Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Using Brain Waves as New Biometric Feature for Authenticating a Computer User in Real-Time
Kusuma Mohanchandra, Lingaraju G M, Prashanth Kambli, Vinay Krishnamurthy
Pages - 49 - 57     |    Revised - 15-05-2013     |    Published - 30-06-2013
Volume - 7   Issue - 1    |    Publication Date - June 2013  Table of Contents
Cognitive Biometrics, Authentication, Brain Computer Interface, Electroencephalogram, Power Spectral Density.
In this paper we propose an Electroencephalogram based Brain Computer Interface as a new modality for Person Authentication and develop a screen lock application that will lock and unlock the computer screen at the users will. The brain waves of the person, recorded in real time are used as password to unlock the screen. Data fusion from 14 sensors of the Emotiv headset is done to enhance the signal features. The power spectral density of the intermingle signals is computed. The channel spectral power in the frequency band of alpha, beta and gamma is used in the classification task. A two stage checking is done to authenticate the user. A proximity value of 0.78 and above is considered a good match. The percentage of accuracy in classification is found to be good. The essence of this work is that the authentication is done in real time based on the meditation task and no external stimulus is used.
CITED BY (5)  
1 Mohanchandra, K., Saha, S., & Lingaraju, G. M. (2015). EEG Based Brain Computer Interface for Speech Communication: Principles and Applications. In Brain-Computer Interfaces (pp. 273-293). Springer International Publishing.
2 Al-Hudhud, G., Alarfag, E., Alkahtani, S., Alaskar, A., Almashari, B., & Almashari, H. (2015, February). Web-based multimodal biometric authentication application. In Information Technology: Towards New Smart World (NSITNSW), 2015 5th National Symposium on (pp. 1-6). IEEE.
3 Kambli, P., & Lingaraju, G. M. Robot Control using Brain Waves.
4 Mishra, P., & Singla, S. K. (2014). Electroencephalogram based biometric framework using time and frequency domain features. Journal of Medical Imaging and Health Informatics, 4(4), 593-599.
5 Del Pozo-Banos, M., Alonso, J. B., Ticay-Rivas, J. R., & Travieso, C. M. (2014). Electroencephalogram subject identification: A review. Expert Systems with Applications, 41(15), 6537-6554.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 Palaniappan, R. (2008). “Two-stage biometric authentication method using thought activity brain waves.” International Journal of Neural Systems, 18(01), pp. 59-66.
2 Bengio, S., Marcel, C., Marcel, S., & Mariéthoz, J. (2002). “Confidence measures for multimodal identity verification.” Information Fusion, 3(4), pp. 267-276.
3 Abdullah, M. K., Subari, K. S., Loong, J. L. C., & Ahmad, N. N. (2010). “Analysis of the EEG Signal for a Practical Biometric System.” World Academy of Science, Engineering and Technology, 68, pp. 2067-2071.
4 Gürkök, H., & Nijholt, A. (2012). “Brain–Computer Interfaces for Multimodal Interaction: A Survey and Principles.” International Journal of Human-Computer Interaction, 28(5), pp. 292-307.
5 He, C., Lv, X., & Wang, Z. J. (2009, April). ”Hashing the mAR coefficients from EEG data for person authentication.” Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 1445-1448.
6 Marcel, S., & Millán, J. D. R. (2007). “Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation.” Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(4), pp. 743-752.
7 Majumdar, K. (2011). “Human scalp EEG processing: Various soft computing approaches.”Applied Soft Computing, 2011(8), pp. 4433-4447.
8 Dieckmann, U., Plankensteiner, P., & Wagner, T. (1997). “Sesam: A biometric person identification system using sensor fusion.” Pattern recognition letters, 18(9), pp. 827-833.
9 Xiong, N., & Svensson, P. (2002). “Multi-sensor management for information fusion: issues and approaches.” Information fusion, 3(2), pp. 163-186.
10 Gao, J. B., & Harris, C. J. (2002). “Some remarks on Kalman filters for the multisensor fusion.” Information Fusion, 3(3), pp. 191-201.
11 Tao, Q., & Veldhuis, R. (2009). “Threshold-optimized decision-level fusion and its application to biometrics.” Pattern Recognition, 42(5), pp. 823-836.
12 Ross, A., & Jain, A. (2003). “Information fusion in biometrics.” Pattern recognition letters,24(13), pp. 2115-2125.
13 Lingaraju G M, Kusuma M, Vinay K, Rakshath K, Prakash S Y, Dharini R, “Person Authentication System Using Brain Waves as Biometric”, Conference on Evolutionary Trends in Information Technology, Visvesvaraya Technological University, Belgaum, India, pp 47, 20-22nd May 2011 (CETIT2011).
14 http://www.emotiv.com/eeg/features.php
15 Poulos, M. Rangoussi, N. Alexandris, A. Evangelou, M. (2001). “On the use of EEG features towards person identification via neural networks.” Informatics for Health and Social Care, 26(1),pp. 35-48.
16 del R Millan, J., Mouriño, J., Franzé, M., Cincotti, F., Varsta, M., Heikkonen, J., & Babiloni, F.(2002). “A local neural classifier for the recognition of EEG patterns associated to mental tasks.”Neural Networks, IEEE Transactions on, 13(3), pp. 678-686.
17 Fatourechi, M., Bashashati, A., Ward, R. K., & Birch, G. E. (2007). “EMG and EOG artifacts in brain computer interface systems: A survey.” Clinical neurophysiology, 118(3), pp. 480-494.
18 Hosni, S. M., Gadallah, M. E., Bahgat, S. F., & AbdelWahab, M. S. (2007, Nov).“Classification of EEG signals using different feature extraction techniques for mental-task BCI.”In Computer Engineering & Systems, 2007. ICCES'07. International Conference on (pp. 220-226). IEEE.
19 He, C., Lv, X., & Wang, Z. J. (2009, Apr). “Hashing the mAR coefficients from EEG data for person authentication.” In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on (pp. 1445-1448).
20 http://www.fon.hum.uva.nl/praat/manual/Principal_component_analysis.html
21 Saa, J. F. D., & Gutierrez, M. S. (2010). “EEG Signal Classification Using Power Spectral Features and linear Discriminant Analysis: A Brain Computer Interface Application.”LACCEI’2010, Innovation and Development for the Americas, Jun 1-4, 2010, Arequipa, Perú.
Associate Professor Kusuma Mohanchandra
Dayananda Sagar College of Engineering - India
Dr. Lingaraju G M
M S Ramaiah Institute of Engineering - India
Mr. Prashanth Kambli
Assistant Professor/Department of Information Science & Engineering M S Ramaiah Institute of Technology Bangalore, 560054, India - India
Mr. Vinay Krishnamurthy
Student, Department of Computer Science Stony Brook University Stony Brook - 11790, NY, USA - United States of America