Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Manager’s Preferences Modeling within Multi-Criteria Flowshop Scheduling Problem: A Metaheuristic Approach
Mohamed Anis Allouche
Pages - 33 - 45     |    Revised - 30-11-2010     |    Published - 20-12-2010
Volume - 1   Issue - 2    |    Publication Date - December 2010  Table of Contents
Permutation flowshop, Multi-Criteria Scheduling, Compromise Programming, Satisfaction Functions, Manager’s Preferences
This paper proposes a metaheuristic to solve the permutation flow shop scheduling problem where several criteria are to be considered, such as: the makespan, total flowtime and total tardiness of jobs. The proposed metaheuristic is based on tabu search algorithm. The Compromise Programming model and the concept of satisfaction functions are utilized to integrate explicitly the Manager’s preferences. The proposed approach has been tested through a computational experiment. This approach can be useful for large scale scheduling problems and the Manager can consider additional scheduling criteria.
CITED BY (0)  
1 Google Scholar
2 CiteSeerX
3 Scribd
4 SlideShare
6 PdfSR
1 Allahverdi, A., “A new heuristic for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness”. Computers &Operations research, 31(2): 157-180, 2004.
2 Allouche, M.A., Aouni, B., Martel, J.-M., Loukil, T. and Rebaï, A., “Solving Multi-criteria Schedulin flow shop Problem through Compromise Programming and satisfaction Functions. European Journal of Operational Research, 192: 460-467, 2009.
3 Aouni, B., M.A. Allouche et J.-M. Martel “ Ordonnancement multicritère à l’aide du Compromise Programming”. In: Proceedings of The Annual Conference of the Administrative Sciences Association of Canada, Production and Operations Management, 21(7): 1-11, 2000.
4 Armentano, V.A and J.E.C. Arroyo “An Application of a Multi-Objective Tabu Search Algorithm to a Bicriteria Flowshop Problem”. Journal of Heuristics, 10: 463-481, 2004.
5 Arroyo, J.E.C and V.A. Armentano “A partial enumeration heuristic for multi-objective flowshop scheduling problems”. The Journal of the Operational Research Society. Oxford: 55(9):1000-1007, 2004.
6 Daniels, R.I. and R.J. Chambers, “Multiobjective flowshop Scheduling”. Naval Research Logistics, 37: 981-995, 1990.
7 Framinan, J.M. and R. Leisten “A multi-objective iterated greedy search for flowshop scheduling with makespan and flowtime criteria”. OR Spectrum, 30(4): 787-804, 2008.
8 Gagné, C., M. Gravel and W.L.Price " Optimisation Multi-Objectifs à l’aide d’un Algorithme de Colonie de Fourmis”. Information systems and Operational Research (INFOR), 42(1):23-42, 2004.
9 Gagné, C., M. Gravel and W.L.Price “Using Metaheuristic Compromise Programming for the Solution of Multiple Objective Scheduling Problems”. Journal of the Operational Research Society, 56(6): 687-698, 2005.
10 Gangadhran, R. and C. Rajendran “A Simulated Annealing Heuristic for Scheduling in a Flow-Shop with Bicriteria”. Computers and Industrial Engineering, 27 (1-4): 473-476, 1994.
11 Glover, F. “Futur Paths for Integer Programming and Links to Atificial Intelligence”. Computers and Operations Research, Vol.5, 533-549, 1986.
12 Glover, F. “Tabu search – Part I”. ORSA Journal on computing, 1: pp.190-206, 1989.
13 Glover, F. “Tabu search – Part II”. ORSA Journal on computing, 2: pp.4-32, 1990.
14 Glover, F., and M. Laguna. “Tabu search, in: C.R. reeves (ed.) Modern Heuristic Techniques for Combinatorial Problems”, Blackwell Scientific Publications. Oxford, pp.70-150, 1989.
15 Glover, F., Taillard, E., and de Werra, D. “A user’s guide to tab search”. Annals of Operations Research, 41: pp. 3-28. 1993.
16 Gupta, J.N.D., Neppall, V.R. and F. Werner. “Minimizing total flow time in a two-machine flow-shop problem with minimum Makespan”. International Journal Of Production Economics,69:323–338, 2001.
17 Kondakci, S.K., Azizoglu, M. and M. Ko¨ksalan, “Bicriteria scheduling for minimizing flow time and maximum tardiness”. Naval Research Logistics, 43: pp. 929–936, 1996.
18 Lemesre, J., Dhaenens, C. and E.G. Talbi. “Parallel partitioning method (PPM): A new exact method to solve bi-objective problems”. Computers and Operations Research, 34: 2450–2462, 2007.
19 Loukil, T., J. Teghem and D. Tuyttens. “Solving multi-objective production scheduling using met heuristics”. European Journal of Operational Research, 161(1): 42-61, 2005.
20 MacCarthy, B.L. and J. Liu. “Addressing the gap in scheduling research: A review of optimization and Heuristic methods in production scheduling”. International Journal of Production Research, 31 (1): 59–79, 1993.
21 Martel, J.-M and B. Aouni. “Incorporating the Decision-Maker’s Preferences in the Goal-Programming Model”. Journal of Operational Research Society, 41: 1121-1132, 1990.
22 OR-Library: http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html
23 T’kindt, V. and J.-C. Billaut. “Multicriteria Scheduling Theory, Models and Algorithms”.Springer Verlag, 2002.
24 Taillard, E. “Benchmarks for Basic Scheduling Problems”. European Journal of Operational Research, 64: 278-285, 1993.
25 Ulungu, E. and J. Teghem. “The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems”. Foundations of Computing and Decision Sciences 20(2): 149–165, 1995.
26 Varadharajan, T.K., and C. Rajendran. “Amulti-objective simulated-annealing algorithm for scheduling in flowshop to minimize the makespan and total flowtime of jobs”. European Journal of Operational Research. 167(3): 772-795, 2005.
27 Zeleny, M. “Multiple Criteria Decision Making”, Springer-Verlag, Berlin( 1976).
28 Zeleny, M. “Multiple Criteria Decision Making”. McGraw-Hill, New York (1982).
29 Zeleny, M. “Compromise Programming”. In: Multiple Criteria Decision Making, Cochrane, J.L.And M. Zeleny (Eds) University of South Carolina Press, Columbia, 262-301.1973.
Associate Professor Mohamed Anis Allouche
Universite of south - Tunisia