Home   >   CSC-OpenAccess Library   >    Manuscript Information
Numerical Investigation of The Performance of Fully Solar Driven Compact HDH Desalination System
Khaled Alshamrani, Ahmed Asiri, Ali Alqarni, Hossam AbdelMeguid
Pages - 23 - 41     |    Revised - 31-05-2023     |    Published - 30-06-2023
Volume - 15   Issue - 2    |    Publication Date - June 2023  Table of Contents
MORE INFORMATION
KEYWORDS
HDH, Solar Desalination, Decentralized Desalination.
ABSTRACT
Climate change is characterized by long-term changes in weather patterns and temperatures, which may occur naturally through solar cycle variations. However, human activities, particularly the burning of fossil fuels like coal, oil, and gas, have been the primary cause of climate change since the 1800s. Global climate change affects water resources through increased evaporation rates, decreased water quality in inland and coastal areas, higher water temperatures, earlier and shorter runoff seasons. These effects have significant implications for water availability and management. This paper provides an overview of the different methods of desalination and focuses on the use of a compact and domestic air humidification dehumidification (HDH) desalination system, which is suitable for remote areas with limited water resources and experienced operators. The study presents a mathematical model to analyze the impact of various operating parameters on the system's productivity. The mathematical model is solved using a MATLAB, and a series of numerical runs are performed under different operating and design parameters. The study presents the transient state behavior of the system and its productivity. Overall, the report provides valuable insights into the use of HDH desalination systems in remote areas and highlights the importance of both theoretical and experimental investigations in improving the efficiency of such systems.
Abdel Dayem, A. M., & AlZahrani, A. (2022). Psychometric study and performance investigation of an efficient evaporative solar HDH water desalination system. Sustainable Energy Technologies and Assessments, 52(PA), 102030. https://doi.org/10.1016/j.seta.2022.102030
Abdullah, A. S., Omara, Z. M., Essa, F. A., Alarjani, A., Mansir, I. B., & Amro, M. I. (2021). Enhancing the solar still performance using reflectors and sliding-wick belt. Solar Energy, 214(December 2020), 268-279. https://doi.org/10.1016/j.solener.2020.11.016
Abu Mallouh, M., AbdelMeguid, H., & Salah, M. (2022). A comprehensive comparison and control for different solar water heating system configurations. Engineering Science and Technology, an International Journal, 35(2022), 101210. https://doi.org/10.1016/j.jestch.2022.101210
Aburub, A., Aliyu, M., Lawal, D., & Antar, M. A. (2017). Experimental Investigations of a Cross-Flow Humidification Dehumidification Desalination System. International Water Technology, 7(3), 198-208.
Ahmed, M. M. Z., Alshammari, F., Abdullah, A. S., & Elashmawy, M. (2021). Experimental investigation of a low cost inclined wick solar still with forced continuous flow. Renewable Energy, 179, 319-326. https://doi.org/10.1016/j.renene.2021.07.059
Criscuoli, A., & Carnevale, M. C. (2022). Localized Heating to Improve the Thermal Efficiency of Membrane Distillation Systems. In Energies (Vol. 15, Issue 16). MDPI. https://doi.org/10.3390/en15165990
El-Ghetany, H. H., & Khattab, N. M. (2016). Mathematical modeling for performance prediction of a humidification - dehumidification solar water desalination system in Egypt. Egyptian Journal of Chemistry, 59(2), 145-162. https://doi.org/10.21608/ejchem.2016.937
El-Sharkawy, I. I., Abdelmeguid, H., & Saha, B. B. (2013). Towards an optimal performance of adsorption chillers: Reallocation of adsorption/desorption cycle times. International Journal of Heat and Mass Transfer, 63(0), 171-182. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.076
El-Sharkawy, Ibrahim I, Abdelmaguid, H., Saha, B. B., Koyama, S., & Miyazaki, T. (2013). Performance Investigation of A Solar-Powered Adsorption Cooling System: A Case Study for Egypt. In International Symposium on Innovative Materials for Processes in Energy Systems 2013 (IMPRES2013).
El-Sharkawy, Ibrahim I., AbdelMeguid, H., & Saha, B. B. (2014). Potential application of solar powered adsorption cooling systems in the Middle East. Applied Energy, 126(0), 235-245. https://doi.org/10.1016/j.apenergy.2014.03.092
Elsharkawy, M., AbdelMeguid, H., El-Sharkawy, I. I., & Rabie, L. (2014). Experimental and theoretical investigation of decentralized desalination system. Mansoura Engineering Journal, 39(2).
Elzayed, M. S., Ahmed, M. A. M., Antar, M. A., Sharqawy, M. H., & Zubair, S. M. (2021). The impact of thermodynamic balancing on the performance of a humidification dehumidification desalination system. Thermal Science and Engineering Progress, 21. https://doi.org/10.1016/j.tsep.2020.100794
Fares, M. N., Al-Mayyahi, M. A., Rida, M. M., & Najim, S. E. (2019). Water Desalination Using a New Humidification-Dehumidification (HDH) Technology. Journal of Physics: Conference Series, 1279(1). https://doi.org/10.1088/1742-6596/1279/1/012052
Farmani, R, Butler, D., Memon, F., Abdelmeguid, H., & Ward, S. (2011). Sustainable water management for urban regeneration. In The Future of Urban Water: Solutions for Livable and Resilient Cities.
Farmani, Raziyeh, Butler, D., Hunt, D. V. L., Memon, F. A., Abdelmeguid, H., Ward, S., & Rogers, C. D. F. (2012). Scenario-based sustainable water management and urban regeneration. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 165(1), 89-98. https://doi.org/10.1680/ensu.2012.165.1.89
Kabeel, A. E., Diab, M. R., Elazab, M. A., & El-Said, E. M. S. (2022a). Hybrid solar powered desalination system based on air humidification dehumidification integrated with novel distiller: Exergoeconomic analysis. Journal of Cleaner Production, 379(P1), 134690. https://doi.org/10.1016/j.jclepro.2022.134690
Kabeel, A. E., Diab, M. R., Elazab, M. A., & El-Said, E. M. S. (2022b). Solar powered hybrid desalination system using a novel evaporative humidification tower: Experimental investigation. Solar Energy Materials and Solar Cells, 248(September), 112012. https://doi.org/10.1016/j.solmat.2022.112012
Kabeel, A. E., Hamed, M. H., Omara, Z. M., & Sharshir, S. W. (2013). Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review. Natural Resources, 04(03), 286-305. https://doi.org/10.4236/nr.2013.43036
Khalaf-Allah, R. A., Abdelaziz, G. B., Kandel, M. G., & Easa, A. S. (2022). Development of a centrifugal sprayer-based solar HDH desalination unit with a variety of sprinkler rotational speeds and droplet slot distributions. Renewable Energy, 190, 1041-1054. https://doi.org/10.1016/j.renene.2022.04.019
Manju, S., & Sagar, N. (2017). Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renewable and Sustainable Energy Reviews, 73(February), 594-609. https://doi.org/10.1016/j.rser.2017.01.164
Memon, F. A., Butler, D., Farmani, R., Abdelmeguid, H., Atkinson, S., Rogers, C., & Hunt, D. (2011). Urban Futures - Sustainability (Resilience) Evaluation of Water Infrastructure . In The 2011 AEESP Education & Research Conference.
Mohaisen, H. S., Esfahani, J. A., & Ayani, M. B. (2021). Improvement in the performance and cost of passive solar stills using a finned-wall/built-in condenser: An experimental study. Renewable Energy, 168, 170-180. https://doi.org/10.1016/j.renene.2020.12.056
Mohamed, A. M. I., & Elminshawy, N. A. S. (2009). Humidification-dehumidification desalination system driven by geothermal energy. Desalination, 249(2), 602-608. https://doi.org/10.1016/j.desal.2008.12.053
Mohamed, A. S. A., Shahdy, A. G., & Salem Ahmed, M. (2021). Investigation on solar humidification dehumidification water desalination system using a closed-air cycle. Applied Thermal Engineering, 188. https://doi.org/10.1016/j.applthermaleng.2021.116621
Moumouh, J., Tahiri, M., & Balli, L. (2018). Solar Desalination by Humidification-Dehumidification of Air. MATEC Web of Conferences, 149, 1-4. https://doi.org/10.1051/matecconf/201714902092
Nakamura, A., Ota, Y., Koike, K., Hidaka, Y., Nishioka, K., Sugiyama, M., & Fujii, K. (2015). A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Applied Physics Express, 8(10). https://doi.org/10.7567/APEX.8.107101
Prakash, A., & Jayaprakash, R. (2021). Performance evaluation of stepped multiple basin pyramid solar still. Materials Today: Proceedings, 45, 1950-1956. https://doi.org/10.1016/j.matpr.2020.09.227
Sayed, E. T., Olabi, A. G., Elsaid, K., Al Radi, M., Alqadi, R., & Ali Abdelkareem, M. (2022). Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region. Journal of Advanced Research, 48, 125-156. https://doi.org/10.1016/j.jare.2022.08.016
Shafieian, A., Rizwan Azhar, M., Khiadani, M., & Kanti Sen, T. (2020a). Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream. Sustainable Energy Technologies and Assessments, 39(February). https://doi.org/10.1016/j.seta.2020.100715
Shafieian, A., Rizwan Azhar, M., Khiadani, M., & Kanti Sen, T. (2020b). Performance improvement of thermal-driven membrane-based solar desalination systems using nanofluid in the feed stream. Sustainable Energy Technologies and Assessments, 39. https://doi.org/10.1016/j.seta.2020.100715
Sukpancharoen, S., & Phetyim, N. (2021). Green hydrogen and electrical power production through the integration of CO2 capturing from biogas: Process optimization and dynamic control. Energy Reports, 7, 293-307. https://doi.org/10.1016/j.egyr.2021.06.048
Tahir, F., & Al-Ghamdi, S. G. (2022). Integrated MED and HDH desalination systems for an energy-efficient zero liquid discharge (ZLD) system. Energy Reports, 8, 29-34. https://doi.org/10.1016/j.egyr.2022.01.028
Ward, S., Abdelmeguid, H., Farmani, R., Memon, F. A., & Butler, D. (2011). Sustainable water management - Modelling acceptability for decision support: A methodology. In Urban Water Management: Challenges and Oppurtunities - 11th International Conference on Computing and Control for the Water Industry, CCWI 2011 (Vol. 1).
Zaragoza, G., Ruiz-Aguirre, A., & Guillén-Burrieza, E. (2014). Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Applied Energy, 130, 491-499. https://doi.org/10.1016/j.apenergy.2014.02.024.
Mr. Khaled Alshamrani
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Mr. Ahmed Asiri
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Mr. Ali Alqarni
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
Associate Professor Hossam AbdelMeguid
Faculty of Engineering / Mechanical Engineering Department, University of Tabuk, Tabuk 47913 - Saudi Arabia
hssaleh@gmail.com


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS