Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(478.77KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Finite Element Investigation of Hybrid and Conventional Knee Implants
Habiba Bougherara, Ziauddin Mahboob, Milan Miric, Mohamad Youssef
Pages - 257 - 266     |    Revised - 05-08-2009     |    Published - 01-09-2009
Volume - 3   Issue - 3    |    Publication Date - June 2009  Table of Contents
MORE INFORMATION
KEYWORDS
Total knee Arthroplasty, Finite element analysis, 316L grade stainless steel implant, hybrid composite material, Bone resorption, Stress shielding
ABSTRACT
Total Knee arthroplasty (TKA) procedures relieve arthritic pain and restore joint function by replacing the contact surfaces of the knee joint. These procedures are often performed following arthritic degeneration of the joint causing the patient pain. Cobalt-chrome, stainless steel (316L grade) and titanium alloys are widely used in the majority of distal femoral implants in TKA procedures. The use of such stiff materials causes stress shielding (i.e. a lack of mechanical stresses being experienced by the bone surrounding the implant) leading to gradual bone loss and implant failure. The aim of this paper is to develop a new hybrid knee implant which combines a polymer-composite (CF/PA-12) with an existing commercial implant system (P.F.C.® Sigma™) made from stainless steel. This hybrid implant is expected to alleviate stress shielding and bone loss by transferring much more load to the femur compared to conventional metallic implants. Results of the FEA simulations showed that the CF/PA-12 lined femoral component generated almost 63% less in peak stress compared to the regular stainless steel component, indicating more load transfer to the bone and consequently alleviating bone resorption.
CITED BY (8)  
1 Kazemi, M., Dabiri, Y., & Li, L. P. (2013). Recent advances in computational mechanics of the human knee joint. Computational and mathematical methods in medicine, 2013.
2 Ingrassia, T., Nalbone, L., Nigrelli, V., Tumino, D., & Ricotta, V. (2013). Finite element analysis of two total knee joint prostheses. International Journal on Interactive Design and Manufacturing (IJIDeM), 7(2), 91-101.
3 Leal–Naranjo, J. A., Torres-San Miguel, C. R., & Faraón, M. (2013). Structural numerical analysis of a three fingers prosthetic hand prototype. International Journal, 8(13), 526-536.
4 Hafis, M. B. S., Farahana, R. N., Ridzuan, M. J. M., & Adlina, M. T. (2013, August). Optimal Coefficient of Friction on Artificial Knee Joint Contact Surfaces. In Advanced Materials Research (Vol. 716, pp. 565-568).
5 McGeough, J. A. Computer-Aided Engineering in Joint Replacements. The Engineering of Human Joint Replacements, 131-165.
6 Qiu Yi Yan, Zhen Xin Kai, Qu Guang-yun, & Lv Weijia. (2013). Finite element analysis of knee revision tibial defect repair applications. Journal of Orthopaedic Trauma, 15 (1), 18-22.
7 Saldías, D. A. P., de Mello Roesler, C. R., & Martins, D. (2012). Mecánica Computacional, Volume XXXI. Number 24. Computational Modeling in Bioengineering and Biomedical Systems (B).
8 Cardona, A., Kohan, P. H., Quinteros, R. D., & Storti, M. A. (2012). A human knee joint model based on screw theory and its relevance for preoperative planning.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 Academic Index 
5 CiteSeerX 
6 refSeek 
7 iSEEK 
8 Socol@r  
9 ResearchGATE 
10 Libsearch 
11 Bielefeld Academic Search Engine (BASE) 
12 Scribd 
13 WorldCat 
14 SlideShare 
15 PdfSR 
16 PDFCAST 
1 R. J. K. Khan, P. Khoo, D. P. Fick, R. R. Gupta, W. Jacobs and D. J. Wood. "Patella Resurfacing in Total Knee Arthroplasty". Cochrane Database of Systematic Reviews: Protocols, John Wiley & Sons Ltd, (1):2009.
2 A. V. Maheshwari, P. G. Tsailas, A. S. Ranawat and C. S. Ranawat. "How to Address the Patella in Revision Total Knee Arthroplasty". Knee, 16(2):92-97, 2009.
3 B. C. Carr, and T. Goswami. "Knee Implants – Review of Models and Biomechanics". Materials & Design, 30(2):398-413, 2009.
4 P. T. Nielsen, E. B. Hansen and K. Rechnagel. "Cementless Total Knee Arthroplasty in Unselected Cases of Osteoarthritis and Rheumatoid Arthritis : A 3-Year Follow-Up Study of 103 Cases". The Journal of Arthroplasty, 7(2):137-143, 1992.
5 R. Skripitz, and P. Aspenberg. "Tensile Bond between Bone and Titanium. A Reappraisal of Osseointegration". Acta Orthopaedica Scandinavica, 69(3):315-319, 1998.
6 S. D. Stulberg. "Bone Loss in Revision Total Knee Arthroplasty: Graft Options and Adjuncts". The Journal of Arthroplasty, 18(3, Part 2):48-50, 2003.
7 S.M. Kurtz. "The UHMWPE Handbook: Ultra-high Molecular Weight Polyethylene in Total Joint Replacement". Elsevier Academic Press, San Diego; London, pp. 379 (2004).
8 G. H. Van Lenthe, M. C. De Waal Malefijt and R. Huiskes. "Stress Shielding After Total Knee Replacement may Cause Bone Resorption in the Distal Femur". Journal of Bone and Joint Surgery - Series B, 79(1):117-122, 1997.
9 H. Bougherara, M. Bureau, M. Campbell, A. Vadean and L. Yahia. "Design of a Biomimetic Polymer-Composite Hip Prosthesis". Journal of Biomedical Materials Research Part A, 82A(1):27-40, 2007.
10 Sawbones Worldwide. 2009. "Large Left Fourth Generation Composite Femur (Item #3406)", Sawbones.com. Pacific Research Laboratories, Inc. Accessed January 12, 2009, .
11 Sawbones Worldwide. 2009. "Large Left Fourth Generation Composite Tibia (Item #3402)", Sawbones.com. Pacific Research Laboratories, Inc. Accessed January 12, 2009, .
12 Sawbones Worldwide. 2009. "Composite Bones: Typical Properties", Sawbones.com. Pacific Research Laboratories, Inc. Accessed January 16, 2009, .
13 A. C. M. Chong, E. A. Friis, G. P. Ballard, P. J. Czuwala and F. W. Cooke. "Fatigue Performance of Composite Analogue Femur Constructs Under High Activity Loading". Annals of Biomedical Engineering, 35(7):1196-1205, 2007.
14 A. C. M. Chong, F. Miller, M. Buxton and E. A. Friis. "Fracture Toughness and Fatigue Crack Propagation Rate of Short Fiber Reinforced Epoxy Composites for Analogue Cortical Bone". Journal of Biomechanical Engineering, 129(4):487-493, 2007.
15 J. T. Dunlap, A. C. M. Chong, G. L. Lucas and F. W. Cooke. "Structural Properties of a Novel Design of Composite Analogue Humeri Models". Annals of Biomedical Engineering, 36(11):1922-1926, 2008.
16 A. D. Heiner. "Structural Properties of Fourth-Generation Composite Femurs and Tibias". Journal of Biomechanics, 41(15):3282-3284, 2008.
17 R. Zdero, M. Olsen, H. Bougherara and E. H. Schemitsch. "Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis". Proceedings of the I MECH E Part H Journal of Engineering in Medicine, 2221175-1183(9), 2008.
18 M. Papini, R. Zdero, E. H. Schemitsch and P. Zalzal. "The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs". Journal of Biomechanical Engineering, 129(1):12-19, 2007.
19 M. Campbell, M. Bureau and L. Yahia. "Performance of CF/PA12 Composite Femoral Stems". Journal of Materials Science: Materials in Medicine, 19(2):683-693, 2008.
20 M. Campbell, J. Denault, L. Yahia and M. N. Bureau. "CF/PA12 Composite Femoral Stems: Manufacturing and Properties". Composites Part A: Applied Science and Manufacturing, 39(5):796-804, 2008.
21 J. B. Morrison. "The Mechanics of the Knee Joint in Relation to Normal Walking". Journal of Biomechanics, 3(1):51-61, 1970.
22 J.N. Insall, and W.N. Scott. "Surgery of the knee". Churchill Livingstone, New York, (2001).
23 S. Miyoshi, T. Takahashi, M. Ohtani, H. Yamamoto and K. Kameyama. "Analysis of the Shape of the Tibial Tray in Total Knee Arthroplasty using a Three Dimension Finite Element Model". Clinical Biomechanics, 17(7):521-525, 2002.
24 T. Chu. "An Investigation on Contact Stresses of New Jersey Low Contact Stress (NJLCS) Knee using Finite Element Method". Journal of Systems Integration, 9(2):187-199, 1999.
25 A. C. Godest, M. Beaugonin, E. Haug, M. Taylor and P. J. Gregson. "Simulation of a Knee Joint Replacement during a Gait Cycle using Explicit Finite Element Analysis". Journal of Biomechanics, 35(2):267-275, 2002.
26 J. P. Halloran, A. J. Petrella and P. J. Rullkoetter. "Explicit Finite Element Modeling of Total Knee Replacement Mechanics". Journal of Biomechanics, 38(2):323-331, 2005.
27 T. Villa, F. Migliavacca, D. Gastaldi, M. Colombo and R. Pietrabissa. "Contact Stresses and Fatigue Life in a Knee Prosthesis: Comparison between in Vitro Measurements and Computational Simulations". Journal of Biomechanics, 37(1):45-53, 2004.
28 Lenntech. 2009. "Stainless Steel 316L", Lenntech.com. Lenntech Water Treatment & Air Purification Holding B.V. Accessed January 7, 2009, .
Dr. Habiba Bougherara
- Canada
habiba.bougherara@ryerson.ca
Mr. Ziauddin Mahboob
- Canada
Mr. Milan Miric
- Canada
Mr. Mohamad Youssef
- Canada