Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(491.76KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Method of Identifying the State of Computer System under the Condition of Fuzzy Source Data
Svitlana Gavrylenko, Viktor Chelak, Michael Kazarinov
Pages - 174 - 186     |    Revised - 31-10-2020     |    Published - 01-12-2020
Volume - 14   Issue - 5    |    Publication Date - December 2020  Table of Contents
MORE INFORMATION
KEYWORDS
State Identification, Mission Critical Computer Systems, Identification Measurements, Identification of Misuse.
ABSTRACT
The purpose of this work is developing a method for identifying the abnormal state of a computer system based on the Bayes' Fuzzy classifier. It allowed us to create a Fuzzy expert identification system with an unlimited number of controlled indicators that belong to a finite interval. Estimation of informativeness of such indicators does not depend on the type of indicator’s functions and on the rule of their usage in the calculated formula. Introduced criterion allowed to estimate indices of the functioning of computer systems presented indistinctly. The quality of classification was evaluated based on ROC analysis. It was found that the method based on Bayes' Fuzzy expert system is qualitative, and its classification speed is almost independent of quantity indicators. Comparative evaluation of Bayes' Fuzzy classifier with Fuzzy clustering classifier and Fuzzy discriminant classifier are performed. In order to regulate the level of false-positive and false-negative classification, recommendations have been developed to manage the level of sensitivity and specificity of a Fuzzy expert system based on the Bayes classifier.
1 V.S. Kharchenko, M.A. Yastrebeneczkij and V.V. Sklyar. Novy`e informaczionny`e tekhnologii i bezopasnost` informaczionno-upravlyayushhikh sistem AE`S. “Yadernaya i radiaczionnaya bezopasnost”, Ukraine, Vol. 2, pp. 19-28, 2003.
2 Trend Micro predstavila statistiku po kiberugrozam v mire za 2018 god. Internet: https://itc.ua/news/trend-micro-predstavila-statistiku-po-kiberugrozam-v-mire-za-2018-god, Feb. 2019 [May. 29, 2020].
3 M.A. Yastrebeneczkij, V.V. Sklyar and M.A. Yadernaya. “Novy`e informaczionny`e tekhnologii i bezopasnost` informaczionno-upravlyayushhikh sistem AE`S”, Yadernaya i radiaczionnaya bezopasnost, Vol. 2., pp. 19-28, 2003.
4 P.V. Shkody`rev, K.I. Yagafarov and V.A. Bashtovenko, “Obzor metodov obnaruzheniya anomalij v potokakh danny`kh”, in Proc. Software Engineering and Information Management, Sankt-Peterburg, Rossiya, Vol.18, pp. 64–70, 2017.
5 O.I. Shelukhin, A.S. Filinova and Sakalema, Zh Obnaruzhenie vtorzhenij v komp`yuterny`e seti. Moscow, Garyachaya liniya-Telekom, 220 p, 2013.
6 A.O. Korchenko. Metodi i`dentifi`kaczi`yi anomal`nikh stani`v dlya sistem viyavlennya vtorgnen`. Dis.dok.tekh.n Speczi`al`ni`st` 05.13.21 – «Sistemi zakhistu i`nformaczi`yi», Kiev, 405 p., 2019.
7 L.G. Raskin, O.V. Seraya. Nechetkaya matematika. Osnovy` teorii. Prilozheniya. Ukraine, Parus, 2008, 352 p
8 S. Semenov, O. Sira, S. Gavrylenko and N. Kuchuk. “Identification of the state of an object under conditions of Fuzzy input data”, Eastern-European Journal of Enterprise Technologies, Vol. 1, no 4 (97), pp. 22-29, 2019.
9 K. Krishna and M. Murty. “Genetic K-mean algorithm”. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol.19, pp. 513-524, 2011.
10 S.A. Suslov. “Klasterny`j analiz: sushhnost`, preimushhestva i nedostatki”,Vestnik NGIE`I, N. Novgrod, Vol.1, pp. 51-57, 2010.
11 Y. Hong and S. Kwong. “To combine steady-state genetic algorithm and ensemble learning for data clustering”. Pattern Recognition Letters, Vol.29(9) pp.1416-1423, 2008
12 A. Streke and J Ghosh. “Cluster Ensembles. A Knowledge Reuse Framework for Combining Multiple Partitions”,Journal of Machine Learning Research, pp. 583-617, 2012.
13 R. A. Fisher. “Statisticheskie metody` dlya issledovatelej”, Russia, Gosstatizdat, 1958, 267 p
14 F. Horia. A. and Pop. “New Fuzzy Discriminant Analysis”, Communications in Mathematical and in Computer Chemistry, ??. 391-412, 2013.
15 V. Chandola, A. Banerjee and V. Kumar. “Anomaly detection for discrete sequences: A survey”, IEEE Transactions on Knowledge and Data Engineering, Vol. 24, ?. 5, pp. 823– 839, 2012.
16 S.Yu. Gavrylenko, ?.S. Melnyk and V. V. Chelak “Development of a heuristic antivirus scanner based on the file's PE-structure analysis”, Informacijni texnologiyi ta komp'yuterna inzheneriya. Mizhnarodny`j naukovo-texnichny`j zhurnal, Vol. 3 (40), pp. 23-29, 2017.
17 Aggarwal C. C. Outlier ensembles: position paper, ACMSIGKDD Explorations Newsletter, 2017, V. 14, No. 2, pp. 49-58.
18 Gavrylenko S., Sheverdin I., Kazarinov M. The ensemble method development of classification of the computer system state based on decisions trees / S. Gavrylenko, I. Sheverdin, Kazarinov M. // Advanced Information Systems Vol.4,No.2.–2020–?5-10 doi: 10.20998/2522-9052.2020.3.01
19 Bolshakov A.S., Gubankova E.V. Obnaruzhenie anomalij v kompyuternyh setyah s ispolzovaniem metodov mashinnogo obucheniya. Telekommunikacionnye ustrojstva i sistemy, 2020, V. 10., No. 1, pp. 37-42.
20 Chowdhury M. Malware Analysis and Detection Using Data Mining and Machine Learning Classification / M. Chowdhury, A. Rahman, R. Islam // International Conference on Applications and Techniques in Cyber Security and Intelligence. – ATCI. – 2018. – P. 266- 274.
21 Fawcett T. “An Introduction to ROC Analysis” Pattern Recognition Letters, 27 (8), pp. 861– 874, 2006.
Mr. Svitlana Gavrylenko
Computer Engineering and Programming Department, National Technical University “Kharkiv Polytechnic Institute”, Kharkiv - Ukraine
Mr. Viktor Chelak
Computer Engineering and Programming Department, National Technical University “Kharkiv Polytechnic Institute”, Kharkiv - Ukraine
Dr. Michael Kazarinov
Computer Science Department, Northeastern Illinois University, Chicago, IL - United States of America
kazarinov@gmail.com