Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(368.37KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Data Mining And Visualization of Large Databases
AbdulRahman Rashid Alazmi, AbdulAziz Rashid Alazmi
Pages - 295 - 314     |    Revised - 15-09-2012     |    Published - 24-10-2012
Volume - 6   Issue - 5    |    Publication Date - October 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Applications of Data Mining, Business Intelligence, Data Mining, Data Visualization, Database Systems
ABSTRACT
Data Mining and Visualization are tools that are used in databases to further analyse and understand the stored data. Data mining and visualization are knowledge discovery tools used to find hidden patterns and to visualize the data distribution. In the paper, we shall illustrate how data mining and visualization are used in large databases to find patterns and traits hidden within. In large databases where data is both large and seemingly random, mining and visualization help to find the trends found in such large sets. We shall look at the developments of data mining and visualization and what kind of application fields usage of such tools. Finally, we shall touch upon the future developments and newer trends in data mining and visualization being experimented for future use.
CITED BY (7)  
1 Al-Fayoumi, A., & Hassan, M. (2016). Interactive Visual Search System Based onMachine Learning Algorithm. International Arab Journal of Information Technology (IAJIT), 13.
2 Rauter, S., Fister, I., & Fister Jr, I. (2015). How to Deal with Sports Activity Datasets for Data Mining and Analysis: Some Tips and Future Challenges. International Journal of Advanced Pervasive and Ubiquitous Computing (IJAPUC), 7(2), 27-37.
3 Korhonen, H. (2015). Improving Transparency in Demand-Supply Chain With Visual Business Intelligence Tools.
4 Fister, I., Ljubic, K., Suganthan, P. N., & Perc, M. (2015). Computational intelligence in sports: Challenges and opportunities within a new research domain. Applied Mathematics and Computation, 262, 178-186.
5 Agbele, K. K. (2014). Context-awareness for adaptive information retrieval systems (Doctoral dissertation, University of the Western Cape).
6 Dupin-Bryant, P. A., & Olsen, D. H. (2014). Business Intelligence, Analytics And Data Visualization: A Heat Map Project Tutorial. International Journal of Management & Information Systems (IJMIS), 18(3), 185-200.
7 Shah, N., Chaudhary, L., Rajmane, A., Patil, N., & Khatke, K. (2013). Implementation Of C-Trend For Commercial Application.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 TechRepublic 
5 Scribd 
6 SlideShare 
7 PdfSR 
1 D. Alexander “Data Mining” Internet: http://www.laits.utexas.edu/~norman/BUS.FOR/course.mat/Alex/,[Mar. 11, 2012].
2 B. Palace, “Data Mining,” Internet:http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm, spring 1996[Feb. 25, 2012].
3 M. Sousa, M. Mattoso, and N. Ebecken “Data mining: a database perspective,” In Proc. International Conference on Data Mining, 1998, pp.413-431.
4 G. Dennis Jr, B. Sherman, D. Hosack, J. Yang, W. Gao, H. Lane, and R. Lempicki “DAVID: Database for Annotation, Visualization, and Integrated Discovery,” Genome Biology, vol. 4, pp.3-14, August 2003.
5 V. Friedman, “Data Visualization: Modern Approaches,” Internet:http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches, Aug. 2, 2007 [Mar.12, 2012].
6 R. Mikut, and M. Reischl “Data mining tools” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, pp.431-443 , September/October 2011.
7 D. Tegarden, “Business Information Visualization,” Communications of AIS, vol. 1, January 1999.
8 S. Few, “Human Perception,” Internet:http://www.interaction-design.org/encyclopedia/data_visualization_for_human_perception.html, Sept. 16,2010 [Mar. 16, 2012].
9 F. Post, G. Nielson, and G. Bonneau “Data Visualization: the State of the Art,” United States of America:Springer, 2002, pp.464.
10 G. Grinstein, and B. Thuraisingham, “Data Mining and Data Visualization” in Proc. of the IEEE Visualization '95 Workshop on Database Issues for Data Visualization, October 1995, pp.54-56.
11 D. Keim “Visual Techniques for Exploring Databases,” International Conference on Knowledge Discovery in Databases (KDD '97), California, USA, August 1997.
12 U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” in AI Magazine, American Association for Artificial Intelligence AAAI, vol. 17, pp. 37-54, Fall 1996.
13 M. Friendly “A Brief History of Data Visualization,” Handbook of Computational Statistics: Data Visualization, vol.2, pp. 15-56, 2008.
14 E. Tufte, “The Visual Display of Quantitative Information,” Cheshire, CT: Graphics Press, 1986, pp.200.
15 S. Allen, “The Value of Many Eyes,” Internet:www.interactiondesign.sva.edu/classes/datavisualization/updates, Jul. 29, 2010 [Apr. 1, 2012].
16 P. Kochevar, “Database Management for Data Visualization,” Database Issues for Data Visualization,vol.871, pp.107-117, 1994.
17 V. Friedman, “Data Visualization and Infographics,”Internet:http://www.smashingmagazine.com/2008/01/14/monday-inspiration-data-visualization-and-infographics, Jan.14, 2008 [Jan. 14, 2008].
18 B. Alpern, and L. Carter “Hyperbox,” in Proc. of IEEE Conference on Visualization ‘91, October 1991,pp. 133-139.
19 M. Ferreira de Oliveira, “From visual data exploration to visual data mining: a survey,” IEEE Transactions on Visualization and Computer Graphics, vol. 9, pp. 378-394, July-September 2003.
20 C. Romero, and S. Ventura “Educational data mining: A survey from 1995 to 2005,” Expert Systems with Applications, vol.33 (2007) pp. 135–146, 2007.
21 L. Kurgan and P. Musilek, “A survey of Knowledge Discovery and Data Mining process models,” The Knowledge Engineering Review, vol. 21, pp. 1- 24, March 2006.
22 Q. Zhang and R. Segall, “Web Mining: A Survey of Current Research, Techniques, and Software,”International Journal of Information Technology & Decision Making, vol.7, pp.683-720, December 2008.
23 G. Pavlopoulos, A. Wegener, and R. Schneider, “A survey of visualization tools for biological network analysis,” BioData Mining, vol.1, pp.12, November 2008.
24 N. Raghavan, “Data mining in e-commerce: A survey,” SADHANA Academy Proceedings in Engineering Sciences, vol.30, pp.275-289, April-June 2005.
25 B. Gaddam, D. Ghosh, N. Ahmed, S. Donepudi, and V. Khadilkar, “Computational Intelligence in Data Mining,” Internet:http://www.cs.lamar.edu/faculty/disrael/COSC5100/ComputationalIntelligenceInDataMining.pdf, [Apr. 1,2012].
26 A. Berson, S. Smith, and K. Thearling, “An Overview of Data Mining Techniques,” Excerpted from the book Building Data Mining Applications for CRM, McGraw Hill: USA, 1999, pp.488.
27 D. Keim “Pixel-oriented Visualization Techniques for Exploring Very Large Databases,” Journal of Computational and Graphical Statistics, vol. 5, pp. 58-77, March 1996.
28 D. Keim, and H. Kriegel “Visualization Techniques for Mining Large Databases: A Comparison” IEEE Transactions on Knowledge and Data Engineering, vol. 8, pp.923-938, December 1996.
29 D. Asimov, “The Grand Tour: A Tool for Viewing Multidimensional Data,” SIAM Journal of Science & Statistical Computing, vol. 6, pp. 128-143, 1985.
30 M. Oliveira, and H. Levkowitz “From Visual Data Exploration to Visual Data Mining: A Survey,” IEEE Transactions on Visualization and Computer Graphics, vol. 9, pp. 378 - 394, July-September 2003.
31 Information Management, “Charting information management how your business works,” Internet:www.information-management.com/media/ui/mk2010.pdf, 2010 [Apr. 1, 2012].
32 S. Casner “A Task-Analytic Approach to the Automated Design of Graphic Presentations,” ACM Transactions on Graphics, vol.10, pp.111–151, April 1991.
33 D. Plonka, “FlowScan - Network Traffic Flow Visualization and Reporting Tool,” 14th Systems Administration Conference (LISA 2000), New Orleans, Louisiana, USA, December 3– 8, 2000, pp. 305-317.
34 M. Marwah, R. Sharma, R. Shih, C. Patel, V. Bhatia, M. Mekanapurath, R. Velumani, and S. Velayudhan, “Visualization and Knowledge Discovery in Sustainable Data Centers,” Compute 2009 ACM Bangalore Chapter Compute, Bangalore, India, January 2009.
35 MAIA Intelligence, “Business Intelligence in Manufacturing”, 2009, Internet:www.maia-intelligence.com, 2008 [Apr. 1, 2012].
36 M. Ester, H. Kriegel, and J. Sander “Spatial Data Mining: A Database Approach” Advances in Spatial Databases, vol. 1262, pp47-66, 1997.
37 M. Erwig, and R. Gueting, “Explicit Graphs in a Functional Model for Spatial Databases,” IEEE Transactions on Knowledge and Data Engineering, vol.6, pp.787-803, October 1994.
38 K. Zeitouni, “A Survey of Spatial Data Mining Methods Databases and Statistics Point of Views,”Information Resources Management Association International Conference IRMA 2000, Data Warehousing and Mining, Anchorage, Alaska. pp. 229-242
39 R. Geary, “The Contiguity Ratio and Statistical Mapping,” Incorporated Statistician, vol. 5, pp. 115-145,1954.
40 S. Chaudhuri, and V. Narasayya, “New Frontiers in Business Intelligence” The 37th International Conference on Very Large Data Bases, Seattle, Washington, pp.1502-1503.
41 A. Mocanu, D. Litan, S. Olaru, and A. Munteanu “Information Systems in the Knowledge Based Economy” WSEAS Transactions on Business and Economics, vol. 7, pp.11-21, January 2010.
42 T. Ramakrishnan, M. Jones, and A. Sidorova, “Factors influencing business intelligence (bi) data collection strategies: An empirical investigation,” Decision Support Systems, vol. 52, pp. 486–496, January 2012.
43 M. Fitzsimons, T. Khabaza, and C. Shearer, “The Application of Rule Induction and Neural Networks for Television Audience Prediction,” In Proceedings of ESOMAR/EMAC/AFM Symposium on Information Based Decision Making in Marketing, Paris, November 1993, pp. 69-82.
44 M. Hearst, “What Is Text Mining?” Internet: http://people.ischool.berkeley.edu/~hearst/text-mining.html,Oct. 17, 2003 Oct. 17, 2003 [May 2, 2012].
45 K. Cohen KB, L. Hunter, “Getting Started in Text Mining,” Public Library of Science PLOS, vol. 4, pp.20-22, January 2008.
46 F. Facca, and P. Lanzi “Mining interesting knowledge from weblogs: a survey,” Data & Knowledge Engineering, vol.53, pp. 225–241, 2005.
47 A. Abraham, “Business Intelligence from Web Usage Mining,” Journal of Information & Knowledge Management, vol. 2, pp. 375-390, 2003.
48 IBM, “SPSS”, Internet: http://www-01.ibm.com/support/docview.wss?uid=swg21506855, [Apr. 1, 2012].
49 IBM, “SurfAid Analytics”, Internet: http://surfaid.dfw.ibm.com, [Apr. 1, 2012].
50 Oracle, “Oracle Data Miner 11g Release 2,” Internet:http://www.oracle.com/technetwork/database/options/odm/dataminerworkflow-168677.html, Jan. 2012 [Apr. 1, 2012].
51 SAS, “SAS Enterprise Miner,” Internet:http://www.sas.com/technologies/analytics/datamining/mine, Sept. 2, 2010 [Apr. 15, 2012].
52 M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, “The WEKA data mining software: an update,” Special Interest Group on Knowledge Discovery and Data Mining SIGKDD Explorer News, vol. 11, pp. 10-18, June 2009.
53 IBM, “IBM Parallel Visualizer,” Internet: www.pdc.kth.se/training/Talks/SMP/.../ProgEnvCourse.htm,Sept. 22, 1998 [Apr. 15, 2012].
54 Cave5D, “Cave5D Release 2.0,” Internet: www.mcs.anl.gov/~mickelso/CAVE2.0.html, Aug. 5, 2011 [Apr. 17, 2012].
55 W. Hibbard and D. Santek, “the Vis5D System for Easy Interactive Visualization”, Proceedings of IEEE Visualization, pp 28-35, 1990.
56 C. Stolte , D. Tang , and P. Hanrahan, “Multiscale Visualization Using Data Cubes,” in Proc.of the IEEE Symposium on Information Visualization (InfoVis'02), October 2002, pp. 28-29.
57 C. Stolte , D. Tang , P. Hanrahan, “Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases,” IEEE Transactions on Visualization and Computer Graphics, vol. 8,pp.52-65, January 2002.
58 C. Chapman, “50 Great Examples of Data Visualization,” Internet:http://www.webdesignerdepot.com/2009/06/50-great-examples-of-data-visualization/, 2012 [Mar. 22, 2012].
59 W. Hedfield “Case study: Jaeger uses data mining to reduce losses from crime and waste,” Internet:www.computerweekly.com, 2009 [Apr. 1, 2012].
60 Inmon W.H., “Building the Data Warehouse,” Indiana, USA: J. Wiley&Sons, 1994. pp.576.
61 C. Ballard, D. Herreman, D. Schau, R. Bell, E. Kim, and A. Valencic, “Data Modeling Techniques for Data Warehousing,” Internet: www.redbooks.ibm.com/redbooks/pdfs/sg242238.pdf, Feb. 1998 [Nov. 16,2011].
62 K. Lynn, “Search Fuels Business Intelligence for Decision Making,” TNR Global, Available at http://www.tnrglobal.com/blog/tag/business-intelligence/, 2004-2012 [Mar. 20, 2012].
63 L. Greenfield, “The Data Warehousing Information Center,” Internet:http://www.dwinfocenter.org/against.html, 1995 [Mar. 8, 2012].
64 J. Lawyer, and S. Chowdhury, “Best Practices in Data Warehousing to Support Business Initiatives and Needs,” In Proc. 37th Annual Hawaii International Conference on System Sciences, January 2004, pp.9.
65 S. Badawi, “AI Computer Vision Blog,” Internet: blog.samibadawi.com, Mar. 26, 2012 [Apr. 23, 2012].
66 S.K. Pal, "Soft Data Mining, Computational Theory of Perceptions, and Rough-Fuzzy Approach",Information Sciences (Special Issue on Soft Computing Data Mining), vol. 163, pp.5-12, 2004.
67 The Global Community of Information Professionals, “What is Information management?” Internet:www.aiim.org/what-is-information-management , 2012 [Apr. 1, 2012]
68 B. Gaddam, and S. Donepudi, “Computational intelligence,” Internet:http://cs.lamar.edu/faculty/disrael/COSC5100/ComputationalIntelligenceInDataMining.pdf, 2005 [Mar. 20,2012].
69 K.A. Taipale, "Data Mining and Domestic Security: Connecting the Dots to Make Sense of Data,"Columbia Science and Technology Law Review, vol. 5, December 15, 2003, Available at:http://www.stlr.org/cite.cgi?volume=5&article=2 Retrieved on 1st of April 2012
70 Carlos Rodríguez, Florian Daniel, Fabio Casati, Cinzia Cappiello “Toward Uncertain Business Intelligence: The Case of Key Indicators” IEEE Internet Computing, vol.14, pp.32-40, July-Aug. 2010.
71 D. A. Keim, C. Panse, and M. Sips “Information Visualization: Scope, Techniques and Opportunities for Geovisualization” Exploring Geovisualization, pp.23-52, June 27, 2005. Available at http://bib.dbvis.de/uploadedFiles/124.pdf
72 T. M. Lehtimaki, K. Saaskilahti, M. Kowiel, and T. J. Naughton, “Displaying Digital Holograms of Real-World Objects on a Mobile Device using Tilt-Based interaction” 9th Euro-American workshop on Information Optics (WIO), pp.1-3, July 2010.
73 Zebra Imaging, “Motion Displays,” Internet: http://www.zebraimaging.com/products/motion-displays/, 2010 [ Apr. 9, 2012].
74 Z Space, “The ZSpace Experience,” Internet: http://zspace.com/about-zspace/, 2012 [Apr. 9, 2012].
75 D. Wilson, R. Pethica, Y. Zhou, C. Talbot, C. Vogel, M. Madera, C. Chothia, and J. Gough,“SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny,” Nucleic Acids Research, vol. 37, pp.380-386, December 2009.
76 Van den Berg, J. P. “A literature survey on planning and control of warehousing systems” IIE Transactions, vol. 31, pp.751–762, 1999.
77 O. Grabova, J. Darmont, J. Chauchat, and I. Zolotaryova; “Business Intelligence for Small and MiddleSized Enterprises,” in the Special Interest Group on Management of Data SIGMOD Record, vol. 39, pp. 39-50, December 2010.
Mr. AbdulRahman Rashid Alazmi
kuwait university - Kuwait
Mr. AbdulAziz Rashid Alazmi
kuwait university - Kuwait
fortinbras222@hotmail.com