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Abstract 

 
Time-varying autoregressive (TVAR) model is used for modeling non stationary signals, 
Instantaneous frequency (IF) and time-varying power spectral density are then extracted from the 
TVAR parameters. TVAR based Instantaneous frequency (IF) estimation has been shown to 
perform very well in realistic scenario when IF variation is quick, non-linear and has short data 
record.  In TVAR modeling approach, the time-varying parameters are expanded as linear 
combinations of a set of basis functions .In this article, time poly nominal is chosen as basis 
function. Non stationary signal IF is estimated by calculating the angles of the roots (poles) of the 
time-varying autoregressive polynomial at every sample instant. We propose modified covariance 
method that utilizes both the time varying forward and backward linear predictors for estimating 
the time-varying parameters and then IF estimate. It is shown that performance of proposed 
modified covariance method is superior than existing covariance method which uses only forward 
linear predictor for estimating the time-varying parameters. The IF evaluation based on TVAR 
modeling requires efficient estimation of the time-varying coefficients by solving a set of linear 
equations referred as the general covariance equations. When covariance matrix is of high order, 
usual approach such as Gaussian elimination or direct matrix inversion is computationally 
incompetent for solving such a structure of equations. We apply recursive algorithm to 
competently invert the covariance matrix, by means of Wax-Kailath algorithm which exploits the 
block-Toeplitz arrangement of the covariance matrix for its recursive inversion, which is the 
central part of this article. The order determination of TVAR model is addressed by means of the 
maximum likelihood estimation (MLE) algorithm. 
 
Keywords: Basis Functions, Instantaneous Frequency Estimation, Maximum Likelihood 
Estimation, Time-Varying Autoregressive Model, Wax-kailath Algorithm. 

 
 
1. INTRODUCTION 
Non-Stationary signals are modeled using time-varying autoregressive (TVAR) model, the time-
varying frequency of a non-stationary signal is extracted from the time-varying parameters of the 
TVAR model.  
 
There are different methods in literature for estimating the IF of non stationary signals and they 
are generally classified as non-parametric and parametric methods. In non-parametric methods 
we do not require any priori information regarding the characteristics of a signal and several of 
these techniques are based on the time-frequency distribution (TFD) of the signal. In the methods 
based on TFD, the IF is predicted from the peak of the TFD or its first moment [1]. Two familiar 



 
G. Ravi Shankar Reddy & Rameshwar Rao 
 
 

Signal Processing : An International Journal (SPIJ), Volume (8) : Issue (4) : 2014                                        44 

TFDs used are short-time Fourier transform (STFT) and Wigner-Ville distribution (WVD). The 
STFT is computationally competent but has inadequate time-frequency resolution resulting in 
poor IF estimation. Whereas WVD is most favorable for linear FM signals at modest to high SNRs 
[1], but a non-linear FM signal, low SNR, or inadequate frequency interpolation is found to 
saturate the performance of the WVD [2]. The low time-frequency resolution and short of 
robustness to noise are the major restrictions of the non-parametric methods. These methods do 
not require any priori information regarding the signal, into the IF estimation procedure. 
 
Parametric methods for IF estimation are designed for applications in which some information, 
typically on how a signal is generated is present in advance. These methods use such 
information regarding the signal and provide robustness to noise, high-resolution, and a more 
precise IF estimate as it is free of frequency quantization errors. These are also based on 
modeling the non-stationary signal by means of some parameters (coefficients) and IF estimates 
that are derived from these parameters. In parametric IF estimation the important step is to 
choose a suitable model for the signal from a priori information on how the signal is produced (or) 
from experimental outcome and that validate the choice of a particular model. The most 
commonly used models for non-stationary signals are TVAR, TVMA, TVARMA models and the 
model used in this article is TVAR model. 
 
Estimation of the TVAR parameters can be classified into one of the two categories as      the 
adaptive technique and the basis function approach, based on the description of the time-variant 
parameters. In the first group, the time-varying parameters are defined by means of a dynamic 
model as  [n] =  [n-1] + ∆ , where  [n] be the parameters of the TVAR model, and n is 
discrete time from 0 to N. In this case, the parameters  [n] are updated depending on the utilized 
adaptive algorithms, such as the steepest descent, LMS, and RLS algorithms, and can be 
processed in real time. In number of research areas and applications such as the online noise 
cancellation and the adaptive estimation the TVAR model designed using this technique is 
accepted the most.  

In the second group, autoregressive process of modeling a non stationary discrete time signal 
with time-varying coefficients was proposed by Rao [4] in 1970. He introduced the idea of 
approximating the time-varying coefficients by means of a weighted linear combination of a small 
set of time functions referred as the basis functions. This technique was later used for linear 
estimation of time-varying signals by Liporace [5] in 1975 and applied to time-varying linear 
predictive coding (LPC) of speech by Hall, Oppenheim, and Willsky [6] in 1977. A heuristic 
treatment of time-dependent ARMA modeling of non stationary stochastic process and their 
application toward time-varying spectral estimation was provided by Grenier [3] in 1983. Later, 
time-varying autoregressive (TVAR) modeling based IF estimation of non stationary signals was 
proposed by Sharman and Friedlander [7] in 1984. In this technique, the IF estimates of the FM 
components for non stationary signals are taken as the angles of the roots (poles) of the time-
varying autoregressive polynomial at every sample instant.  

The TVAR parameters are clearly defined as linear combination of weighted time-dependent 

functions where a number of constants in the summation are and  

are a number of predefined basis functions. The TVAR parameters in this description are 

designed via block estimation, completed in two steps. In first step  are estimated by means 
of the total information from time 0 to N-1, which typically involves in solving a set of linear 
equations. In the next step, the time-varying parameters  are computed from their description 

as the summation of the weighted basis-functions. Different sets of basis-functions have been 
used by different researchers but there is no consistent rule to designate which category should 
be adopted also the approach of choosing the significant basis function is based on trial and 
error. 
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The adaptive algorithms are able to track the slowly time-varying frequencies, but they are not 
able to track rapidly time-varying frequencies, and are also sensitive to the noise. The sensitivity 
to the noise can be reduced by increasing the forgetting factor or step size of adaptive algorithms, 
but at the cost of convergence rate of the adaptive algorithms and ability of tracking the 
parameter change. Still they were capable in tracking the frequency jump. Also the basis function 
technique is capable of tracking equally the fast (or) the slow time-varying frequencies. But the 
choice of the TVAR model order and the basis function is disputed since there is no fundamental 
theorem on how to choose them. 

In this paper a new forward-backward prediction (modified covariance)approach based on basis 
functions for time-varying frequency estimation of the non stationary signal in a noisy environment 
is proposed. It is shown that our approach yields better accuracy than the existing covariance 
approach, which uses only the forward predictor. 

The article is presented as follows. It explains the Time-varying Autoregressive modeling in 
section 2. In section 3 it explains the selection of basis function and TVAR model order 
determination by means of Maximum likelihood estimator. We briefly give details about the Wax-
kailath algorithm to estimate the TVAR parameters in section 4. In section 5 it gives the steps to 
estimate IF based on TVAR model. The investigational results of estimating IF in noisy 
environment are presented in section 6.Concluding remarks are given in section7. 

2. TVAR MODELING 
 The non stationary discrete-time stochastic process  is represented by p

th
 order TVAR model 

as 

 

 
Here  are time-varying coefficients and   is a stationary white noise process 

with zero mean and variance  According to the time -varying coefficients evolution, TVAR 
model is likely to be categorized in to two groups i.e. adaptive method and basis function 
approach. 
 
TVAR model based on the basis function technique is able to trace a strong non-stationary signal 
that is why this model is focused in the present study. In this technique, each of its time-varying 
coefficients are modeled as linear combination of a set of basis functions. The purpose of the 
basis is to permit fast and smooth time variation of the coefficients. If we denote as the basis 

function and consider a set of (q + 1) function for a given model, we can state the TVAR 
coefficients in general as 
 

 

 
In the basis function approach not only the model order p, but also the basis functions , and 

the order of the basis q must be chosen. From(2)we examine that, we have to calculate the set of 
parameters  for {k=1,2,........,p; m=0,1,2,............,q; =1} in order to compute the TVAR 
coefficients ,and the TVAR model is absolutely specified by this set. The estimation by the 

basis function approach is to calculate not the time-varying parameters , but the unknown 

constant coefficients . 
 
To compute TVAR parameters we have two different methods, namely, Autocorrelation Method, 
Covariance Method. TVAR model using Autocorrelation Method was observed that the accuracy 
of the frequency estimation is poor. TVAR model using Covariance Method, performs much better 
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than Autocorrelation method, was observed to have yielded a frequency estimate, which was 
about one-step delay of the true frequency.   In addition ,by using TVAR model using Covariance 
Method, the frequency estimate at the time instant n=0,1,2,……..p-1 was unavailable, since the 
calculation must be delayed p steps before it could be started.  
 
In this article we propose a Modified Covariance method by applying a combination of a  time 
varying forward and a backward linear estimators that results in no delay of the frequency 
estimate (i.e. frequency can be estimated from n=0,1,…..N-1. And the frequency estimate is also 
about the true frequency).In the case in which the model order was over determined, the 
performance of the proposed method in time-varying frequency estimation is much better than the 
Autocorrelation and Covariance methods. The non stationary signal is predicted using the TVAR 
parameters  as shown below 

 

 

 
2.1. Modified Covariance Method    
In order to compute TVAR parameters we propose modified Covariance method. The TVAR 
parameters are calculated by minimizing both, time varying forward and backward prediction 
errors. The above mentioned method is carried out by following below given steps. Let us 
assume data  is available for 0,1,2.......N-1 time instants. Time varying forward linear prediction 
of  can be defined as 
 

 

 
And Time varying backward linear prediction of  can be defined as 
 

 

 
Time varying forward linear Prediction error is defined as 
 

 

 

 

 
And Time varying backward linear prediction error is defined as 
 

 
 
 
 It was shown in Marple (1987), Manolakis et al. (2005) that the forward and backward linear 
prediction parameters for a stationary random process are simply complex conjugates. In the Non 
stationary case we assume 
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Time varying forward and Backward Mean Square Prediction Error  

 

 

   Since  and  are equal, the above equal can be written as 

 

 

 

 

 
To minimize the above equation we perform derivative with respect to  and equate to zero 

i.e.    

 

 

 
Equating above term to zero we get 
 

 

 

 

 
Define the functions 
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Using the equations (15) and (16) the equation (14) can be rewritten as  

 

 
 
The above equation represents a system of p(q+1) linear equations. The above system of linear 
equations can be efficiently represented in matrix form as follows. 
 
Define a column vector   as follows 
 

 

 
 

 
 
We can use the function (15) to find the following matrix for    
 
 

 

 
 
The above matrix is of size pxp and all the different values for m and g resulting in (q+1)x(q+1) 
such matrices, by means of these matrices, we can now describe a block matrix as shown below,   
 

 

 
The above Block matrix C has (q+1)x(q+1) elements and each element is a matrix of size pxp, 
which implies the Block matrix C of size p(q+1)x p(q+1). 
 
Now we describe a column vector  as shown below 

 
 

 
 

 
By using the definitions from (18)-(21) we can represent the system of linear equations in (17) in 
a compact matrix form as follows 
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The above equations reduce to the Yule-walker equations (YWE) for a stationary AR model,       
as soon as q=0.By solving the above matrix equation, we can obtain the set of TVAR parameters 

 (elements of ), the predictor coefficients  can now be calculated using (2).  The direct 

(or) iterative techniques are available for solving the matrix (22).Examples for the direct method 
are the Gaussian elimination, QR and SVD factorizations. In the direct technique using Gaussian 
elimination which requires O (p

3
 (q+1)

3
) calculations, In case when q is large, the number of 

computations may be huge, and is not an efficient technique to solve the linear system. We deal 
with the iterative technique to solve the above linear system in section 4. 

 
3. PARAMETER SELECTION 
The TVAR parameter selection is basically depends on three degrees of freedom, such as the 
TVAR model order p, the basis function order q, and the set of basis functions . 

 
 3.1. Choice of the Basis Functions 

The basis functions  must be independent and non-zero for n=0,1,…..N-1,and =1 ,if 

n=0.If a priori information about the signal variation is known, the basis functions should be 
chosen such that the trends in parameter change is retained. In case, when a priori information is 
unavailable selection of basis is trial and error. 
 
According to equation (2), no particular constraint is imposed on the basis consequently; 

one will be able to track only variations which are approximable by this set of functions. 
Numerous solutions have been projected, in the literature such as time basis functions, Legendre 
polynomial, Chebyshev polynomial, Discrete prolate spheroidal sequence (DPSS), Fourier basis, 
Discrete cosine basis, Walsh basis, Multi wavelet basis, Discrete karhunen-loeve 
transform(DKLT)[8], none of these solutions seems to be perfect, since the selection of  

desires some priori information upon the time variations present in . Then again, basis such as 
DPSS, DKLT are extremely tough to generate. We propose here to apply traditional polynomial 
functions (namely time polynomial, Legendre polynomials, and Chebyshev polynomials) since 
their realization is easy, and they can fairly accurate a broad range of variations. In this article, we 
employ basis functions that are powers of the time variable n (time basis function) as given 
below, 

   (23) 

  N denotes the length of the data record that is being modeled 
 
3.2 Order Selection 
In the presence of noise TVAR model can distinguish several time-varying spectral peaks well, 
however it is sensitive to model order change, and false spectral peaks may be produced by the 
TVAR modeling approach, when an erroneous model order is chosen. Thus, the determination of 
right model order in TVAR modeling is a significant issue. There are few techniques in choice of 
TVAR model order. For instance, Bayesian technique [8] and Akaike information criterion (AIC) 
[9] are used for the determination of model orders in TVAR models. In this article, we consider the 
choice of the model order as a Maximum-likelihood (ML) estimation [10] technique. In this 
technique, by maximizing the likelihood function we can determine the model order. 
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Maximum likelihood estimation (MLE)  
The maximum likelihood method for the determination of the TVAR model order, summarized in 
the following, where the vector C in the estimation [10] is modified to comply with our proposed 
method. 
 
Time varying forward linear Prediction error is  
 

 

 
Can be written as 
 

 

 
Time varying   backward linear Prediction error is  
 

 

 
Can be written as 
 

 
 
Where 
 

 
 

    
 
  Here,    denote Kronecker multiplication.  
 

Where vector , ,  are defined below 
 

 

 

 

 

 

 

 

 
Here 
 

 

 
Step-1: compute  
 

(27) 
 

(28) 
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Step-2: calculate  
 

 

 
Step-3: Estimate  
 

 

 
Step-4: Obtain the cost function 
 

 

 
Step-5: Maximize the above cost function to select the basis function order q=  and the model 

Order   p=  where and    

 
4. WAX-KAILATH ALGORITHM  
Computationally efficient inversion of block-Toeplitz matrix with Hermitian-Toeplitz blocks is an 
area of noteworthy research attention since it is used in a diversity of applications such as IF 
estimation based on TVAR model, co channel interference mitigation in cellular communication 
systems, equalization of time-varying multipath fading of wireless channels and multichannel 
filtering. The Wax-Kailath algorithm [12] can be used to competently invert a block-Toeplitz matrix 
with Hermitian-Toeplitz blocks. 
 
The calculation of the TVAR parameters  by solving Ca = −d is one of the difficult aspects in 
TVAR based IF estimation. The direct (or) iterative techniques are available for solving the matrix. 
In the direct technique by means of Gaussian elimination which require O(p

3
(q+1)

3
)Calculations, 

and is not an competent technique to solve the linear system. Hence, for realistic execution of IF 
estimation the recursive and competent inversion of C is necessary. When the covariance (or) 
modified covariance method by means of time polynomial basis functions is used for TVAR 
modeling, interestingly the covariance matrix C is found to have Hermitian block-Hankel 
arrangement. We can translate this block-Hankel arrangement to a block-Toeplitz arrangement 
by rewriting the system of equations. By adding an appropriate error matrix to this block-Toeplitz 
matrix we can obtain block-Toeplitz matrix with Hermitian-Toeplitz blocks. The Wax-Kailath 
algorithm can be used to competently invert this matrix, which involves only O(p

3
(q+1)

2
) 

calculations. 
 
The Covariance matrix C in equation (22) has a Hermitian block-Hankel arrangement. To convert 
C to a block-Toeplitz arrangement, we revise equation (22) as shown below. 
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The matrix  in the above equation has block-Toeplitz structure with the individual blocks that 

are Hermitian as well as being close to Toeplitz. Consequently, we add a suitable error matrix E 
to to get a block-Toeplitz matrix  with Hermitian-Toeplitz blocks, which are then inverted 

using Wax-Kailath Algorithm. 
 
By using m and g to index the blocks, the error matrix E can be formed as follows,  
 

 

 
Here indicate the blocks in  and is the equivalent Toeplitz block.  

 
The Hermitian-Toeplitz blocks are formed as shown below, 
 

 

 
 

 
 
 Here, the function diag extract the i

th
 diagonal of the matrix unction mean, calculates 

the mean of the   i
th
 diagonal, at last, the function toeplitz forms a Hermitian-Toeplitz matrix whose 

foremost row elements equivalent to the mean of the diagonals. Using the above equation, we 
get  and calculate  to form the error matrix E. 

 
 

 
The  can be computed as 

 
 

 
Where  is a block-Toeplitz matrix with Hermitian-Toeplitz blocks of size p(q+1) x p(q+1) as 

shown below  
 

 

 
Here 
 
  and  for i=0,1,………..q are pxp matrices having Hermitian-Toeplitz arrangement as shown 
below 
 

 

 
Now we describe a p(q+1) x p(q+1) exchange matrix  as shown below, 
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Here,  is a p x p matrix obtained by reversing the identity matrix, columns 

 

                                                                                                       (39) 

 
Here,  is the p x p zero matrix. 
 
 
4.1. Wax-Kailath Recursions 
The matrices  for i =1to q+1 contain nested structure and we can characterize these as  

 

 

 
Here  
 

 

 

and    
 
To invert a partitioned block matrix, consider the following formula 
 

 

 
Here the matrices A and D have to be invertible. Using the above formula we have, 
 

 

 
Here 

(44) 

 

 

 

 

 
Consequently, 
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To calculate the above inverse recursively, we require to build up recursive relations for 

.To get the recursive relations; we first initiate the following notations, 
 

 

 

 

 

 

 
The Wax-Kailath Algorithm is out lined below 
  

1. Initialization (i=0): Set .calculate the following, 

  

  

  

  

  

  

2. Recursion 
For i=1 to q-1 

   

   

 Utilize the  equation    to calculate   

 Utilize the equation    to calculate  

  

  

  

 utilize equation  to calculate  

  

  for the subsequent iteration 

  

end 
 

3. After calculating the recursions, we have the following:  , and .Using these, we 

form    as follows 

  

 

 calculate  

 

 Using m and g to  directory the blocks, we use equation 
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To calculate the remaining blocks of the inverse matrix as follows, 
 
               for m=1 to q 
                   for g=1 to q 
 

                                

 
                               end 
 
                         end 
 
The inverse of the block-Toeplitz matrix  with Hermitian-Toeplitz blocks is obtained, by 

means of Wax-Kailath algorithm; nevertheless, our interest is in computing the inverse of the 
block-Toeplitz covariance matrix with Hermitian blocks.From equation(36)we have

the inverse of the is , Can be computed by means of 

Neumann series 
 
 
4.2. Neumann Series 
Using the Wax-Kailath algorithm, we have obtained the inverse matrix of the block-Toepliitz 
matrix  with Hermitian-Toeplitz blocks.However, our interest is in computing the inverse of 

the block-Toeplitz covariance matrix  with Hermitian blocks. 

 
Using Neumann series  can be written as 

 

 

 

Where  is the maximum absolute 

eigenvalue of  which also imply, 

 

  

 
 
If the series converges, we are able to approximate  by means of a finite number of 

iterations and we can calculate the solution vector estimate. .Using this estimate we 

can calculate an estimate of the solution of the linear system of equations C =-d as follows. 
 

 

 
Where 

  

 
Here,  is the p x p identity matrix and  is the p x p zero matrix. The elements of  are the 

 elements in equation (2), subsequently calculate the TVAR parameters  as follows 
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5. TVAR MODEL BASED IF ESTIMATION 
Step1: Compute TVAR model order p and q using MLE algorithm, choose the basis 

function   m=1,2……q 

             
Step2: Compute by means of equation (15) to find the matrix  in (19), subsequently 

set up the matrix  C in (20), as well; use  to calculate in (21) 

 
Step3: Using Wax-kailath algorithm and Neumann series, Calculate the TVAR parameters   

by solving C = -d, and form the coefficients   using (2) 

 
step4: Solve the roots of the time-varying autoregressive polynomial formed by TVAR linear  

prediction filter.  A(z; n)   at each instant n to find the time-varying Poles: , 

i=1, 2.....p 
 
Step5: For the real signals the roots obtained are complex conjugate to each other, for IF 
estimation consider the poles that lie either upper half (or) lower half of the Z-plane, let these 

poles are denoted by  

 
Step6: The instantaneous frequency of the non stationary signal, for each sample instant n can 

be estimated from the instantaneous angles of the poles using the formula =   for 

1 

            

 
6. SIMULATION RESULTS 
In this section we examine the performance of the proposed method and compare the results with 
that of the covariance method. To investigate the ability of the proposed method .The proposed 
method were tested, in a noisy environment, to estimate the time varying frequencies of two 
signals that have only a single frequency component. The signals were real and generated such 
that their frequencies were exactly known. 
 
The first signal is a real chirp signal whose normalized frequency increased linearly from 0.1 Fs to 
0.4 Fs over 32 samples, where Fs = sampling frequency. 
 
 The second signal is sinusoid whose normalized frequency varies periodically from 0.1 Fs to 0.3 
Fs with a sweep rate of 0.05 Fs. 
 
For the above signals, TVAR parameters are estimated by means of Wax-kailath algorithm and 
Neumann series, from these parameters we have estimated IF, Time-varying power spectral 
density, and also the signal prediction 
 
6.1. Linear Chirp Signal 
Here we express TVAR based IF estimation of linear chirp signal in the presence of white noise. 
We consider linear chirp signal whose frequency varies linearly from 0.1Fs to 0.4Fs over N=32 
samples, generated using equation  
 

    
 
Where  
sampling rate Fs=1Hz. 
 
 The IF law of the above linear chirp signal is 
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The above signal is corrupted by means of a complex additive white Gaussian noise (AWGN) at 
SNR=20 dB. Using Maximum likely hood estimation algorithm we have calculated the TVAR 
model order p=2 and q=4.For the modified covariance technique the time polynomial basis 
function description is adapted as shown below 
 

                                     (55) 

 
For p=2, q=4 and N=32, plot of the above basis function is revealed in Figure (1). The plot of the 
signal is revealed in Figure(2). A plot of the TVAR coefficients  is shown in Figure(3).This 

particular choice of basis functions results in a modified covariance matrix C that has a block-
Hankel structure which can be exploited for computationally more efficient solutions.  
From Figure (4) we observe that the poles are close to the unit circle as expected. For every 
sample instant n, IF estimate of linear chirp signal is found by calculating the angles of the poles 
that lie in upper half of z plane, and then angles are divided by .The true IF & estimated IF of 
the linear chirp signal using covariance and modified covariance methods are revealed in 
Figure(5).We observe that the TVAR based technique has resulted in really nice IF estimation. 
The mean square error (MSE) among the true IF and estimated IF is calculated to be -46.7063 
dB for covariance method and -57.3517dB for modified covariance method. We also observed 
that the performance of modified covariance method is superior than the covariance method.  

 The TVAR coefficients  can also be used to predict the non stationary process  by means 

of equation(3).For the modified covariance technique, the parameters can be calculated only 

for n=2,3,…….32.Consequently,the prediction  is also available simply for this interval. The 
samples  and  in this simulation illustration are used as initial setting for the time-varying 
prediction error filter. The original data record in addition to the TVAR prediction are revealed 
in Figure(6).We observe that the TVAR model has effectively predicted .The average squared 
prediction error is calculated  to be 0.1432.   Although TVAR based IF estimation do not use a 
time frequency distribution (TFD) (or) the time-varying power spectrum, it is helpful to look at the 
TFD obtained from the TVAR model. The time-varying power spectral density is specified by 

,P (f; n) =                                                                                         (56)          

Where 

 are TVAR coefficients,  

 and is  

(57)          

A plot of the time-frequency distribution for the TVAR model obtained in Figure (7).At every 
sample instant, the TFD is projected to comprise peaks at the IF estimates at that instant. To 
demonstrate this, we also illustrate the corresponding flat time-frequency view of the TFD in 
Figure(8).The time-frequency view of the TFD in Figure(8)clearly shows that the TFD peaks are 
consistent with the IF estimate and the true IF shown in Figure(5).The presented example shows 
that a TVAR based method works well for signals containing chirp signal whose frequency varies 
linearly           
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FIGURE 1: The Basis Function Set . 

 

Figure 2: Linear Chirp signal. 

 
 

FIGURE 3: Estimated TVAR Coefficients  used for a Linear Chirp Signal. 

 



 
G. Ravi Shankar Reddy & Rameshwar Rao 
 
 

Signal Processing : An International Journal (SPIJ), Volume (8) : Issue (4) : 2014                                        59 

 

FIGURE 4: Trajectory of Time-varying Poles used for a Linear Chirp Signal. 

 

FIGURE 5: True and Estimated IF of Linear Chirp Signal. 

 

FIGURE 6: Comparison of Original Data and TVAR Prediction for Linear Chirp signal. 
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FIGURE 7: Time varying power spectrum of the TVAR Model of linear Chirp signal. 

 

FIGURE 8: Time-Frequency View of the TFD. 

 
6.2. Non stationary Sinusoidal signal  
 Many of the IF estimation techniques such as adaptive filtering approaches try to track the 
IF.Generally,tracking approaches take time to converge and cannot respond to rapid and/or non-
linear frequency variations. In this section, we demonstrate that the TVAR based IF estimation is 
very effective for practical situations where the IF law is non-linear. 
 
We consider non stationary sinusoidal signal whose normalized frequency varies periodically 
from 0.1 to 0.35 over N=32 samples, generated using equation 

(58) 

Where Fs is the sampling frequency Fs =3 

The IF law is specified by, 

                                                                                     (59) 
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The above signal is corrupted by means of a complex additive white Gaussian noise (AWGN) at 
SNR=20dB.Using Maximum-likely hood estimation algorithm we have computed the TVAR model 
order p=2 and q=6. The basis functions used in this simulation is the time polynomial basis 
function.  
 

  

The basis functions used in this simulation comprise the equivalent form as in the linear Chirp 
Signal except that here we have a set of 6.A plot of signal  is revealed in Figure (9).A plot of the 
TVAR coefficients  obtained for this signal is exposed in Figure (10).A plot of the trajectory of 

time-varying poles is revealed in Figure (11). 

From the trajectory of the time-varying poles revealed in Figure (11) we observe that poles 
corresponding to the non stationary sinusoidal signal are close to unit circle. The true and 
estimated IF of the non stationary sinusoidal signal is revealed in Figure (12).  From Figure (12), 
we observe that the TVAR based technique have resulted in really nice IF estimation. The mean 

square error (MSE) among the true IF and estimated IF  for n=2,3,………..32 is calculated  

to -37.4119dB for covariance method and - 48.0573dB for modified covariance method .We also 
observed that the modified covariance method performance is superior to the covariance method.  

The original data record  and the TVAR prediction are revealed in Figure (13).The Figure 
shows successful prediction of  with an Average square prediction error=0.1817.Time varying 
power spectral density of non stationary sinusoidal signal is obtained using equation (56) and 
corresponding plot is shown in Figure (14).At every sample instant, the TFD is projected to 
comprise peaks at the IF estimates at that instant. To demonstrate this, we also illustrate the 
corresponding flat time-frequency view of the TFD in Figure(15). 

 

 

Figure 9: The non stationary sinusoidal signal. 



 
G. Ravi Shankar Reddy & Rameshwar Rao 
 
 

Signal Processing : An International Journal (SPIJ), Volume (8) : Issue (4) : 2014                                        62 

 

FIGURE 10: Estimated TVAR Coefficients  for non stationary sinusoidal signal. 

 
 

FIGURE 11: Trajectory of Time-varying poles used for non stationary sinusoidal signal. 

                   

 
FIGURE 12: True and Estimated IF of non stationary sinusoidal signal. 
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FIGURE 13: Comparison of TVAR prediction and original Data for non stationary sinusoidal signal 

.  

Figure 14: Time varying power spectrum of the TVAR model of non stationary Sinusoidal signal. 

               

Figure 15: Time-Frequency View of the TFD of non stationary sinusoidal signal. 
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7. CONCLUSIONS 
In this article we presented the IF estimation method based on TVAR model. The simulations 
results are presented for two types of signals to demonstrate that this technique works well for 
linear and non-linear IF laws in the presence of small data records. We also proved that the 
performance of modified covariance method is superior to covariance method for TVAR model. 
The computation of the TVAR parameters  is one of the difficult aspects in implementing IF 
estimation based on TVAR model. The Wax-Kailath algorithm for efficient inversion of a modified 
covariance matrix are presented which can lead to efficient estimation of the time-varying 
coefficients of a TVAR model. The estimation of TVAR model order is also addressed by means 
of MLE algorithm. In addition to IF estimation this article demonstrates the computation of Time-
varying power spectral densities and Non stationary signal prediction from the estimated TVAR 
parameters. 
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