Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.


Top researchers from over 74 countries worldwide have trusted us because of quality publications.

United States of America
United Kingdom
Saudi Arabia
Study and Comparison of Various Image Edge Detection Techniques
Raman Maini, Himanshu Aggarwal
Pages - 1 - 11     |    Revised - 20-02-2009     |    Published - 15-03-2009
Volume - 3   Issue - 1    |    Publication Date - February 2009  Table of Contents
Edge Detection, Noise, Digital Image Processing
Edges characterize boundaries and are therefore a problem of fundamental importance in image processing. Image Edge detection significantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. Since edge detection is in the forefront of image processing for object detection, it is crucial to have a good understanding of edge detection algorithms. In this paper the comparative analysis of various Image Edge Detection techniques is presented. The software is developed using MATLAB 7.0. It has been shown that the Canny’s edge detection algorithm performs better than all these operators under almost all scenarios. Evaluation of the images showed that under noisy conditions Canny, LoG( Laplacian of Gaussian), Robert, Prewitt, Sobel exhibit better performance, respectively. . It has been observed that Canny’s edge detection algorithm is computationally more expensive compared to LoG( Laplacian of Gaussian), Sobel, Prewitt and Robert’s operator
CITED BY (354)  
1 Graça, R. F. P. S. O. (2012). Segmentação de imagens torácicas de Raio-X (Doctoral dissertation, UNIVERSIDADE DA BEIRA INTERIOR).
2 ÖZENDI, M., & YILMAZ, A. (2013). DEGISIK BAKIS AÇILARINDAN ELDE EDILEN GÖRÜNTÜ GRUPLARININ SINIFLANDIRILMASI. Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, 6(1).
4 Juan Albarracín, J. (2011). Diseño, análisis y optimización de un sistema de reconocimiento de imágenes basadas en contenido para imagen publicitaria (Doctoral dissertation).
5 Bergues, G., Ames, G., Canali, L., Schurrer, C., & Flesia, A. G. (2014, June). Detección de líneas en imágenes con ruido en un entorno de medición de alta precisión. In Biennial Congress of Argentina (ARGENCON), 2014 IEEE (pp. 582-587). IEEE.
6 Andrianto, D. S. (2013). Analisa Statistik terhadap perubahan beberapa faktor deteksi kemacetan melalui pemrosesan video beserta pengiriman notifikasi kemacetan. Jurnal Sarjana ITB bidang Teknik Elektro dan Informatika, 2(1).
7 Pieróg, M., & Jaskowiec, J. Identyfikacja twarzy z wykorzystaniem Sztucznych Sieci Neuronowych oraz PCA.
8 Nugraha, K. A., Santoso, A. J., & Suselo, T. (2015, July). ALGORITMA BACKPROPAGATION PADA JARINGAN SARAF TIRUAN UNTUK PENGENALAN POLA WAYANG KULIT. In Seminar Nasional Informatika 2008 (Vol. 1, No. 4).
9 Cornet, T. (2012). Formation et Développement des Lacs de Titan: Interprétation Géomorphologique d'Ontario Lacus et Analogues Terrestres (Doctoral dissertation, Ecole Centrale de Nantes (ECN)(ECN)(ECN)(ECN)).
10 Li, L., Sun, L., Ning, G., & Tan, S. (2014). Automatic Pavement Crack Recognition Based on BP Neural Network. PROMET-Traffic&Transportation, 26(1), 11-22.
11 Quang Hong, N., Khanh Quoc, D., Viet Anh, N., Chien Van, T., ???, & ???. (2015). Rate Allocation for Block-based Compressive Sensing. Journal of Broadcast Engineering, 20(3), 398-407.
12 Swillo, S. (2013). Zastosowanie techniki wizyjnej w automatyzacji pomiarów geometrii i podnoszeniu jakosci wyrobów wytwarzanych w przemysle motoryzacyjnym. Prace Naukowe Politechniki Warszawskiej. Mechanika, (257), 3-128.
13 Vézina, M. (2014). Développement de logiciels de thermographie infrarouge visant à améliorer le contrôle de la qualité de la pose de l’enrobé bitumineux.
14 Decourselle, T. (2014). Etude et modélisation du comportement des gouttelettes de produits phytosanitaires sur les feuilles de vigne par imagerie ultra-rapide et analyse de texture (Doctoral dissertation, Université de Bourgogne).
15 Reja, I. D., & Santoso, A. J. (2013). Pengenalan Motif Sarung (Utan Maumere) Menggunakan Deteksi Tepi. Semantik, 3(1).
16 Feng, Y., & Chen, F. (2013). Fast volume measurement algorithm based on image edge detection. Journal of Computer Applications, 6, 064.
17 Krawczuk, A., & Dominczuk, J. (2014). The use of computer image analysis in determining adhesion properties. Applied Computer Science, 10(3), 68-77.
18 Hui, L., Park, M. W., & Brilakis, I. (2014). Automated Brick Counting for Façade Construction Progress Estimation. Journal of Computing in Civil Engineering, 04014091.
19 Mahmud, S., Mohammed, J., & Muaidi, H. (2014). A Survey of Digital Image Processing Techniques in Character Recognition. IJCSNS, 14(3), 65.
20 Yazdanparast, E., Dos Anjos, A., Garcia, D., Loeuillet, C., Shahbazkia, H. R., & Vergnes, B. (2014). INsPECT, an Open-Source and Versatile Software for Automated Quantification of (Leishmania) Intracellular Parasites.
21 Furtado, L. F. F., Trabasso, L. G., Villani, E., & Francisco, A. (2012, December). Temporal filter applied to image sequences acquired by an industrial robot to detect defects in large aluminum surfaces areas. In MECHATRONIKA, 2012 15th International Symposium (pp. 1-6). IEEE.
22 Zhang, X. H., Li, G., Li, C. L., Zhang, H., Zhao, J., & Hou, Z. X. (2015). Stereo Matching Algorithm Based on 2D Delaunay Triangulation. Mathematical Problems in Engineering, 501, 137193.
23 Hasan, H. M. Image Based Vehicle Traffic Measurement.
25 Mathur, A., & Mathur, R. (2013). Content Based Image Retrieval by Multi Features using Image Blocks. International Journal of Advanced Computer Research, 3(4), 251.
26 Pandey, A., Pant, D., & Gupta, K. K. (2013). A Novel Approach on Color Image Refocusing and Defocusing. International Journal of Computer Applications, 73(3), 13-17.
27 Süle, I. (2014). The determination of the twist level of the Chenille yarn using novel image processing methods: Extraction of axial grey-level characteristic and multi-step gradient based thresholding. Digital Signal Processing, 29, 78-99.
28 Azzabi, T., Amor, S. B., & Nejim, S. (2014, November). Obstacle detection for Unmanned Surface Vehicle. In Electrical Sciences and Technologies in Maghreb (CISTEM), 2014 International Conference on (pp. 1-7). IEEE.
29 Zacharia, K., Elias, E. P., & Varghese, S. M. (2012). Personalised product design using virtual interactive techniques. arXiv preprint arXiv:1202.1808.
30 Kim, J. H., & Lattimer, B. Y. (2015). Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Safety Journal, 72, 40-49.
31 Núñez, J. M. Edge detection for Very High Resolution Satellite Imagery based on Cellular Neural Network. Advances in Pattern Recognition, 55.
32 Capobianco, J., Pallone, G., & Daudet, L. (2012, October). Low Complexity Transient Detection in Audio Coding Using an Image Edge Detection Approach. In Audio Engineering Society Convention 133. Audio Engineering Society.
33 Öztürk, S., & Akdemir, B. (2015). Comparison of Edge Detection Algorithms for Texture Analysis on Glass Production. Procedia-Social and Behavioral Sciences, 195, 2675-2682.
34 Ahmed, A. M., & Elramly, S. Hyperspectral Data Compression Based On Weighted Prediction.
35 Jayas, D. S. A. Manickavasagan, HN Al-Shekaili, G. Thomas, MS Rahman, N. Guizani &.
36 Khashu, S., Vijayanagar, S., Manikantan, K., & Ramachandran, S. (2014, February). Face Recognition using Dual Wavelet Transform and Filter-Transformed Flipping. In Electronics and Communication Systems (ICECS), 2014 International Conference on (pp. 1-7). IEEE.
37 Brown, R. C. (2014). IRIS: Intelligent Roadway Image Segmentation using an Adaptive Region of Interest (Doctoral dissertation, Virginia Polytechnic Institute and State University).
38 Huang, L., Zuo, X., Fang, Y., & Yu, X. A Segmentation Algorithm for Remote Sensing Imaging Based on Edge and Heterogeneity of Objects.
39 Park, J., Kim, Y., & Kim, S. (2015). Landing Site Searching and Selection Algorithm Development Using Vision System and Its Application to Quadrotor. Control Systems Technology, IEEE Transactions on, 23(2), 488-503.
40 Sikchi, P., Beknalkar, N., & Rane, S. Real-Time Cartoonization Using Raspberry Pi.
41 Bachmakov, E., Molina, C., & Wynne, R. (2014, March). Image-based spectroscopy for environmental monitoring. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring (pp. 90620B-90620B). International Society for Optics and Photonics.
42 Kulyukin, V., & Zaman, T. (2014). Vision-Based Localization and Scanning of 1D UPC and EAN Barcodes with Relaxed Pitch, Roll, and Yaw Camera Alignment Constraints. International Journal of Image Processing (IJIP), 8(5), 355.
43 Sandhu, E. M. S., Mutneja, E. V., & Nishi, E. Image Edge Detection by Using Rule Based Fuzzy Classifier.
44 Tarwani, K. M., & Bhoyar, K. K. Approaches to Gender Classification using Facial Images.
45 Kuppili, S. K., & Prasad, P. M. K. (2015). Design of Area Optimized Sobel Edge Detection. In Computational Intelligence in Data Mining-Volume 2 (pp. 647-655). Springer India.
46 Singh, R. K., Shaw, D. K., & Alam, M. J. (2015). Experimental Studies of LSB Watermarking with Different Noise. Procedia Computer Science, 54, 612-620.
47 Xu, Y., Da-qiao, Z., Da-wei, D., Bo, W., & Chao-nan, T. (2014, July). A speed monitoring method in steel pipe of 3PE-coating process based on industrial Charge-coupled Device. In Control Conference (CCC), 2014 33rd Chinese (pp. 2908-2912). IEEE.
48 Yasiran, S. S., Jumaat, A. K., Malek, A. A., Hashim, F. H., Nasrir, N., Hassan, S. N. A. S., ... & Mahmud, R. (1987). Microcalcifications Segmentation using Three Edge Detection Techniques on Mammogram Images.
49 Roslan, N., Reba, M. N. M., Askari, M., & Halim, M. K. A. (2014, February). Linear and non-linear enhancement for sun glint reduction in advanced very high resolution radiometer (AVHRR) image. In IOP Conference Series: Earth and Environmental Science (Vol. 18, No. 1, p. 012041). IOP Publishing.
50 Gupta, P. K. D., Pattnaik, S., & Nayak, M. (2014). Inter-level Spatial Cloud Compression Algorithm. Defence Science Journal, 64(6), 536-541.
51 Foster, R. (2015). A comparison of machine learning techniques for hand shape recognition.
52 Wasson, V., Singh, B., & Wasson, G. (2013). A Parallel Optimized Approach for Prostate Boundary Segmentation from Ultrasound Images. International Journal of Scientific Research in Computer Science and Engineering, 1(01), 14-19.
53 Balabantaray, B. K., Das, B., & Biswal, B. B. (2014). Comparison of Edge Detection Algorithm for Part Identification in a Vision Guided Robotic Assembly System. In Soft Computing Techniques in Engineering Applications (pp. 183-206). Springer International Publishing.
54 da Silva, T. L., Agostini, L. V., & da Silva Cruz, L. A. (2015, June). Fast mode selection algorithm based on texture analysis for 3D-HEVC intra prediction. In Multimedia and Expo (ICME), 2015 IEEE International Conference on (pp. 1-6). IEEE.
55 Wu, S. L. (2011). System Design and Hardware Implementation of Embedded Stereo Vision.
56 Saha, S., Ghosh, L., Konar, A., & Janarthanan, R. (2013, September). Fuzzy L Membership Function Based Hand Gesture Recognition for Bharatanatyam Dance. In Computational Intelligence and Communication Networks (CICN), 2013 5th International Conference on (pp. 331-335). IEEE.
57 Singh, J., Prasad, K., & Das, P. K. (2014, August). Selective evaluation of image parameters through edge detection algorithm. In Advances in Engineering and Technology Research (ICAETR), 2014 International Conference on (pp. 1-5). IEEE.
58 Mahajan, S., & Patil, D. (2014, March). Image retrieval using contribution-based clustering algorithm with different feature extraction techniques. In IT in Business, Industry and Government (CSIBIG), 2014 Conference on (pp. 1-7). IEEE.
59 Yang, Y., Fang, Y., & Huang, L. An Edge Detection Method for UAV Image Based on Minimum Cross-Entropy and Simplified PCNN.
60 Jeon, S. W., Kim, C., Park, J. C., Kim, D. S., & Kim, C. H. (2014). Measurement of Geometric Properties of Printed Patterns and Evaluation of their Printability. ????????, 31(11), 981-986.
61 Gnanavel, V. K., & Srinivasan, A. (2015, January). Abnormal Event Detection in Crowded Video Scenes. In Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014 (pp. 441-448). Springer International Publishing.
62 De Jager, D. (2012). Enabling technologies for distributed body sensor networks (Doctoral dissertation, University of Southampton).
64 Boddiford, A. S. (2013). Improving the safety and efficiency of rail yard operations using robotics (Doctoral dissertation).
65 Rafati, M., Arabfard, M., Rahimzadeh, M. R., Voshtani, H., & Moladoust, H. (2015). A Comparative Study of Three Speckle Reducing Methods for Intima-Media Thickness Ultrasound Images. Iranian Red Crescent Medical Journal, 17(2).
66 Chary, R. V. R., Sunitha, K. V. N., & Lakshmi, D. R. (2013). Unsupervised Methods on Image Database Using Cluster Mean Average Methods for Image Searching. In Computer Networks & Communications (NetCom) (pp. 777-787). Springer New York.
67 Tasneem, T., & Afroze, Z. Analysis of Edge Detection Technique by Varying Image Contrast.
68 Gupta, A. (2012). CONTENT BASED VIDEO RETRIEVAL SYSTEM (Doctoral dissertation, Visvesvaraya National Institute of Technology Nagpur 440 010 (India).
69 Mahajan, S., & Patil, D. (2014, April). Comparison of Color and Color with Edge Feature Extraction Using Contribution-Based Clustering Algorithm. In Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on (pp. 875-880). IEEE.
71 Djimeli, A., Tchiotsop, D., & Tchinda, R. (2013). Analysis Of Interest Points Of Curvelet Coefficients Contributions Of Microscopic Images And Improvement Of Edges. arXiv preprint arXiv:1305.3939.
72 Maoshan, C., Shifan, Z., Zhonghong, W., Zhang, H., & Li, L. (2011, January). Detecting Carbonate-karst Reservoirs Using the Directional Amplitude Gradient Difference Technique. In 2011 SEG Annual Meeting. Society of Exploration Geophysicists.
73 Boal, J., Sánchez-Miralles, A., & Arranz, A. (2014). Topological simultaneous localization and mapping: a survey. Robotica, 32(05), 803-821.
74 Kan, A. R. A nov echniq.
77 Thaher, R. H., & Hussein, Z. K. (2014). Stereo Vision Distance Estimation Employing SAD with Canny Edge Detector. International Journal of Computer Applications, 107(3).
78 Joshi, N. S., & Choubey, N. S. (2014). Comparison of Traditional Approach for Edge Detection with Soft Computing Approach. International Journal of Computer Applications, 96(11).
79 Abo-Zahhad, M., Gharieb, R. R., Ahmed, S. M., & Donkol, A. A. E. B. (2014). Edge Detection with a Preprocessing Approach. Journal of Signal and Information Processing, 5(04), 123.
80 Gayathri, N., & Vijaya Chandrakala, K. R. M. (2014, July). Embedded driver assistance system for effective dynamic vehicle routing. In Embedded Systems (ICES), 2014 International Conference on (pp. 182-187). IEEE.
81 Beeran Kutty, S., Saaidin, S., Yunus, M., Ashikin, P. N., & Abu Hassan, S. (2014, May). Evaluation of canny and sobel operator for logo edge detection. In Technology Management and Emerging Technologies (ISTMET), 2014 International Symposium on (pp. 153-156). IEEE.
82 Benchennane, I., Hadjar, A., & Benyettou, A. (2015). Individuals Identification Using Artificial Immunes Systems. International Review on Computers and Software (IRECOS), 10(1), 20-26.
83 Kumara, M. R. S. P., & Meegama, R. G. N. (2013, December). Active contour-based segmentation and removal of optic disk from retinal images. In Advances in ICT for Emerging Regions (ICTer), 2013 International Conference on (pp. 15-20). IEEE.
84 Bora, D. J., & Gupta, A. K. (2014). A New Approach towards Clustering based Color Image Segmentation. International Journal of Computer Applications, 107(12).
85 Rahman, F. Y. A., Hussain, A., Zaki, W. M. D. W., Zaman, H. B., & Tahir, N. M. Enhancement of Background Subtraction Techniques Using a Second Derivative in Gradient Direction (SDGD) Filter.
86 Zhang, M., Sang, X. Z., Leng, J. M., & Cao, X. M. (2013, August). Denoising algorithm based on edge extraction and wavelet transform in digital holography. In ISPDI 2013-Fifth International Symposium on Photoelectronic Detection and Imaging (pp. 89130C-89130C). International Society for Optics and Photonics.
87 Maheshwari, A., Sonawane, S., & Patil, S. (2014). Empirical Study of Cluster Based Image Segmentation For Natural Images.
88 Dhiman, M. K., & Gupta, R. Different Edge Detection Techniques: A Survey.
89 Kaur, J., & Sethi, P. (2013). An Efficient Method of Edge Detection using Fuzzy Logic. International Journal of Computer Applications, 77(15), 27-30.
90 Xue-he, Z., Ge, L., Chang-le, L., He, Z., Jie, Z., & Zhen-xiu, H. Stereo Matching Algorithm based on 2D Delaunay Triangulation.
91 Chebolu, A., & Nagahanumaiah. (2015). Contact angle measurement on micropatterned surface using sessile drop shape fit profile detection. The Imaging Science Journal, 1743131X15Y-0000000018.
92 Shinde, S., & Mane, M. V. LBG Vector Quantization for Recognition of Handwritten Marathi Barakhadi.
93 Saluja, G., Rokde, A., Maru, R., Kondekar, R., Gupta, A., & Deshpande, P. (2012, June). Layered filtering technique for content based video retrieval. In Computer & Information Science (ICCIS), 2012 International Conference on (Vol. 1, pp. 420-424). IEEE.
94 Muthukumar, B. (2013). Real time human motion tracking with image alignmnet optimization using random projection.
95 VADIVAL, G., HONG, O., SAHALAN, M., NOORI, H., ABDULJABBAR, C. P., BAIGI, M. M., & SUPRIYANTO, E. Ear Canal Diameter Measurement based on Various Processing Techniques of Ultrasound Images. Ultrasound, 5(7), 8.
96 Ferhat, F. A., Mohamed, L. A., Kerdjidj, O., Messaoudi, K., Boudjelal, A., & Seddiki, S. (2013, January). Implementation of SOBEL, PREWITT, ROBERTS Edge Detection on FPGA. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV) (p. 1). The Steering Committee of The World Congress in Computer Sc
97 Alomari, Y., Abdullah, S. N. H. S., & Omar, K. (2013). Randomized Circle Detection Performance Based on Image Difficulty Levels and Edge Filters. In Intelligent Robotics Systems: Inspiring the NEXT (pp. 361-374). Springer Berlin Heidelberg.
98 Dainese, C. (2012). Processing of CW Doppler images to extract velocity profile (Doctoral dissertation, Universitá degli Studi di Padova).
99 Singh, S., & Singh, R. Comparison of Various Edge Detection Techniques.
100 Yin, R., Liu, M., Zhang, F., & Wu, W. (2014, May). Multi-feature fusion for image segmentation based on granular theory. In Computer Supported Cooperative Work in Design (CSCWD), Proceedings of the 2014 IEEE 18th International Conference on (pp. 186-190). IEEE.
101 Pawar, M. P., & Patil, R. P. FPGA Implementation of Canny Edge Detection Algorithm.
102 Hu, K., & Zhang, Y. J. (2015). Image segmentation and adaptive superpixel generation based on harmonic edge-weighted centroidal Voronoi tessellation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, (ahead-of-print), 1-15.
103 Brown, R. C. (2014). IRIS: Intelligent Roadway Image Segmentation (Doctoral dissertation, Virginia Tech).
105 Cui, C., Zhao, Y., Wei, S., & Zhu, Z. (2013, July). Multiple PiPs detection in unbounded video stream. In Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference on (pp. 1-6). IEEE.
106 Cisar, P., Cisar, S. M., & Markoski, B. (2013, November). Kernel sets in compass edge detection. In Computational Intelligence and Informatics (CINTI), 2013 IEEE 14th International Symposium on (pp. 239-242). IEEE.
107 de Vegt, S. E. (2015). A Fast and Robust Algorithm for the Detection of Circular Pieces in a Cyber Physical System.
108 Rajini, G. K., & Reddy, G. R. Performance evaluation of edge detection techniques for biomedical imaging.
109 Wåsjø, R. (2015). Object Recognition and Segmentation of Wounds.
110 Saha, S., Konar, A., Gupta, D., Ray, A., Sarkar, A., Chatterjee, P., & Janarthanan, R. (2014, January). Bharatanatyam hand gesture recognition using polygon representation. In Control, Instrumentation, Energy and Communication (CIEC), 2014 International Conference on (pp. 563-567). IEEE.
111 Leonard, J., & Amer, S. (2012, January). Simple and Fast Edge Detection of Frontal Facial Photographs. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV) (p. 1). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
112 Nazarbakhsh, B., & Manaf, A. A. (2014). Image Pre-processing Techniques for Enhancing the Performance of Real-Time Face Recognition System Using PCA. In Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations (pp. 383-422). Springer Berlin Heidelberg.
113 Kumar, R., & Arthanariee, A. M. Detection of Face using Proposed Image Segmentation Algorithm.
114 Ahmadi, N., & Akbarizadeh, G. (2015). Iris Recognition System based on Canny and LoG Edge Detection Methods. Journal of Soft Computing and Decision Support Systems, 2(4), 26-30.
115 Sanduja, V., & Patial, R. Article: Sobel Edge Detection using Parallel Architecture based on FPGA}. International Journal of Applied, 3, 20-24.
116 Cho, H. W., & Yoon, H. J. (2014, October). Comparison of Crack Extraction Performance according to Different Edge Detectors. In Applied Mechanics and Materials (Vol. 607, pp. 669-672).
117 Günther, M. I., Günther, M., Schneiders, M., Rupp, R., & Blesch, A. (2015). AngleJ: A new tool for the automated measurement of neurite growth orientation in tissue sections. Journal of neuroscience methods, 251, 143-150.
118 Premachandra, H. C. N. (2011). A Study on On-vehicle High-speed Camera Image Processing for Parallel Visible Light Communication (Doctoral dissertation, Nagoya University).
119 Peng, K. S., Lin, F. C., & Teng, K. T. (2015). Efficient Image Resolution Enhancement Using Edge-Directed Unsharp Masking Sharpening for Real-Time ASIC Applications. Journal of Computer Science & Systems Biology, 2015.
120 Biswas, A. (2013). Development of Image Processing and Pattern Matching Algorithms for Biomedical Images and Biometrics Fingerprint Recognition (Doctoral dissertation).
121 Maurya, A., Tiwari, R., & Verma, S. A Novel Method of Image Segmentation Using Dynamic Merging.
122 Rafati, M., Arabfard, M., Zadeh, M. R. R., & Maghsoudloo, M. (2015). Assessment of noise reduction in ultrasound images of common carotid and brachial arteries. IET Computer Vision.
123 Kaur, H., & Kaur, L. Performance Comparison of Different Feature Detection Methods with Gabor Filter.
124 Singh, R., Maurya, A., & Tiwari, R. A Novice Approach To A Methodology Using Image Fusion Algorithms For Edge Detection Of Multifocus Images.
125 Nema, R., & Saxena, A. K. Edge Detection Operators on Digital Image.
126 Ionescu, M., Vatamanu, O. A., Apostol, S., Frandes, M., Mihalas, G. I., Ciurea, M. E., & Vere, C. C. (2013, November). Comparative study of contour detection methods for intestinal sessile polyps. In E-Health and Bioengineering Conference (EHB), 2013 (pp. 1-4). IEEE.
127 Du, H., Ma, R., Wang, X., Zhang, J., & Fang, J. (2015). Bas-Relief Map Using Texture Analysis with Application to Live Enhancement of Ultrasound Images. Ultrasound in medicine & biology, 41(5), 1446-1460.
128 Shukla, V., Singh, G. K., & Shah, P. Automatic Alert of Security Threat through Video Surveillance System.
129 Yarlagadd, A., Murthy, J. V. R., & Prasad, M. K. (2015, January). A Comparative Study of Fractal Dimension Based Age Group Classification of Facial Images with Different Testing Strategies. In Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014 (pp. 229-240). Springer International
130 Ameta, P., & Porwal, M. K. A Review on Edge Detection Technique.
131 Poornima, S., & Subramanian, S. (2014). UNCONSTRAINED IRIS AUTHENTICATION THROUGH FUSION OF RGB CHANNEL INFORMATION. International Journal of Pattern Recognition and Artificial Intelligence, 28(05), 1456010.
132 Naidu, D. L., Rao, C. S., & Satapathy, S. (2015, January). A Hybrid Approach for Image Edge Detection Using Neural Network and Particle Swarm Optimization. In Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI) Volume 1 (pp. 1-9). Springer International Publishing.
133 Joshi, D., & Pansare, S. (2015, February). Combination of Multiple Image Features along with KNN Classifier for Classification of Marathi Barakhadi. In Computing Communication Control and Automation (ICCUBEA), 2015 International Conference on (pp. 607-610). IEEE.
134 Patil, S., & Andurkar, M. A. Different Approaches for Edge Detection of Angiogram Images.
135 Hasan, I., Fatema, M., & Amin, M. A. (2011, December). Dual iris based human identification. In Computer and Information Technology (ICCIT), 2011 14th International Conference on (pp. 79-84). IEEE.
136 Kumar, K., Mustafa, N., Li, J. P., Shaikh, R. A., Khan, S. A., & Khan, A. (2014, December). Image edge detection scheme using wavelet transform. In Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2014 11th International Computer Conference on (pp. 261-265). IEEE.
137 Lu, J., Lin, M., Wang, Q., & Huang, Y. (2014). An Integrated Algorithm of Spatial Fuzzy C-Means Clustering and Level Set for Indoor Scene Image Segmentation. Journal of Computers, 9(4), 1033-1039.
138 Pandey, N., Singh, M. P., Pant, L. M., & Ghosh, A. (2015, June). A simple method to measure refractive index of optical glasses using focal displacement method. In International Conference on Optics & Photonics 2015 (pp. 96540L-96540L). International Society for Optics and Photonics.
139 Zhou, Y. L., & Zhao, H. M. (2011, August). Comparison and Evaluation of Edge Detection Technique. In Proceedings of the 2011 International Conference on Information Security and Intelligence Control (pp. 59-62). IEEE Computer Society.
140 Dandgawal, D. L., & Bansal, A. Image Search (Content Based Image Retrieval Using Sobel’s Edge Detection Technique).
141 Amarasinghe, S. V., Hewawasam, H. S., Fernando, W. B. D. K., Wijayakulasooriya, J. V., Godaliyadda, G. M. R. I., & Ekanayake, M. P. B. (2014, December). Vision based obstacle detection and map generation for reconnaissance. In Industrial and Information Systems (ICIIS), 2014 9th International Conference on (pp. 1-6). IEEE.
142 Karim, B. M. (2014, October). Atlas and snake based segmentation of organs at risk in radiotherapy in head MRIs. In Information Science and Technology (CIST), 2014 Third IEEE International Colloquium in (pp. 356-363). IEEE.
143 Aithal, P. K., Acharya, D. U., & Rajesh, G. (2014). MPI based edge detection of coloured image using Laplacian of Gaussian filter. International Journal of Computer Applications, 5-7.
144 Seth, M., Dubey, S., & Pandey, S. (2012). An Analytic Approach of Edge Detection Gradient Operators. International Journal of Computer Technology and Applications, 3(1).
145 Kekre, H. B., Thepade, S. D., Sanas, S. P., Iyer, S., & Garg, J. (2013, January). CBIR using KEVR vector quantization applied on gradient mask edge images. In Advances in Technology and Engineering (ICATE), 2013 International Conference on (pp. 1-4). IEEE.
146 Deshpande, A. (2014). Multi-dimensional Polarimetric Pattern Recognition & Classification Techniques for Immunohistochemical Imaging of Cancer (Doctoral dissertation, The University of Akron).
147 Garbacz, P., & Czajka, P. (2015, February). Application of Optical Inspection Method for Testing the Correctness of Ball Bearings Assembly. In Solid State Phenomena (Vol. 223, pp. 264-271).
148 Haldar, P. (2010). Content Based Image Retrieval Using Histogram, Colour and Edge Detection (Doctoral dissertation, Jadavpur University Kolkata).
149 Alnestig, H. (2014). On the Feasibility of Low Cost Computer Vision.
150 Wang, M. (2011). 3D digital relief generation (Doctoral dissertation, Bournemouth University).
151 Bhalodiya, K. J., & Doshi, K. (2014). Performance evaluation of different Segmentation techniques for Underwater and Arial images. IJRCCT, 3(1), 172-180.
152 Ibrar-ul-Haque, M., Tahir Qadri, M., & Siddiqui, N. (2015). Reduced reference blockiness and blurriness meter for image quality assessment. The Imaging Science Journal, 63(5), 296-302.
153 Kumar, E. S., & Talasila, V. (2014, April). Leaf features based approach for automated identification of medicinal plants. In Communications and Signal Processing (ICCSP), 2014 International Conference on (pp. 210-214). IEEE.
154 Ahmed, A., ElRamly, S., & Sharkawy, M. E. (2012). Hyperspectral Data Compression Using Spatial-Spectral Lossless Coding Technique. International Journal of Image Processing (IJIP), 6(6), 467.
155 Vasagan, P. S., & Sundaram, M. (2013). An Integrated Approach for Image Retrieval Based on Amelioration of Color Mean and Edge Detection using Novel Masks. International Journal of Computer Science & Communication Networks, 3(6), 358.
156 Kant, A. R. Abs-Laplacian and Robert’s cross operator offers high speed edge detection capabilities with comparable speed-quality tradeoffs.
157 Adhikari, S., Kar, J., & Dastidar, J. G. (2014). An automatic and efficient foreground object extraction scheme. International Journal, 3(2).
158 Buschelman, E. A. (2012). A Nonparametric Approach to Segmentation of Ladar Images (No. AFIT/DEE/ENG/12-07). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGEMENT.
159 Jiang, J., Liu, C., & Ling, S. (2015). An FPGA implementation for real-time edge detection. Journal of Real-Time Image Processing, 1-11.
160 Kaur, M., & Thapar, V. A Novel Method for Edge Detection of Natural Color Images.
161 Kadlag, A., Ingole, A. B., & Patil, K. P. Novel Approach to Offline Signature Classification and Verification System.
162 Biswas, A., & Chakraborty, M. Comparison between Edge Detection Algorithms.
163 Chaudhary, A., Khanna, G., Suman, M., Ashish, B., Udaya Kumar, P., Siva Kumar, S., ... & Govindan, V. K. Call for Paper.
164 Birry, R. A. K. (2012). Automated classification in digital images of osteogenic differentiated stem cells (Doctoral dissertation, University of Salford).
165 Romero-Manchado, A., & Rojas-Sola, J. I. (2015). Application of gradient-based edge detectors to determine vanishing points in monoscopic images: Comparative study. Image and Vision Computing.
166 Rocher, P. O., Gravier, C., Subercaze, J., & Preda, M. (2014, April). Video Stream Transmodality. In International Conference on Enterprise Information Systems (Vol. 3, p. 28).
167 Li, Q., Huang, H., Li, Z., Chen, M., & Yu, X. (2013). Near-infrared absorption imaging and processing technologies based on gold nanorods. Wuhan University Journal of Natural Sciences, 18(4), 307-312.
168 Senthilkumaran, N., & Kirubakaran, C. (2014). Edge Detection Techniques for MRI Brain Image Segmentation.
169 Singh, S., & Singh, B. Effects of Noise on Various Edge Detection Techniques.
170 Manjunathswamy, B. E., Thriveni, J., Venugopal, K. R., & Patnaik, L. M. (2012, December). Efficient iris retrieval using neural networks. In Engineering (NUiCONE), 2012 Nirma University International Conference on (pp. 1-7). IEEE.
171 Seuret, M., Liwicki, M., & Ingold, R. (2014, September). Pixel Level Handwritten and Printed Content Discrimination in Scanned Documents. In Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on (pp. 423-428). IEEE.
172 Purushotham, S., & Tripathy, B. K. (2015). A Comparative Analysis of Depth Computation of Leukaemia Images using a Refined Bit Plane and Uncertainty Based Clustering Techniques. Cybernetics and Information Technologies, 15(1), 126-146.
173 Edge, A. E. A. O. I., & Sobel, D. B. O. Operator.
174 Mohamed Elmalaki, S. (2014). Context-Aware Runtime Engine For Android Operating System.
175 Castaldo, F., Lippiello, V., Palmieri, F. A., & Siciliano, B. (2013). Real-Time Estimation of Planar Surfaces in Arbitrary Environments Using Microsoft Kinect Sensor. In Image Analysis and Processing–ICIAP 2013 (pp. 552-561). Springer Berlin Heidelberg.
176 Mahmood, A. M., Maras, H. H., & Elbasi, E. (2014, October). Measurement of edge detection algorithms in clean and noisy environment. In Application of Information and Communication Technologies (AICT), 2014 IEEE 8th International Conference on (pp. 1-6). IEEE.
177 Peng, S. H., & Do Nam, H. (2012). Void defect detection in ball grid array X-ray images using a new blob filter. Journal of Zhejiang University SCIENCE C, 13(11), 840-849.
178 Lu, W., Yu, N., Zou, X., Liu, X., Zhou, L., & Li, T. (2015). Evaluation of MEMS Structures with Directional Characteristics Based on FRAT and Lifting Wavelet. Procedia CIRP, 27, 298-302.
179 Trukða, R., Fomins, S., Krûmina, G., & Dzenis, J. (2014). Picture Segmentation Applications in Optometry and Vision Science. LABORATORINË MEDICINA, 16(1), 61.
180 Emerson, I. (2014). An integrated robotic and virtual mirror therapy system for stroke rehabilitation: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Albany, New Zealand (Doctoral dissertation, The Author).
181 Li, K., Geng, G., & Peng, S. (2014, January). Single-Layer Closed Contour Extraction from Craniofacial CT Data Using Curve Evolution. In Proceedings of International Conference on Computer Science and Information Technology (pp. 525-532). Springer India.
182 Prajapati, G. I., Shah, K., & Patel, K. (2013). Various Edge Detection Techniques: Survey, Implementation and Comparison. International Journal of Advanced Research in Computer Science, 4(4).
183 Garg, S., Birla, S., & Shukla, N. K. (2014). A SURVEY ON FPGA PROTOTYPING OF DIGITAL ARCHITECTURES OF EDGE DETECTION TECHNIQUES. International Journal of Engineering Science and Technology, 6(10), 670.
184 Hemala, T., & Radharani, S. An Effective Approach for Lung Segmentation in CT Images. SR. NO. PARTICULA RS PAGE NO., 1.
185 Jamil, B., Farahim, N., Faye, I., & May, Z. (2014, September). HEp-2 cell images classification based on statistical texture analysis and fuzzy logic. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on (pp. 524-529). IEEE.
186 Cisar, P., Cisar, S. M., & Markoski, B. Kernel Sets in Compass Edge Detection.
187 Rouabeh, H., Abdelmoula, C., & Masmoudi, M. (2014). VHDL based Hardware Architecture of a High Performance Image Edge Detection Algorithm. International Journal of Computer Applications, 91(12).
188 An, Y. K., Yang, J., Hwang, S., & Sohn, H. (2015). Line laser lock-in thermography for instantaneous imaging of cracks in semiconductor chips. Optics and Lasers in Engineering, 73, 128-136.
189 Joshi, N. S., & Choubey, N. S. Application of Soft Computing Approach for Edge Detection.
190 Dharampal, M. V. (2015). Methods of Image Edge Detection: A Review. J Electr Electron Syst, 4(150), 2332-0796.
191 Lu, G., Sorensen, S., & Kambhamettu, C. (2014, February). Fast ice image retrieval based on a multilayer system. In IS&T/SPIE Electronic Imaging (pp. 90300Q-90300Q). International Society for Optics and Photonics.
192 Kaur, P., & Gupta, A. (2015, February). Contour Detection of Gradient Images Using Morphological Operator and Transform Domain Filtering. In Computational Intelligence & Communication Technology (CICT), 2015 IEEE International Conference on (pp. 107-111). IEEE.
193 Sundari, V. K., Manikandan, M., & Prakash, P. FPGA IMPLEMENTATION of SOBEL EDGE DETECTOR.
194 Ali, R. (2014). Ensemble classification and signal image processing for genus Gyrodactylus (Monogenea).
195 Kumar, R., Arthanari, M., & Sivakumar, M. (2011). Image Segmentation using Discontinuity-Based Approach.
196 Alavi, S. (2012). Comparison of Some Motion Detection Methods in cases of Single and Multiple Moving Objects. International Journal of Image Processing (IJIP), 6(5), 389.
197 Watanabe, Y., Nagahama, K., Yamazaki, K., Okada, K., & Inaba, M. (2013). Cooking Behavior with Handling General Cooking Tools based on a System Integration for a Life-sized Humanoid Robot. Paladyn, Journal of Behavioral Robotics, 4(2), 63-72.
198 Patilkulkarni, S., & Vijaylakshmi, H. C. (2013). Vanishing Moments of a Wavelet System and Feature Set in Face Detection Problem for Color Images. International Journal of Computer Applications, 66(16).
199 Saxena, S., Kumar, S., & Sharma, V. (2013). Compare the Performance and Effectiveness of Proposed Edge Detector against Conventional Edge Detection Techniques.
200 Lin, Y., Gao, Y., Sun, Y., Zhang, S., & Wang, W. (2014, March). An Automatic Evaluation System for the Photometric Performance of Vehicle Headlamps Using Image Processing Algorithms. In 2014 International Conference on Mechatronics, Control and Electronic Engineering (MCE-14). Atlantis Press.
201 Katiyar, S. K., & Arun, P. V. (2014). Comparative analysis of common edge detection techniques in context of object extraction. arXiv preprint arXiv:1405.6132.
202 Lin, D. (2015). A novel method for detecting lines on a noisy image (Doctoral dissertation).
203 Nikpay, M., Lazik, D., & Krebs, P. Visualization of surfactant solution transport in saturated soil: an experimental study to represent wastewater loss from sewers. Environmental Earth Sciences, 1-9.
204 Nema, R., & Saxena, D. A. (2013). Modified Approach for Object Detection in Video Sequences. American International Journal of Research in Formal, Applied & Natural Sciences, 3(1).
205 Hoedt, D., & Marie, A. (2013). Clubfoot Image Classification.
206 Kivi, M. (2014). Sample Alignment for Diffuse Reflectance Measurements.
207 Ðogic, S., & Karli, G. Sign Language Recognition using Neural Networks.
208 Yu, L., Poole, C. M., Lancaster, C. M., & Sylvander, S. R. (2015). Towards online patient imaging during helical radiotherapy. Australasian Physical & Engineering Sciences in Medicine, 1-10.
209 Yewale, S. K., & Bodkhe, A. P. (2011). Artificial Neural Network Based Edge Detection Algorithm for Hand Gesture Recognition. International Journal of Advanced Research in Computer Science, 2(2).
210 Koik, B. T., & Ibrahim, H. (2014). Thumbnail Image with Blurry Edge Information Utilizing Half Factor Rules. Mathematical Problems in Engineering, 2014.
211 Chaudhary, A., Raheja, M. S., & Pandey, M. Analysis and comparison of various edge detection technique.
212 Kavitha, C., & Ashok, S. D. (2013). Edge Detection of Images Using Fuzzy Logic Technique. International Journal of Applied Engineering Research, 8(19).
213 Joshi, N. S., Choubey, N. S., & Dwivedi, R. (2013). Overview of Edge Detection Techniques. Open Journal of Computer Science and Information Technology, 1(1), 20-32.
214 Gunawardhana, C. L. R., Hasanthika, H. H. M., Piyasena, T. D. G., Pathirana, S. P. D. P., Fernando, S., Perera, A. S., & Kohomban, U. (2014). Representation of web based graphics and equations for the visually impaired.
215 Kumar, A. (2013). Spatial Feature Detection: An Informative Analysis (Doctoral dissertation, JADAVPUR UNIVERSITY KOLKATA).
216 Weitlaner, A. (2013). Automated Detection of Encrypted RoIs in JPEG2000 (Doctoral dissertation, Salzburg University of Applied Sciences).
217 Kuldeep, S. K., & Arun, P. V. International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www. iasir. net.
218 Aithal, P. K., Acharya, D. U., & Gopakumar, R. (2015). Detecting the edge of multiple images in parallel. International journal of computer, Electrical, Automation, Control and Information Engineering, 9(7), 1192-1195.
219 Patel, A. M. A Survey on Object Based Image Retrieval using Local and Global Features.
220 Yang, J. (2015). Analysis and Visualization of the Two-Dimensional Blood Flow Velocity Field from Videos (Doctoral dissertation, University of Ottawa).
221 Rani, P., & Tanwar, P. A Hybrid Technique for Image Retrieval Using Canny and Neural Network.
222 Vira, N., & Vira, S. (2009). Detection of a Virtual Passive Pointer. International Journal of Image Processing (IJIP), 3(2), 55.
223 Romanowski, J., Nowak, T., Najgebauer, P., & Litwinski, S. (2013, January). Improved X-ray Edge Detection Based on Background Extraction Algorithm. In Artificial Intelligence and Soft Computing (pp. 309-319). Springer Berlin Heidelberg.
224 Wang, Z., & Huang, X. (2014). Visual positioning method of printed circuit boards based on spatial moments. Optical Engineering, 53(3), 033102-033102.
225 Vikram, R., & Mekala, T. International Journal of Emerging Technology & Research.
226 Suwanmanee, S., Chatpun, S., & Cabrales, P. (2013, October). Comparison of video image edge detection operators on red blood cells in microvasculature. In Biomedical Engineering International Conference (BMEiCON), 2013 6th (pp. 1-4). IEEE.
227 Panchal, J. B., & Kandoriya, K. P. Hand Gesture Recognition Using Clustering Based.
228 Narula, S., Rao, D. S., Rathod, N., Patel, S., & Kour, G. (2013). • ANALYSIS OF IMAGE SEGMENTATION THROUGH EDGE DETECTORS. International Journal of Mathematical Archive (IJMA) ISSN 2229-5046, 4(9).
229 Ahmed, A. M., Sharkawy, M. E., & Elramly, S. H. (2013, February). Hyperspectral bands prediction based on inter-band spectral correlation structure. In IS&T/SPIE Electronic Imaging (pp. 86550Y-86550Y). International Society for Optics and Photonics.
230 Fujisawa, T., Egawa, T., Taniguchi, K., Kobashi, S., & Hata, Y. (2014). An Energy Visualization by Camera Monitoring. In Advanced Intelligent Systems (pp. 51-64). Springer International Publishing.
231 Ali, R., Hussain, A., & Man, M. (2015). Feature extraction and classification for multiple species of Gyrodactylus ectoparasite. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(3), 503-511.
232 Rianmora, S., Koomsap, P., & Kuagoolkijgarn, P. (2011, September). Application of contour tracing algorithm for assisting non-contact data acquisition. In Innovative Developments in Virtual and Physical Prototyping: Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 28 September-1 Oct
233 Swarnalatha, P., & Tripathy, B. K. (2013, March). A novel fuzzy c-means approach with bit plane algorithm for classification of medical images. In Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), 2013 International Conference on (pp. 360-365). IEEE.
234 Narula, S., Oberoi, A., Kaushik, S., & Rao, D. S. (2011). PERFORMANCE AND ANALYSIS OF DIRECTIONAL EDGEDETECTORS ON 3-PLANAR IMAGES CORRUPTED WITH IMPULSIVE NOISE. International Journal of Computer Technology and Applications, 2(5).
235 Olaniyi, S. B. Development of a Matlab Guided Based Interactive Platform for Edge Detection in Noisy Coloured Images.
236 Sheikh, M. A., Scholar–VLSI, P. G., & Sevagram, B. D. C. E. (2014). REVIEW ON CANNY EDGE DETECTION.
237 Ketout, H. S. (2013). Fusion of Deformable and Biomechanical Models for Tracking Left Ventricular Endocardium by Echocardiography.
238 Deivalakshmi, S., Harinivash, B., & Palanisamy, P. (2011, December). Line removal technique for document and non document images. In Hybrid Intelligent Systems (HIS), 2011 11th International Conference on (pp. 534-539). IEEE.
239 Luo, L., Wang, X., Guo, H., Liu, C., Liu, J., Li, L., ... & Qian, G. (2014). Automated extraction of the archaeological tops of qanat shafts from VHR imagery in google earth. Remote Sensing, 6(12), 11956-11976.
240 Corretja, V., Grivel, E., Berthoumieu, Y., Quellec, J. M., Sfez, T., & Kemkemian, S. (2013). Enhanced Cohen class time–frequency methods based on a structure tensor analysis: Applications to ISAR processing. Signal Processing, 93(7), 1813-1830.
241 Jassim, F. A. (2013). Semi-Optimal Edge Detector based on Simple Standard Deviation with Adjusted Thresholding. arXiv preprint arXiv:1304.6379.
242 Hasan, K. I., & Amin, M. A. (2014). Dual iris matching for biometric identification. Signal, Image and Video Processing, 8(8), 1605-1611.
243 Mehta, M., Rattan, M., & GNDEC, L. (2012). An improved ACO based algorithm for image edge detection. International Journal of Computing and Corporate Research, 2(5).
244 Powar, V., & Jahagirdar, A. (2012, October). Reliable face detection in varying illumination and complex background. In Communication, Information & Computing Technology (ICCICT), 2012 International Conference on (pp. 1-4). IEEE.
245 Gaur, P., & Tiwari, S. (2014). Recognition of 2D Barcode Images Using Edge Detection and Morphological Operation. International Journal of Computer Science and Mobile Computing.
246 Zhu, Y., & Salari, E. (2011, May). Extraction of linear features based on beamlet transform. In Electro/Information Technology (EIT), 2011 IEEE International Conference on (pp. 1-6). IEEE.
247 Lakshmi, H. V., & PatilKulkarni, S. (2012). Face Detection in Skin-Toned Images Through Wavelet Edges and Neural Network. International Journal of Computer and Electrical Engineering, 4(5), 697.
248 Khomyakov, M. Y. (2011). Comparative evaluation of noise insensitivity of linear edge detection techniques. Pattern Recognition and Image Analysis, 21(2), 274-278.
249 Ali, R., Jiang, B., Man, M., Hussain, A., & Luo, B. (2014, January). Classification of fish ectoparasite genus gyrodactylus sem images using asm and complex network model. In Neural Information Processing (pp. 103-110). Springer International Publishing.
250 Zacharia, K., Elias, E. P., & Varghese, S. M. (2011). Modelling Gesture Based Ubiquitous Applications. arXiv preprint arXiv:1112.2044.
251 Bora, D. J., & Gupta, A. K. A Novel Approach Towards Clustering Based Image Segmentation. International Journal of Emerging Science and Engineering (IJESE), ISSN, 23196378, 6-10.
252 Purushotham, S., & Tripathy, B. (2014). A comparative study of RIFCM with other related algorithms from their suitability in analysis of satellite images using other supporting techniques. Kybernetes, 43(1), 53-81.
253 Yasiran, S. S., Jumaat, A. K., Malek, A. A., Hashim, F. H., Nasrir, N. D., Hassan, S. N. A. S., ... & Mahmud, R. (2012, November). Microcalcifications segmentation using three edge detection techniques. In Electronics Design, Systems and Applications (ICEDSA), 2012 IEEE International Conference on (pp. 207-211). IEEE.
254 Adak, C. (2013, August). Gabor filter and rough clustering based edge detection. In Human Computer Interactions (ICHCI), 2013 International Conference on (pp. 1-5). IEEE.
255 Rani, P., & Tanwar, P. (2013). ANobel HYBRID APPROACH FOR EDGE DETECTION.
256 Pyo, S. (2014). Characteristics of ultra high performance concrete subjected to dynamic loading (Doctoral dissertation, University of Michigan).
257 Kant, A. R. (2013). Brief notes: Abs-Laplacian series kernels as a promising edge detection tool for real time imaging. International Journal of Computer Science and Engineering Technology, 4.
258 Rajan, B. K., Anto, N., & Jose, S. (2014, July). Fusion of iris & fingerprint biometrics for gender classification using neural network. In Current Trends in Engineering and Technology (ICCTET), 2014 2nd International Conference on (pp. 216-221). IEEE.
259 Kabir, S., & Alam, A. A. (2014). Hardware Design and Simulation of Sobel Edge Detection Algorithm. International Journal of Image, Graphics and Signal Processing (IJIGSP), 6(5), 10.
260 Xue, H., & Gertner, I. (2014, June). Automatic recognition of emotions from facial expressions. In SPIE Defense+ Security (pp. 90900O-90900O). International Society for Optics and Photonics.
261 Dhar, R., Gupta, R., & Baishnab, K. L. (2014, March). An analysis of CANNY and LAPLACIAN of GAUSSIAN image filters in regard to evaluating retinal image. In Green Computing Communication and Electrical Engineering (ICGCCEE), 2014 International Conference on (pp. 1-6). IEEE.
262 VijayLakshmi, H. C., & PatilKulkarni, S. (2011). Face Detection for Skin-Toned Images Using Signature Functions. In Advances in Computing and Communications (pp. 342-348). Springer Berlin Heidelberg.
263 Dong, Z., & Feng, X. (2014). Research on license plate recognition algorithm based on support vector machine. Journal of Multimedia, 9(2), 253-260.
264 Falola, O., Osunmakinde, I., & Bagula, A. (2010). Supporting drivable region detection by minimising salient pixels generated through robot sensors.
265 MIRONICA, I., & Dogaru, R. (2013). A novel feature-extraction algorithm for efficient classification of texture images. Scientific Bulletin of UPB, Series C-Electrical Engineering.
266 Shams, M. Z., Hastert, A. L., & Avdeev, I. V. (2011, February). Motion Tracking and Mechanical Analysis of Peripheral Vascular Stents. In IASTED International Conference on Biomedical Engineering (BioMed 2011).
267 Uddin, M. S., Tahtali, M., & Pickering, M. R. (2014, April). Complex wavelet based speckle reduction using multiple ultrasound images. In Sixth International Conference on Digital Image Processing (pp. 91591I-91591I). International Society for Optics and Photonics.
268 Couceiro, S., Barreto, J. P., Freire, P., & Figueiredo, P. (2012). Description and Classification of Confocal Endomicroscopic Images for the Automatic Diagnosis of Inflammatory Bowel Disease. In Machine Learning in Medical Imaging (pp. 144-151). Springer Berlin Heidelberg.
269 Enireddy, V., & Reddi, K. K. (2012). A Data Mining Approach for Compressed Medical Image Retrieval. International Journal of Computer Applications, 52(5), 26-30.
270 Kumar, E. S., & Talasila, V. (2015). Recognition of Medicinal Plants Based on Its Leaf Features. In Systems Thinking Approach for Social Problems (pp. 99-113). Springer India.
271 Florczak, J., & Petko, M. (2014). Usage of Shape From Focus Method For 3D Shape Recovery And Identification of 3D Object Position. International Journal of Image Processing (IJIP), 8(3), 116.
272 Huang, X., Netravali, R., Man, H., & Lawrence, V. (2012). Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images. Sensors, 12(8), 10326-10338.
273 Balabantaray, B. K., Jha, P., & Biswal, B. B. (2013, December). Application of edge detection algorithm for vision guided robotics assembly system. In Sixth International Conference on Machine Vision (ICMV 13) (pp. 906713-906713). International Society for Optics and Photonics.
274 Li, Z., Liu, Y., Xu, J., & Du, H. (2013, November). A no-reference perceptual blur metric based on the blur ratio of detected edges. In Broadband Network & Multimedia Technology (IC-BNMT), 2013 5th IEEE International Conference on (pp. 1-5). IEEE.
275 Jansi, S., & Subashini, P. (2012). Optimized Adaptive Thresholding based Edge Detection Method for MRI Brain Images. International Journal of Computer Applications (IJCA), ISSN:(0975–8887) Volume, 1-8.
276 Gupta, S., Gupta, C., & Chakarvarti, S. K. Image Edge Detection A Review. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume, 2.
277 Kekre, H. B., Thepade, S. D., Sanas, S. P., & Shinde, S. (2013, January). Devnagari Handwritten Character Recognition using LBG vector quantization with gradient masks. In Advances in Technology and Engineering (ICATE), 2013 International Conference on (pp. 1-4). IEEE.
278 Poobathy, D., & Chezian, R. M. (2014). Edge Detection Operators: Peak Signal to Noise Ratio Based Comparison. International Journal of Image, Graphics and Signal Processing (IJIGSP), 6(10), 55.
279 Igbinosa, I. E. (2013). Comparison of Edge Detection Technique in Image Processing Techniques. International Journal of Information Technology and Electrical Engineering, 2(1), 25-29.
280 Enireddy, V., & Reddi, K. K. Application of CART and IBL for Image Retrieval. image, 10, 15.
281 Ahmed, A. M., ElRamly, S., & Sharkawy, M. E. (2012, November). Hyperspectral band referencing based on correlation structure. In Control System, Computing and Engineering (ICCSCE), 2012 IEEE International Conference on (pp. 5-10). IEEE.
282 Kyrkou, C., Ttofis, C., & Theocharides, T. (2013). A hardware architecture for real-time object detection using depth and edge information. ACM Transactions on Embedded Computing Systems (TECS), 13(3), 54.
283 Huu, P. N., Tran-Quang, V., & Miyoshi, T. (2012). Video compression schemes using edge feature on wireless video sensor networks. Journal of Electrical and Computer Engineering, 2012, 27.
284 Kundu, R., Kumar, R., Biswas, B., & Chakrabarti, A. (2011). Gaussian Higher Order Derivative Based Structural Enhancement of Digital Bone X-ray Images. International Journal of Computer Technology and Applications, 2(1).
285 Kundu, R., Lenka, P., & Chakrabarti, A. Cobb angle quantification for scoliosis using image processing techniques. In IJCA Proceedings on International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT’12) (Vol. 5, pp. 6-10).
286 Khomyakov, M. Y. (2012). Comparative evaluation of linear edge detection methods. Pattern Recognition and Image Analysis, 22(2), 291-302.
287 ElHalawany, B. M., Abdel-Kader, H. M., TagEldeen, A., Ahmed, A. E. S., & Nossair, Z. B. (2012, May). Vision-based obstacles detection for a mobile robot. In Informatics and Systems (INFOS), 2012 8th International Conference on (pp. MM-93). IEEE.
288 Rahnama, M., & Gloaguen, R. (2014). Teclines: A matlab-based toolbox for tectonic lineament analysis from satellite images and dems, part 1: Line segment detection and extraction. Remote Sensing, 6(7), 5938-5958.
289 Mohamed, S., Priya, R. J., Rojan, S., & Arafath, S. Y. (2010, December). Particle swarm based unsharp masking. In Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing (pp. 498-505). ACM.
290 Ttofis, C., & Theocharides, T. (2012). Hardware design considerations for edge-accelerated stereo correspondence algorithms. VLSI Design, 2012, 4.
291 Huang, X., Netravali, R., Man, H., & Lawrence, V. (2012, May). Improved fusing infrared and electro-optic signals for high-resolution night images. In SPIE Defense, Security, and Sensing (pp. 835517-835517). International Society for Optics and Photonics.
292 Zabawi, N. H. B., & Omar, K. (2011, June). Robot soccer vision: An overview for new learner. In Pattern Analysis and Intelligent Robotics (ICPAIR), 2011 International Conference on (Vol. 1, pp. 125-130). IEEE.
293 Reddy, K. V. (2013, October). Implementation of pipelined sobel edge detection algorithm on FPGA for High speed applications. In Emerging Trends in Communication, Control, Signal Processing & Computing Applications (C2SPCA), 2013 International Conference on (pp. 1-5). IEEE.
294 Garcia-Alvarez, J. C., Rodriguez, J. E., & Führ, H. (2013, June). Evaluation of detection methods in an image edge error measure. In Proceedings of the 6th International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications (p. 15). ACM.
295 Shrestha, K. (2012). Framework development for construction safety visualization.
296 Ahmed, A., SHARKAWY, M. E., & RAMLY, S. E. (2012). Analysis of Inter-band Spectral Cross-Correlation Structure of Hyperspectral Data. In WSEAS International Conference. Proceedings. Recent Advances in Computer Engineering Series (No. 7). WSEAS.
297 Dziak, D. (2012). Automatic Waterjet Positioning Vision System (Doctoral dissertation, Blekinge Institute of Technology).
298 Vasavada, J., & Tiwari, S. (2014, January). Sobel-Fuzzy Technique to Enhance the Detection of Edges in Grayscale Images Using Auto-Thresholding. In Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012 (pp. 617-627). Springer India.
299 Makridis, M., & Daras, P. (2012). Automatic classification of archaeological pottery sherds. Journal on Computing and Cultural Heritage (JOCCH), 5(4), 15.
300 Buono, A., Nunziata, F., Mascolo, L., & Migliaccio, M. (2014). A multipolarization analysis of coastline extraction using X-band COSMO-SkyMed SAR data. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 7(7), 2811-2820.
301 Kant, A. R. (2013). Foundations of a rapid de-noising technique in real time image processing applications. International Journal of Computer Science & Engineering Technology, 4.
302 Kelefouras, V., Kritikakou, A., & Goutis, C. (2014). A methodology for speeding up edge and line detection algorithms focusing on memory architecture utilization. The Journal of Supercomputing, 68(1), 459-487.
303 Lim, C. K. K., Gelencser, A., & Prodromakis, T. (2014). Computing image and motion with 3-d memristive grids. In Memristor Networks (pp. 553-583). Springer International Publishing.
304 Gharehchopogh, F. S., & Ebrahimi, S. (2012). A novel approach for edge detection in images based on cellular learning automata. International Journal of Computer Vision and Image Processing (IJCVIP), 2(4), 51-61.
305 Mathew, S. P., & Samuel, P. (2010). A novel Image Retrieval System using an effective region based shape representation technique. International Journal of Image Processing (IJIP), 4(5), 509.
306 Maheshwari, A., Sonawane, S., & Patil, S. (2013). Performance Overview, Comprehensive Assessment and Review of Image Segmentation Techniques for Natural Images. Current Trends in Technology and Science, 2.
307 Khaire, P. A., & Thakur, N. V. (2012). Image Edge Detection based on Soft Computing Approach. International Journal of Computer Applications (0975–8887) Volume.
308 Saxena, S., & Singh, R. K. (2014). A Survey of Recent and Classical Image Registration Methods. International Journal of Signal Processing, Image Processing & Pattern Recognition, 7(4).
309 Guan, Y. P. (2012). Fast and robust skew estimation in document images through bilinear filtering model. IET image processing, 6(6), 761-769.
310 Ali, R., Hussain, A., Bron, J. E., & Shinn, A. P. (2012, January). The use of asm feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus Gyrodactylus. In Neural Information Processing (pp. 256-263). Springer Berlin Heidelberg.
311 de Kok, P., ten Velthuis, D., Backer, N., van Eck, J., Voorter, F., Visser, A., ... & Roos, N. (2013). Dutch Nao Team Team Description for RoboCup 2014-Joao Pessoa, Brasil.
312 Delaitre, P., & Lavandier, C. (2012, August). Representation of the acoustic contrast in urban context through noise mapping. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 2012, No. 8, pp. 3350-3358). Institute of Noise Control Engineering.
313 Manickavasagan, A., Al-Shekaili, H. N., Thomas, G., Rahman, M. S., Guizani, N., & Jayas, D. S. (2014). Edge detection features to evaluate hardness of dates using monochrome images. Food and bioprocess technology, 7(8), 2251-2258.
314 Sujatha, C., & Selvathi, D. (2012). An optimal solution for image edge detection problem using simplified Gabor wavelet. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), 2(3), 99-115.
315 Saini, R., Dutta, M., & Kumar, R. (2012). A comparative study of several image segmentation techniques. Journal of Information and Operations Management, 3(1), 21.
316 Aggarwal, A., & Kirchner, F. (2014). Object recognition and localization: the role of tactile sensors. Sensors, 14(2), 3227-3266.
317 Souded, M. (2013). People Detection, Tracking and Re-identification through a video camera network (Doctoral dissertation, Université Nice Sophia Antipolis).
318 Huang, X., Netravali, R., Man, H., & Lawrence, V. (2012, February). Fusing electro-optic and infrared signals for high resolution night images. In IS&T/SPIE Electronic Imaging (pp. 82951O-82951O). International Society for Optics and Photonics.
319 Karimi, M. H., & Asemani, D. (2014). Surface defect detection in tiling Industries using digital image processing methods: Analysis and evaluation. ISA transactions, 53(3), 834-844.
320 Vasuki, Y., Holden, E. J., Kovesi, P., & Micklethwaite, S. (2014). Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach. Computers & Geosciences, 69, 22-32.
321 Peanho, C. A., Stagni, H., & da Silva, F. S. C. (2012). Semantic information extraction from images of complex documents. Applied Intelligence, 37(4), 543-557.
322 Sridevi, M., & Mala, C. (2012). A Survey on Monochrome Image Segmentation Methods. Procedia Technology, 6, 548-555.
323 Islam, S., & Ahmed, M. (2013). A Study on Edge Detection Techniques for Natural Image Segmentation. International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN, 2278-3075.
324 Vasavada, J., & Tiwari, S. (2013). An Edge detection method for grayscale images based on BP feedforward Neural network. International Journal of Computer Applications (0975–8887) Volume.
325 Prajapati, G., & Patel, N. M. (2011, November). DToLIP: Detection and tracking of lip contours from human facial images using Snake's method. In Image Information Processing (ICIIP), 2011 International Conference on (pp. 1-6). IEEE.
326 Tsiakmakis, K., & Laopoulos, T. (2011). An improved tracking technique for visual measurements of ionic polymer–metal composites (IPMC) actuators using Compute Unified Device Architecture (CUDA). Measurement Science and Technology, 22(11), 114006.
327 Mihalache, C. R., & Craus, M. (2012, October). Neural network and fuzzy membership functions based edge detection for digital images. In System Theory, Control and Computing (ICSTCC), 2012 16th International Conference on (pp. 1-6). IEEE.
328 Samanta, D., & Sanyal, G. (2011). Development of Edge Detection Technique for Images using Adaptive Thresholding. In Computer Networks and Intelligent Computing (pp. 671-676). Springer Berlin Heidelberg.
329 Lakshmi, H. V., & PatilKulkarni, S. (2010, October). Face detection and localization in skin toned color images using wavelet and edge detection techniques. In 2010 International Conference on Advances in Recent Technologies in Communication and Computing (pp. 231-234). IEEE.
330 Sarkar, A. R., Sanyal, G., & Majumder, S. (2013). Hand gesture recognition systems: a survey. International Journal of Computer Applications (0975–8887), 71(15).
331 Mehra, R., & Verma, R. (2012). Area Efficient FPGA Implementation of Sobel Edge Detector for Image Processing Applications. International Journal of Computer Applications, 5(16), 7-11.
332 Azghani, M., Aghagolzadeh, A., & Aghagolzadeh, M. (2010, December). Compressed video sensing using adaptive sampling rate. In Telecommunications (IST), 2010 5th International Symposium on (pp. 710-714). IEEE.
333 Yan, H., Ang Jr, M. H., & Poo, A. N. (2014). A Survey on Perception Methods for Human–Robot Interaction in Social Robots. International Journal of Social Robotics, 6(1), 85-119.
334 Mao, B., & Ban, Y. (2013). Generalization of 3D building texture using image compression and multiple representation data structure. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 68-79.
335 Haldar, P., & Mukherjee, J. (2012). Content based Image Retrieval using Histogram, Color and Edge. International Journal of Computer Applications, 48(11), 25-31.
336 Kekre, H. B., Thepade, S. D., Sanas, S. P., Iyer, S., & Garg, J. (2011). Shape Content Based Image Retrieval using LBG Vector Quantization. International Journal of Computer Science and Information Security, 9(12), 20.
337 Possa, P. R., Mahmoudi, S. A., Harb, N., Valderrama, C., & Manneback, P. (2014). A multi-resolution fpga-based architecture for real-time edge and corner detection. Computers, IEEE Transactions on, 63(10), 2376-2388.
338 Mousa, A. (2012). Canny edge-detection based vehicle plate recognition. International Journal of Signal Processing, Image Processing and Pattern Recognition, 5(3), 1-8.
339 Damodaran, N., Ramamurthy, S., Velusamy, S., & Manickam, G. K. (2012). Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative. Ultrasound in medicine & biology, 38(2), 276-286.
340 Rastegar, S., Ghaderi, R., Ardeshipr, G., & Asadi, N. (2009). An intelligent control system using an efficient License Plate Location and Recognition Approach. International Journal of Image Processing (IJIP) Volume (3), (5), 252-264.
341 Radhika, S., Tamura, Y., & Matsui, M. (2012). Use of post-storm images for automated tornado-borne debris path identification using texture-wavelet analysis. Journal of Wind Engineering and Industrial Aerodynamics, 107, 202-213.
342 Khaire, P. A., & Thakur, N. V. (2012). A Fuzzy Set Approach for Edge Detection. International Journal of Image Processing (IJIP), 6(6), 403-412.
343 Paul, S., Tripathy, S. P., & Sarkar, P. K. (2012). Analysis of 3-dimentional track parameters from 2-dimensional images of etched tracks in solid polymeric track detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 690, 58-67.
344 Cornet, T., Bourgeois, O., Le Mouélic, S., Rodriguez, S., Sotin, C., Barnes, J. W., ... & Nicholson, P. D. (2012). Edge detection applied to Cassini images reveals no measurable displacement of Ontario Lacus' margin between 2005 and 2010. Journal of Geophysical Research: Planets (1991–2012), 117(E7).
345 Lakshmi, H. V., & PatilKulakarni, S. (2010, February). Segmentation algorithm for multiple face detection for color images with skin tone regions. In 2010 International Conference on Signal Acquisition and Processing (pp. 162-166). IEEE.
346 Narendra, V. G., & Hareesha, K. S. (2011). Study and Comparison of various Image edge Detection tehniques used in Quality inspection and Evaluation of Agricultural and Food products by Computer vision. International Journal of Agricultural & Biological Engineering, 4(2), 83-90.
347 Li, X., Jiang, J., & Fan, Q. (2012, July). An improved real-time hardware architecture for Canny edge detection based on FPGA. In Intelligent Control and Information Processing (ICICIP), 2012 Third International Conference on (pp. 445-449). IEEE.
348 Rowshanfarzad, P., Sabet, M., O'Connor, D. J., & Greer, P. B. (2011). Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. Journal of Applied Clinical Medical Physics, 12(4).
349 Rowshanfarzad, P., Sabet, M., O’Connor, D. J., & Greer, P. B. (2011). Verification of the linac isocenter for stereotactic radiosurgery using cine-EPID imaging and arc delivery. Medical physics, 38(7), 3963-3970.
350 Sanduja, V., & Patial, R. (2012). Sobel edge detection using parallel architecture based on FPGA. International Journal of Applied Information Systems, 3(4), 20-24.
351 Ttofis, C., Hadjitheophanous, S., Georghiades, A. S., & Theocharides, T. (2013). Edge-directed hardware architecture for real-time disparity map computation. Computers, IEEE Transactions on, 62(4), 690-704.
352 Gelencser, A., Prodromakis, T., Toumazou, C., & Roska, T. (2012). Biomimetic model of the outer plexiform layer by incorporating memristive devices. Physical Review E, 85(4), 041918.
353 Lakshmi, H. V., & PatilKulakarni, S. (2010). Segmentation algorithm for multiple face detection in color images with skin tone regions using color spaces and edge detection techniques. International journal of computer theory and engineering, 2(4), 1793-8201.
354 Jain, N., Meshram, S., & Dubey, S. (2012). Image Steganography Using LSB and Edge–Detection Technique. International Journal of Soft Computing and Engineering (IJSCE) ISSN, 223.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 Scribd 
11 WorldCat 
12 SlideShare 
14 PdfSR 
1 E. Argyle. “Techniques for edge detection,” Proc. IEEE, vol. 59, pp. 285-286, 1971
2 F. Bergholm. “Edge focusing,” in Proc. 8th Int. Conf. Pattern Recognition, Paris, France, pp. 597- 600, 1986
3 J. Matthews. “An introduction to edge detection: The sobel edge detector,” Available at http://www.generation5.org/content/2002/im01.asp, 2002.
4 L. G. Roberts. “Machine perception of 3-D solids” ser. Optical and Electro-Optical Information Processing. MIT Press, 1965 .
5 R. C. Gonzalez and R. E. Woods. “Digital Image Processing”. 2nd ed. Prentice Hall, 2002.
6 V. Torre and T. A. Poggio. “On edge detection”. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 2, pp. 187-163, Mar. 1986.
7 E. R. Davies. “Constraints on the design of template masks for edge detection”. Partern Recognition Lett., vol. 4, pp. 11 1-120, Apr. 1986.
8 W. Frei and C.-C. Chen. “Fast boundary detection: A generalization and a new algorithm ”. lEEE Trans. Comput., vol. C-26, no. 10, pp. 988-998, 1977.
9 W. E. Grimson and E. C. Hildreth. “Comments on Digital step edges from zero crossings of second directional derivatives’’. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, no. 1, pp. 121-129, 1985.
10 R. M. Haralick. “Digital step edges from zero crossing of the second directional derivatives,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no. 1, pp. 58-68, Jan. 1984.
11 J. F. Canny. “A computational approach to edge detection”. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 6, pp. 679-697, 1986
12 J. Canny. “Finding edges and lines in image”. Master’s thesis, MIT, 1983.
13 R. A. Kirsch. “Computer determination of the constituent structure of biomedical images”. Comput. Eiorned. Res., vol. 4, pp. 315-328, 1971.
14 M. H. Hueckel. “ A local visual operator which recognizes edges and line”. J. ACM, vol. 20, no. 4, pp. 634- 647, Oct. 1973.
15 Y. Yakimovsky, “Boundary and object detection in real world images”. JACM, vol. 23, no. 4, pp. 598-619, Oct. 1976
16 A. Yuille and T. A. Poggio . “Scaling theorems for zero crossings”. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 187-163, Jan. 1986.
17 D. Marr and E.Hildreth. “Theory of Edge Detection”. Proceedings of the Royal Society of London. Series B, Biological Sciences,, Vol. 207, No. 1167. (29 February 1980), pp. 187-217
18 M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. “A Robust Visual Method for Assessing the Relative. Performance of Edge Detection Algorithms”. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 12, pp. 1338-1359, Dec. 1997
19 M. Heath, S. Sarkar, T. Sanocki, and K.W. Bowyer. “Comparison of Edge Detectors: A Methodology and Initial Study “. Computer Vision and Image Understanding, vol. 69, no. 1, pp. 38-54 Jan. 1998
20 M.C. Shin, D. Goldgof, and K.W. Bowyer .“Comparison of Edge Detector Performance through Use in an Object Recognition Task”. Computer Vision and Image Understanding, vol. 84, no. 1, pp. 160-178, Oct. 2001.
21 T. Peli and D. Malah. “A Study of Edge Detection Algorithms”. Computer Graphics and Image Processing, vol. 20, pp. 1-21, 1982.
Mr. Raman Maini
- India
Dr. Himanshu Aggarwal
- India