Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(1.42MB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Contour Line Tracing Algorithm for Digital Topographic Maps
Ratika Pradhan, Ruchika Agarwal, Shikhar Kumar, Mohan P. Pradhan, M.K. Ghose
Pages - 156 - 163     |    Revised - 30-04-2010     |    Published - 10-06-2010
Volume - 4   Issue - 2    |    Publication Date - May 2010  Table of Contents
MORE INFORMATION
KEYWORDS
Topographic map, Contour line, Tracing, Moore neighborhood, Digital Elevation Map(DEM)
ABSTRACT
Topographic maps contain information related to roads, contours, landmarks land covers and rivers etc. For any Remote sensing and GIS based project, creating a database using digitization techniques is a tedious and time consuming process especially for contour tracing. Contour line is very important information that these maps provide. They are mainly used for determining slope of the landforms or rivers. These contour lines are also used for generating Digital Elevation Model (DEM) for 3D surface generation from any satellite imagery or aerial photographs. This paper suggests an algorithm that can be used for tracing contour lines automatically from contour maps extracted from the topographical sheets and creating a database. In our approach, we have proposed a modified Moore's Neighbor contour tracing algorithm to trace all contours in the given topographic maps. The proposed approach is tested on several topographic maps and provides satisfactory results and takes less time to trace the contour lines compared with other existing algorithms.
CITED BY (25)  
1 Suqi, A., & Lim, T. W. (2016). Detection and Identification of Objects Using Point Cloud Data for Pose Estimation. In AIAA Guidance, Navigation, and Control Conference (p. 2095).
2 Li, C., Yin, Y., & Ding, S. (2015, August). A New Approach for Creating a Spatial Adjacent Contour Tree. In Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2015 7th International Conference on (Vol. 2, pp. 503-507). IEEE.
3 Fabbrocini, G., De Vita, V., Cacciapuoti, S., Di Leo, G., Liguori, C., Paolillo, A., ... & Sommella, P. (2014). Automatic diagnosis of melanoma based on the 7-point checklist. In Computer Vision Techniques for the Diagnosis of Skin Cancer (pp. 71-107). Springer Berlin Heidelberg.
4 Thapaliya, K., Lee, S. W., Pyu, J. Y., Jeong, H., & Kwon, G. R. (2014). An advanced segmentation using area and boundary tracing technique in extraction of lungs region. Journal of Central South University, 21(10), 3811-3820.
5 Lange, R. (2014). U.S. Patent No. 8,798,845. Washington, DC: U.S. Patent and Trademark Office.
6 Meter Wenbin, Wang Jiandong, & Yang Guoqing. (2013). Single-flight dynamic noise contour drawing algorithm. Noise and Vibration Control, 33 (4), 153-157.
7 Moraru, L., Bibicu, D., & Biswas, A. (2013). Standalone functional CAD system for multi-object case analysis in hepatic disorders. Computers in biology and medicine, 43(8), 967-974.
8 Bibicu, D., Moraru, L., & Stratulat, M. (2013, November). Diagnostic accuracy of ovarian cyst segmentation in B-mode ultrasound images. In AIP Conference Proceedings (Vol. 1564, pp. 164-170).
9 ?a?????, S. (2013). Image Sonification (shape, Color, Texture).
10 Stommel, M., Edelkamp, S., Wiedemeyer, T., & Beetz, M. (2013). Fractal Approximate Nearest Neighbour Search in Log-Log Time. In BMVC.
11 Suresh, S. (2013). Framework for near real time feature detection from the atmospheric imaging assembly images of the solar dynamics observatory.
12 Le Tran Nguyen, C. D. T., Ba, T. N., Viet, C. T., & Le Thanh, H. (2013). Contour Based Hand Gesture Recognition Using Depth Data.
13 Xu, T., & Cao, Z. D. (2013). Airport noise isoline tracking algorithm based on route grid. Journal of University of Electronic Science and Technology of China, 42(2), 254-259.
14 Xu Tao, & Cao Zhidong. (2013). Noise contours based raster path tracing algorithm airport. University of Electronic Science and Technology, 42 (2).
15 Hajimani, E., Ruano, C. A., Ruano, M. G., & Ruano, A. E. (2013). A software tool for intelligent CVA diagnosis by cerebral computerized tomography. In 2013 IEEE International Symposium on Intelligent Signal Processing (WISP) (pp. 103-108). IEEE.
16 Kashiha, M., Bahr, C., Ott, S., Moons, C. P., Niewold, T. A., Ödberg, F. O., & Berckmans, D. (2013). Automatic identification of marked pigs in a pen using image pattern recognition. Computers and electronics in agriculture, 93, 111-120.
17 Manongsong, S. M. M., Tan, E. L., Nemenzo, F. R., & Yap, J. M. C. (2012, July). A new coordinatization of the hexagonal grid and its application to image representation. In 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).
18 Rocha, T. D. (2012). Uma proposta para a classificação de ações humanas baseada nas carcterísticas do movimento e em redes neurais artificiais.
19 Xu, B., Chen, J., & Yao, M. Identification of contour lines from average-quality scanned topographic maps.
20 Hansen, C. Contour Extraction and Visulization from Topographic Maps.
21 Matos, H., Oliveira, H. P., & Magalhães, F. (2012). Hand-geometry based recognition system. In Image Analysis and Recognition (pp. 38-45). Springer Berlin Heidelberg.
22 Bhatt, A. D., Gupta, U., Wagholikar, V., & Pise, U. V. (2012). Edge Detection and Segmentation of Multiple Contours from CT Scan Images. Computer-Aided Design and Applications, 9(4), 501-516.
23 De Vita, V., Di Leo, G. D. L., Fabbrocini, G., Liguori, C., Paolillo, A., & Sommella, P. (2012). Statistical techniques applied to the automatic diagnosis of dermoscopic images. ACTA IMEKO, 1(1), 7-18.
24 da Silva Matos, H. J. (2011). Reconhecimento biométrico baseado na geometria da mão (Doctoral dissertation, UNIVERSIDADE DO PORTO).
25 Wang, C. (2011). Monocular Vision-Based Obstacle Detection for Unmanned Systems.
1 Google Scholar 
2 ScientificCommons 
3 CiteSeerX 
4 refSeek 
5 iSEEK 
6 Socol@r  
7 Bielefeld Academic Search Engine (BASE) 
8 Scribd 
9 WorldCat 
10 SlideShare 
11 PDFCAST 
12 PdfSR 
1 F. Leberl, D. Olson, “Raster scanning for operatioal digitizing of graphical data”, Photogrammetric Engineering and Remote Sensing, 48(4), pp. 615-627,1982.
2 D. Greenle, “Raster and Vector Processing for Scanned line work”, Photogrammetric and Remote Sensing, 53(10), pp. 1383-1387, 1987.
3 P. Soille, P Arrighi, “From Scanned Topographic Maps to Digital Elevation Models”, Proc. of Geovision, International Symposium on Imaging Appications in Geology, pp.1-4,1999.
4 S. Frischknecht, E. Kanani, “Automatic Interpretation of Scanned Topographic Maps: A Raster – Based Approach”, Proc.Second International Workshop, GREC, pp.207-220, 1997.
5 S. Salvatore, P. Guitton, “Contour Lines Recognition from Scanned Topographic Maps”, Journal of WSCG, pp. 1-3, 2004.
6 X. Z. Zhou, H. L. Zhen, “Automatic vectorization of comtour lines based on Deformable model and Field Flow Orirntation”, Chiense Journal of Computers,vol 8, pp. 1056-1063, 2004.
7 Dongjum Xin, X. Z. Zhou, H.L.Zhen, “Contour Line Extraction from Paper- based Topographic Maps”.
8 G. Toussaint, Course Notes: Grids, connectivity and contour Tracing .
9 Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning Methodologies-A Comprehensive Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 14, No. 9, September 1992, page 879.
Mr. Ratika Pradhan
SMIT - India
ratika_pradhan@yahoo.co.in
Miss Ruchika Agarwal
- India
Mr. Shikhar Kumar
- India
Mr. Mohan P. Pradhan
SMIT - India
Dr. M.K. Ghose
- India