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Abstract 
 
This paper presents an iterative soft decision based complex multiple input multiple output 
(MIMO) decoding algorithm, which reduces the complexity of Maximum Likelihood (ML) detector. 
We develop a novel iterative complex K-best decoder exploiting the techniques of lattice 
reduction for 8 × 8 MIMO. Besides list size, a new adjustable variable has been introduced in 
order to control the on-demand child expansion. Following this method, we obtain 6.9 to 8.0 dB 
improvement over real domain K-best decoder and 1.4 to 2.5 dB better performance compared to 
iterative conventional complex decoder for 4th iteration and 64-QAM modulation scheme. We 
also demonstrate the significance of new parameter on bit error rate. The proposed decoder not 
only increases the performance, but also reduces the computational complexity to a certain level. 

 
Keywords: Complex K-best Algorithm, MIMO, Lattice Reduction, Iterative Soft Decoding, SE 
Enumeration. 

 
 
1. INTRODUCTION 

With the advancement of wireless system, MIMO has been acclaimed by different wireless 
standards such as IEEE 802.11n, IEEE 802.16e to achieve high data rates and performance with 
ML or near-ML algorithms. Most of these standards have a specified minimum error rate to 
guarantee quality of service (QoS), which  is either in bit error rate (BER) or packet error rate 
(PER) (e.g., 10�� is specified as maximum tolerable BER according to IEEE 802.11n standard 
[1]). 
 
The main challenge behind MIMO system is maintaining the performance of the receiver with low 
complexity. Several algorithms have been proposed to address the issue, offering different 
tradeoffs between complexity and performance. The ML detector minimizes BER performance 
through exhaustive search. However, with increased number of transmitting and receiving 
antennas, and bits in modulation, the complexity grows exponentially [2, 3]. In contrast, sub-
optimal detectors with polynomial complexity such as zero forcing (ZF), minimum mean square 
error (MMSE) detectors etc. have been developed with significant performance loss. 
 
Recently, lattice reduction (LR) has been proposed in order to achieve high performance, yielding 
much less complexity than the conventional K-best decoder [4, 5, 6]. LR-aided detector can 
achieve the same diversity as of ML at the cost of some performance loss [7, 8]. Later, it is 
implemented in complex domain [9]. All of these suboptimal detectors mentioned above were 
based on hard decision. Therefore, soft input-soft output (SISO) detectors, suitable for 
subsequent iterative decoding are introduced in [10]. 
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Researchers further improved these SISO detectors with low density parity check (LDPC) 
decoder [10, 11]. The output of LDPC decoder is fed back to the detector for updating the soft 
value in order to achieve better performance. This is called iterative decoding. It can achieve near 
Shannon performance with less computational complexity compared to other near Shannon 
decoders [12]. 
 
This paper presents an iterative soft decision based complex K-best decoder, which enables the 
utility of lattice reduction and complex SE enumeration in MIMO decoder. For soft decoding, the 
log likelihood ratio (LLR) values for LDPC decoder are first computed from the K best candidates 
and then, they are fed back to LLR update unit as inputs to the next iteration. This process of 
iterations is continued until the gain of subsequent iteration becomes saturated. Then, the last 
updated LLR values are forwarded to the LDPC decoder for final detection. Besides list size K, a 
new tunable parameter Rlimit is introduced in order to enable adaption of the computation of on-
demand child expansion for choosing the list candidates. 
 
We compare the results of our proposed decoder with those of iterative conventional complex 
decoder in [11] and LR-aided real decoder in [13]. For 8 × 8 MIMO, it achieves 6.9 to 8.0 dB 
improvement over real domain K-best decoder and 1.4 to 2.5 dB better performance comparing 
to conventional complex K-best decoder for 4th iteration and 64 QAM modulation scheme. If we 
consider only 1st iteration, the gain increases to more than 9.0 dB and 2.9 dB comparing with 
iterative real and complex decoder respectively. This provides significant gain in terms of practical 
execution. The effect of Rlimit is also analyzed to achieve the maximum performance. The 
introduction of Rlimit also leads to complexity reduction significantly. 
 
The rest of the paper is organized as follow. In Section II we introduce soft decision based 
complex MIMO decoding algorithm. Then, Section III presents the results of our studied cases 
and Section IV concludes this paper with a brief overview. 

 
2. SYSTEM MODEL 

Let us consider a MIMO system operating in M-QAM modulation scheme and having N� transmit 

antenna and N
 receiving antenna as: 

 � = � + �, (1) 

 

where  s = [s� , s�, ….  s��]� is the transmitted complex vector,  is complex channel matrix and y = [y� , y�, ….  y��]� is the symbol of N
 dimensional received complex vector. Noise is a N
 dimensional complex additive white Gaussian noise (AWGN) with variance and power σ� and �� respectively. Noise can be represented by � = [n� , n�, ….  n��]�.   

 

The detector solves for the transmitted signal by solving non-deterministic hard problem: 

s! = arg%&∈()� min‖y − Hs&‖� . (2) 

Here, s& is the candidate complex vector, and s! is the estimated transmitted vector [8]. In the 

expression, ∥. ∥ denotes 2-norm. This MIMO detection problem can be represented as the closest 

point problem in [14], which is an exhaustive tree search through all the set of all possible lattice 

points in �̃ ∈  S��  for the global best in terms of Euclidean distance between � and �̃. Each 

transmit antenna offers two level of search for real-domain MIMO detection: one for real and the 

other for imaginary part. However, in complex domain detection method, only one level of search 

is required for each antenna. 
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ML detector performs a tree search through the set of all possible branches from root to node, 

thereby achieves the best performance. However, its complexity increases exponentially with the 

number of antennas and constellation bits. Therefore, suboptimal detectors such as LR-aided 

detector comes into consideration.  

 

2.1 LR-aided Decoder 
Lattice reduction provides more orthogonal basis with short basis vector from a given integer 

lattice. Hence, it effectively reduces the effects of noise and mitigates error propagation in MIMO 

detection. Since lattice reduction is most effective for unconstrained boundary, the following 

change is made to (2) to obtain a relaxed search. 

s! = arg%&∈2)� min‖y − Hs&‖� , (3) 

where 2 is unconstrained complex constellation set 3… , −3 + j, −1 − j, −1 + j, 1 − j, … 6. Hence, s! may not be a valid constellation point. This is resolved by quantizing s! =  7 8s!9 , where 78. 9 is 

the symbol wise quantizer to the constellation set S. 

 

However, this type of naive lattice reduction (NLD) does not acquire good diversity multiplexing 

tradeoff (DMT) optimality. Hence, MMSE regularization is employed as proposed in [15, 16], 

where the channel matrix and received vector are extended as : and �;: 

H: =  < H
= N�2σ�� I��@, y; =  A y0��×�B, (4) 

where 0��×� is a N� × 1 zero matrix and I�� is a N� × N� complex identity matrix [17, 18]. Then, 

Eq. (3) can be represented as: 

s! = arg%&∈2)� min‖y; − H:s&‖� . (5) 

 

Hence, lattice reduction is applied to : to obtain C =  :D , where D is a unimodular matrix. Eq. (5) 

then become:  

s! = T arg  minF&∈2)�  GHy& −  HCz&H� +  81 + j9��×�J, (6) 

where  y& = 8y; −  H:81 + j9��×K9/2 is the complex received signal vector and 1���×� is a 2N� × 1 

one matrix. After shifting and scaling, (6) became the following one.   

s! = Tz& +  81 + j9��×� . (7) 

Lattice reduction is an NP complete problem. However, polynomial time algorithms such as 

Lenstra-Lenstra-Lovasz (LLL) algorithm in [19] can find near orthogonal short basis vectors. 

 

2.2  Complex K-Best LR-Aided MIMO Detection 

Complex K-best LR-aided detection offers a breadth first tree search algorithm, which is 

performed sequentially starting at �MN-level. First, it requires QR decomposition on HC = QR,  
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where Q is a 8N
 +  N�9  ×  8N
triangular matrix. Then (6) is reformulated as

s! = T arg  minF&∈2)�

where yQ =  Q�y& . The error at each step is measured by the partial

which is an accumulated error at a given level of

selected and passed to the next lev

tree are evaluated to find the one

parent in LR-aided K-best algorithm is 

children issue is addressed by calculating K best candidates using complex on

expansion. 

 
2.3  Complex On-demand Expansion

Complex on-demand expansion ex

20]. The strategy employs expanding of a node (child) if and only if all of it

already been expanded and chosen as the partial candidates

non-decreasing error, K candidates are selected. In conventional complex SE enumeration, 

expansion of a child can be of two types: Type I, where the expanded child has same imaginary 

part as its parent, i.e. enumerating

example of conventional complex on

 
First received symbol is rounded to the nearest integer as shown in Fig. 1(a), which includes 

quantizing of both real and imaginary components of the signal to the nearest integer. Type

candidate will be expanded two times along real and imaginary axis u

the two expanded nodes are considered candidates, as demonstrated in Fig. 1(b). Then, the one 

with the minimum PED is chosen, and expanded for further calculation depending on the type. As 

in Fig. 1(c), the chosen node is of type I

is of Type II, as shown in Fig. 1(d), it will be expanded only along imaginary axis.

 

The number of nodes needs expanded 

complexity analysis. The worst case scenario will be if all the nodes chosen are of type I. Then, at 

an arbitrary level of tree, the number of expanded nodes is bounded by 

the entire tree, the complexity for the search becomes 
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8N
 +  N�9 orthonormal matrix and R is a 8N
 +  N�
) is reformulated as 

 R‖yQ −  Rz&‖� +  81 + j9���×�S, 

The error at each step is measured by the partial Euclidean distance (PED), 

r at a given level of the tree. For each level, the K best nodes are 

and passed to the next level for consideration. At the end, all the K paths through the 

to find the one with minimum PED. The number of valid children for each 

best algorithm is infinite. Hence, in our proposed algorithm

children issue is addressed by calculating K best candidates using complex on

Expansion 

demand expansion exploits the principle of Schnorr-Euchner (SE) enumeration [

expanding of a node (child) if and only if all of its better siblings have 

and chosen as the partial candidates [21, 22]. Hence, in an order of strict 

decreasing error, K candidates are selected. In conventional complex SE enumeration, 

expansion of a child can be of two types: Type I, where the expanded child has same imaginary 

part as its parent, i.e. enumerating along the real axis; and Type II for all other cases. The 

example of conventional complex on-demand SE enumeration is shown in Fig. 1. 

FIGURE 1: Complex SE Enumeration. 

First received symbol is rounded to the nearest integer as shown in Fig. 1(a), which includes 

quantizing of both real and imaginary components of the signal to the nearest integer. Type

candidate will be expanded two times along real and imaginary axis using SE enumeration, and 

the two expanded nodes are considered candidates, as demonstrated in Fig. 1(b). Then, the one 

with the minimum PED is chosen, and expanded for further calculation depending on the type. As 

in Fig. 1(c), the chosen node is of type I, it will be expanded to 2 more nodes. If the chosen node 

is of Type II, as shown in Fig. 1(d), it will be expanded only along imaginary axis. 

expanded at any level of the tree is considered as measurement of 

The worst case scenario will be if all the nodes chosen are of type I. Then, at 

an arbitrary level of tree, the number of expanded nodes is bounded by K + 28K − 1
the entire tree, the complexity for the search becomes 3N�K − 2N�. Comparing with the

57 

�9  ×  N� upper 

(8) 

Euclidean distance (PED), 

, the K best nodes are 

paths through the 

The number of valid children for each 

lgorithm, the infinite 

-demand child 

enumeration [9, 

better siblings have 

. Hence, in an order of strict 

decreasing error, K candidates are selected. In conventional complex SE enumeration, 

expansion of a child can be of two types: Type I, where the expanded child has same imaginary 

ll other cases. The 

 

First received symbol is rounded to the nearest integer as shown in Fig. 1(a), which includes 

quantizing of both real and imaginary components of the signal to the nearest integer. Type-I 

sing SE enumeration, and 

the two expanded nodes are considered candidates, as demonstrated in Fig. 1(b). Then, the one 

with the minimum PED is chosen, and expanded for further calculation depending on the type. As 

, it will be expanded to 2 more nodes. If the chosen node 

considered as measurement of 

The worst case scenario will be if all the nodes chosen are of type I. Then, at 19. Taken over 

Comparing with the real 
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domain detection algorithm in [13], the number of the expanded nodes is 4N�K − 2N�. For 

instance, with K as 4 and N� equal to 8, the number of expanded node is 80 and 112 considering 

complex and real decoder respectively. Hence, complex SE enumeration requires less 

calculation, thereby reduces hardware complexity. 

 

In this paper, we introduce another parameter, Rlimit while performing the complex on demand 

child expansion. In contrast with the conventional one, the type of a child is not considered for 

further expansion. The example of improved complex SE enumeration with Rlimit as 3 is given in 

Fig. 2. 

 
 

FIGURE 2: Improved Complex SE Enumeration with Rlimit as 3. 

 
As shown in Fig. 2, after rounding the received symbol to the nearest integer, first real SE 

enumeration is performed to calculate Rlimit candidates. Hence, it means that, all the calculated 

nodes up to Rlimit will have same imaginary value, as demonstrated in Fig. 2(b). Then, the one 

with minimum PED is selected and expanded only along the imaginary axis using imaginary 

domain SE enumeration. This process is continued till K nodes are selected at that level of tree 

as presented in Fig. 2(c)-(d). 

 

The complexity analysis of the improved child expansion proceeds as follows. At any level of tree 

search, first KRlimit nodes need to be expanded. After that, only imaginary domain SE 

enumeration will be performed. Hence, considering the worst case, the total number of nodes 

calculated at each level is KRlimit + 8K − 19. For N� levels, the complexity becomes N�K 8Rlimit + 19 − N�. Therefore, introduction of Rlimit may increase the complexity as 

evidenced in result section, although offers better BER performance comparing to the 

conventional one. However, comparing with the real domain detection, the total complexity is still 

less. We have used improved complex on demand expansion to perform the list calculation and 

then the chosen K paths are passed to the iterative soft input soft output (SISO) decoder. 

 
2.4  Iterative Soft Decoding 

LDPC decoder in [12] calculates approximate LLR from the list of possible candidates using (9). 

LY8x[|Y9 ≈ �� maxx ∈ X[,   `� a− �bc ∥ y − Hs ∥�+ x[[]�  . Ld,[[]e −      �� maxx ∈ X[,   �� a �bc ∥ y − Hs ∥�+ x[[]�  . Ld,[[]e, 
(9) 

here f[g]h  and ij,[g] are the candidates values {-1 or 1} and LLR values except k-th candidate 

respectively. In order to perform the soft decoding, the LLR values are first computed at the last 
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layer of K-best search. Then, the soft values are fed into the iterative decoder for the subsequent 

iteration. This process continues until the difference in error levels between the last two iterations 

becomes negligible. Lastly, the updated LLR values are used for hard decision. 

 
From the perspective of hardware design as proposed in [16, 23], the LLR calculation unit takes 
one of the candidates at a given time and computes the LLR value. Then, the new LLR is 
compared to the maximum of previous LLRs. Hence, this unit has to keep track of 2 values for 
each LLR; one for those whose k-th bit of the candidate list is 1 (Lambda-ML), and the other for 0 
(Lamda-ML-bar). After that, the LLR values are calculated as the subtraction of Lambda-ML and 
Lambda-ML-bar divided by 2. 

 
3. SETUP AND RESULTS  
This section demonstrates the performance of the proposed iterative soft decision based complex 
K-best decoder. The test and simulation environment has been implemented using IEEE 802.11n 
standard. All the simulations are for 8 × 8 MIMO with different modulation schemes. The ratio of 
the signal and noise power is considered as signal to noise ratio (SNR). 
 
We first analyze the performance of four iterations of our proposed decoder for different 
modulation scheme. Then, the effect of Rlimit on BER performance is shown for 64QAM 
modulation scheme. Finally, we demonstrate the comparison of performance of our proposed 
work with that of iterative conventional complex decoder and real decoder for 64QAM modulation 
scheme. 
 
The total number of the nodes expanded for 8 × 8 MIMO is considered as measurement of the 
complexity analysis. For iterative real decoder, as shown in [13] the improvement gained from 3rd 
to 4th iteration is limited and negligible for iterations beyond that. Hence, we consider BER versus 
SNR curve up to four iterations in order to perform comparison among maximum performance. 
 
3.1 Simulation and Analysis 

The performance of four iterations of our proposed soft decision based complex decoder for 
QPSK modulation scheme is presented in Fig. 3. 

 
FIGURE 3: BER vs SNR curve of the first 4 iterations of iterative complex decoder for 8 x 8 MIMO system 

with K as 4 and QPSK modulation scheme. 
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As shown in Fig. 3, for QPSK modulation with list size, K of 4 and Rlimit of 4, we observe 0.4 dB 
improvement in BER due to the 2nd iteration at the BER of 10��. When we compare the 
performance of 1st iteration with 3rd and 4th one, the improvement increases to 0.7 dB and 1.0 
dB respectively. 

 
 

(a) 16 QAM (b) 64 QAM 

FIGURE 4: BER vs SNR curve of the first 4 iterations of iterative complex decoder for 8 x 8 MIMO system 
with K as 4. 

 
Next, Fig. 4 represents the performance curve of 4th iteration for 16 QAM and 64 QAM 
modulation scheme. As demonstrated in Fig. 4(a), the performance of 2nd iteration is 
approximately 0.4 dB better than the 1st one with K as 4 and Rlimit set to 4 for 16 QAM 
modulation scheme. When increasing the iteration, the performance improves by 0.8 dB for the 
3rd and 1.1 dB for the 4th iteration compared to the 1st one. 
 
For 64QAM having same K as 16QAM, the improvement due to the 2nd iteration is 0.4 dB, as 
shown in Fig. 4(b). If we then compare the 3rd and 4th iteration with respect to the 1st one, the 
improvements are 0.8 dB and 1.0 dB respectively. By extensive simulation, we observe that the 
performance does not improve beyond 4th iteration. Therefore, with iteration number, the 
performance between i-th and (i+1)-th iteration gets saturated. 

 
3.2 Effect of Rlimit on BER 

The effect of Rlimit, as discussed in section 3.2 for proposed complex on demand child expansion 
is shown in Fig. 5. It represents BER performance for the 4th iteration over different SNR 
considering 8 × 8 MIMO and 64 QAM modulation scheme with list size, K as 4. 
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FIGURE 5: BER vs SNR curve of the 

 
It is evident that if the value of Rlimit
saturates with Rlimit. On the other hand, decreasing Rlimit
Fig. 4, when Rlimit increases from 4 to 6
the Rlimit to 2 and then 1, degrades the performance 0.3 dB and 1.1
 
Similar curves can be obtained considering 1st, 2nd and 3rd iteration of proposed i
decoder for different Rlimit. By extensive simulation, we a
modulation schemes, Rlimit set to 4
Rlimit is increased, the performance does not improve.
 
3.3 Comparison of Performance

The comparison of the performance of different iteration
iterative conventional complex decoder and real decoder for 64QAM modulation scheme with K 
as 4 is presented in Fig. 6.  
 
For proposed iterative compl
performance evaluation. Simulation with Rlimit higher than 4
minimum value required to achieve the maximum performance. We consider BER versus SNR 
curve up to four iterations in order to perform comparison among maximum performa
shown in [14] . 
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BER vs SNR curve of the 4th iteration of iterative complex decoder for 8 x 8 MIMO with 64QAM 
modulation scheme having K as 4. 

that if the value of Rlimit is increased, the performance improves and then, it 
On the other hand, decreasing Rlimit will degrade BER. Hence, as shown in 

Rlimit increases from 4 to 6, the performance get saturated. However, decreasing 
the Rlimit to 2 and then 1, degrades the performance 0.3 dB and 1.1 dB respectively.

Similar curves can be obtained considering 1st, 2nd and 3rd iteration of proposed i
. By extensive simulation, we also observe that, for QPSK and 16 QAM 

modulation schemes, Rlimit set to 4 can obtain the maximum performance. Even if the value of 
is increased, the performance does not improve. 

parison of Performance 

The comparison of the performance of different iterations of our proposed work with those
x decoder and real decoder for 64QAM modulation scheme with K 

tive complex decoder, we have considered Rlimit as 1, 2 and 4
ce evaluation. Simulation with Rlimit higher than 4 is not considered, since it is the 

minimum value required to achieve the maximum performance. We consider BER versus SNR 
to four iterations in order to perform comparison among maximum performa

61 

 
MIMO with 64QAM 

es and then, it 
ce, as shown in 

rated. However, decreasing 
dB respectively. 

Similar curves can be obtained considering 1st, 2nd and 3rd iteration of proposed iterative 
lso observe that, for QPSK and 16 QAM 

formance. Even if the value of 

ed work with those of 
x decoder and real decoder for 64QAM modulation scheme with K 

ex decoder, we have considered Rlimit as 1, 2 and 4 for 
is not considered, since it is the 

minimum value required to achieve the maximum performance. We consider BER versus SNR 
to four iterations in order to perform comparison among maximum performance, as 



Mehnaz Rahman & Gwan S. Choi 

Signal Processing: An International Journal (SPIJ), Volume (9) : Issue (5) : 2015 62 

   

(a) (b) (c) 
 

FIGURE 6: BER vs SNR curves of proposed iterative complex decoder, conventional complex and 
real decoder for 8 x 8 MIMO with 64QAM modulation scheme having K as 4. For proposed 

decoder, Rlimit is set to 1, 2, and 4. 
 
As demonstrated in Fig. 6(a), a 3.4 dB improvement in performance can be achieved comparing 
the 1st iteration of proposed decoder with that of conventional iterative complex decoder with 
Rlimit as 4 at the BER of 10��. When Rlimit is changed to 2 and 1, the improvements become 3 
dB and 2.9 dB respectively. We also compare the performance of proposed decoder with that of 
the iterative real decoder for 1st iteration [14]. As presented in Fig.6(a), 9.0 dB to 9.5 dB 
improvement can be achieved using Rlimit as 1 to 4. 
 
Next, as shown in 6(b), a 1.5 dB improvement can be obtained if we consider the performance of 
1st iteration of proposed decoder with the 4th iteration of conventional complex one using Rlimit 
as 4. Decreasing Rlimit to 2 and 1 results in 1 dB and 0.8 dB improvement. Comparing to the 4th 
iteration of iterative real decoder, 6.1 dB to 6.8 dB SNR gain can be achieved using Rlimit set to 1 
to 4 respectively. 
 
Fig. 6(c) presents the comparison curves considering the 4th iteration of iterative decoders. As 
demonstrated in the figure, a 2.4 dB improvement can be obtained using Rlimit as 4 at the BER of 10�� comparing the conventional iterative complex decoder. In addition, when simulating for 
Rlimit as 2 and 1, the gain becomes 2.2 dB and 1.4 dB respectively. Similar analysis can be 
performed comparing to the 4th iteration of iterative real decoder. A gain of 6.9 dB to 8.0 dB can 
be achieved for Rlimit set to 1 to 4. 
 
Then, we have performed the computational complexity analysis for the presented work. The total 
number of the nodes expanded for 8 x 8 MIMO is considered as measurement of the analysis. 
Complexity analysis of proposed and conventional complex decoder is shown in Table 1. 
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K 

Proposed Conv. Complex Proposed vs Conv. (in dB) 

Rlimit Node Node 1st vs 1st 4th vs 4th  1st vs 4th 

4 1 56 80 2.9 1.4  0.8 

4 2 88 80 3.0 2.2  1.0 

4 4 152 80 3.4 2.5  1.5 

 

TABLE 1: Complexity Analysis of Conventional and Proposed Complex Decoder. 

 
As tabulated in Table 1, for iterative conventional complex decoder, we need to perform 80 
calculations for K equal to 4. Although our proposed decoder calculates 56, 88 and 152 nodes 
using same list size and Rlimit set to 1, 2, and 4 respectively. Hence, with less computational 
complexity, the proposed decoder can achieve 1.4 dB better performance than that of 
conventional one for the 4th iteration. However, 2.2 to 2.5 dB gain can be achieved by tolerating 
higher computational complexity using proposed complex decoder. Considering 1st iteration with 
same level of complexity, 2.9 dB to 3.4 dB gain can be achieved using proposed decoder. Next, 
complexity analysis of proposed and iterative real decoder is presented in Table 2. 
 

K 

Proposed Real Proposed vs Real (in dB) 

Rlimit Node Node 1st vs 1st 4th vs 4th  1st vs 4th 

4 1 56 112 9.0 6.9  6.1 

4 2 88 112 9.1 7.7  6.5 

4 4 152 112 9.5 8.0  6.8 

 

TABLE 2: Complexity Analysis of Iterative Real and Proposed Complex Decoder. 

 
As shown in Table 2, the number of the nodes need to be expanded for LR-aided real decoder 
[14] for list size 4 is equal to 112. Considering the same list size, proposed complex decoder 
requires 56, 88 and 152 node expansion for Rlimit set to 1, 2 and 4 respectively. Hence, 
proposed decoder can achieve 6.9 dB to 7.7 dB better performance even with less computational 
complexity comparing with the iterative real one. Allowing more complexity, can increase the 
performance to 8.0 dB. If we consider the performance of only 1st iteration, with same level of 
complexity the proposed decoder can attain 9.0 to 9.5 dB improvement comparing with the real 
one.  
 
Therefore, our iterative soft complex decoder with Rlimit offers a trade-off between performance 
and complexity for different iteration. It not only increases the performance, but also can reduce 
complexity to a certain level. 
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4. CONCLUSION 
In this paper, an iterative soft decision based complex domain K-best decoder is proposed 
exploiting the improved complex on-demand child expansion. It includes the use of LR algorithm 
in order to achieve orthogonality among the constellation points reducing the effect of noise. An 
additional parameter, Rlimit is introduced to tune the complexity of computation with improvement 
in BER performance. Reduction of computational complexity directly results to less power 
consumption of the decoder as well. 
 
We also compare the result of 4th iteration of our proposed decoder with iterative conventional 
complex decoder and obtain 1.4 to 2.5 dB improvement at the BER of 10�� for 8 × 8 MIMO and 
64 QAM modulation scheme with comparable complexity. Comparing with iterative LR-aided real 
domain decoder, the improvement increases more than 7.0 dB with less computational 
complexity. Although more than 2.9 dB and 9.0 dB gain can be achieved with same level of 
complexity comparing 1st iteration of proposed decoder with that of conventional iterative 
complex and real decoder respectively. 
 
Future work of this proposed decoder includes evaluating the detector performance using 
additional channel and simulation environment and also implementing the algorithm on FPGA 
and so on.  
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