now analyzed. The series are selected to cover a variety of PSD estimate 
shapes. The results in terms of PSD plots for two such cases are shown in figures 8 and 9. From 
the visual analysis of these figures it is quite obvious that the type of an interpolation method 
chosen for re-sampling the RRI series, affects the HRV metrics in terms of resolution, spectral 
shift and smoothness, as well as power distribution among various autonomic frequency bands. 
After analyzing the actual signals, it is seen that the FFT based spectrum obtained using re-
sampled RRI series data with linear and cubicspline methods of interpolation, are shifted to lower 
frequency regions as compared to that of Berger’s re-sampling based FFT method. With this it is 
verified that the Berger’s method provides an accurate and smooth spectral estimate with clearly 
prominent peaks in autonomic band. Thus, as established using synthetic signals and actual 
variability records, the Berger’s interpolation based method for re-sampling the non-uniformly 
spaced RRI data has been used for accurate assessment, which has a direct bearing on the HRV 
interpretations. 

 
5. CONCLUSION 
The present paper lays considerable emphasis on (1) the algorithmic considerations of Berger’s, 
linear, and cubicspline re-sampling methods for spectral estimates, and (2) their capabilities of 
resolving the frequency peaks in various bands leading to the ability to precisely discriminate 
between pathologies. In this study, the spectral estimates of the uniformly sampled data using 
FFT, which requires no re-sampling, is taken as a reference. Consequently, the non-uniformly 
sampled data was derived from the sinusoidal signal containing predefined set of frequency 
components. Using the sine wave based non-uniformly sampled data; it was found that the linear 
and cubicspline interpolation based re-sampling methods shift the spectral peaks towards the low 
frequency regions due to the linear phase shifting. This frequency shift is more for higher 
frequency components. But with Berger’s interpolation no such linear shift is introduced and it 
provides most accurate results that closely match with that of spectral estimates of uniformly 
sampled test signal. Thus the Berger’s based FFT method outperformed linear and cubicspline 
based FFT methods for spectral estimation of non-uniformly sampled data. Hence, the proposed 
Berger interpolation based re-sampling method in the spectral analysis of HRV signal is capable 
in providing accurate autonomic frequencies assessment. 
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FIGURE 5: PSD plots of test signals x1(n) and x12(n) using 
FFT for fixed set of frequency components (a) For uniformly 
sampled test signal x1(n) (b) For non-uniformly sampled 
test signal x12(n) corresponding to Subject-IV after Berger’s 
interpolation based re-sampling method (c) For non-
uniformly sampled test signal x12(n) corresponding to 
Subject-IV after linear interpolation based re-sampling 
method (d) For non-uniformly sampled test signal x12(n) 
corresponding to Subject-IV after  cubicspline interpolation 
based re-sampling method. 
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FIGURE 6: PSD plots of test signals x1(n) and x13(n) using 
FFT for fixed set of frequency components (a) For uniformly 
sampled test signal x1(n) (b) For non-uniformly sampled 
test signal x13(n) corresponding to Subject-III after Berger’s 
interpolation based re-sampling method (c) For non-
uniformly sampled test signal x13(n) corresponding to 
Subject-III after linear interpolation based re-sampling 
method (d) For non-uniformly sampled test signal x13(n) 
corresponding to Subject-III after cubicspline interpolation 
based re-sampling method. 
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FIGURE 7: PSD plots of test signals x1(n) and x14(n) using FFT for fixed set of frequency components (a) For 
uniformly sampled test signal x1(n) (b) For non-uniformly sampled test signal x14(n) corresponding to Subject-IV after 
Berger’s interpolation based re-sampling method (c) For non-uniformly sampled test signal x14(n) corresponding to 
Subject-IV after linear interpolation based re-sampling method (d) For non-uniformly sampled test signal x14(n) 
corresponding to Subject-IV after  cubicspline interpolation based re-sampling method. 
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