Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(301.83KB)
This is an Open Access publication published under CSC-OpenAccess Policy.

PUBLICATIONS BY COUNTRIES

Top researchers from over 74 countries worldwide have trusted us because of quality publications.

United States of America
United Kingdom
Canada
Australia
Malaysia
China
Japan
Saudi Arabia
Egypt
India
Performance Comparison of Face Recognition Using DCT Against Face Recognition Using Vector Quantization Algorithms LBG, KPE, KMCG, KFCG
Shachi J. Natu, Prachi J. Natu, Tanuja K. Sarode, H. B. Kekre
Pages - 377 - 389     |    Revised - 30-08-2010     |    Published - 30-10-2010
Volume - 4   Issue - 4    |    Publication Date - October 2010  Table of Contents
MORE INFORMATION
KEYWORDS
Face Recognition, DCT, KFCG, VQ
ABSTRACT
In this paper, a face recognition system using simple Vector quantization (VQ) technique is proposed. Four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to generate codebooks of desired size. Euclidean distance is used as similarity measure to compare the feature vector of test image with that of trainee images. Proposed algorithms are tested on two different databases. One is Georgia Tech Face Database which contains color JPEG images, all are of different size. Another database used for experimental purpose is Indian Face Database. It contains color bitmap images. Using above VQ techniques, codebooks of different size are generated and recognition rate is calculated for each codebook size. This recognition rate is compared with the one obtained by applying DCT on image and LBG-VQ algorithm which is used as benchmark in vector quantization. Results show that KFCG outperforms other three VQ techniques and gives better recognition rate up to 85.4% for Georgia Tech Face Database and 90.66% for Indian Face Database. As no Euclidean distance computations are involved in KMCG and KFCG, they require less time to generate the codebook as compared to LBG and KPE
1 Google Scholar 
2 CiteSeerX 
3 iSEEK 
4 Socol@r  
5 Scribd 
6 SlideShare 
7 PDFCAST 
8 PdfSR 
1 K. kotani, C. Qiu and T. Ohmi. “Face Recognition Using Vector Quantization Histogram Method”. International Conference on Image Processing, 2002
2 H.B.Kekre, K. Shah, T. K. Sarode, S. Thepade. “Performance Comparison of Vector Quantization Technique-KFCG with LBG, Existing Orthogonal Transforms and PCA For Face Recognition”. International Journal of Information Retrieval, II(I):64-71, 2009
3 Y. Linde, A. Buzo, R. M. Gray. “An algorithm for vector quantizer design”. IEEE Transaction on Communication, COM-28(1):84-95, 1980
4 A. Gersho, R.M. Gray. “Vector Quantization and Signal Compression”, Kluwer Academic Publishers, Boston, 1991.
5 H.B. Kekre, T. Sarode.” An Efficient Fast Algorithm to Generate Codebook for Vector Quantization”. First International conference on Emerging Trends In Engineering and Technology (ICETET), 2008
6 H.B. Kekre, T. Sarode. “Fast Codebook Search Algorithm For Vector quantization Using Sorting technique”. ACM International Conference on Advances in Computing, Communication And Control (ICAC3) 2009
7 Y. Linde, A. Buzo, R. M. Gray. “An algorithm for vector quantizer design”. IEEE Trans. Commun., COM-28(1):84-95, 1980
8 C. chan, L. Po. “A Complexity reduction Technique For Image Vector Quantization”. IEEE Transactions on Image Processing, 1(3):312-321, 1992
9 H. K. Ekenel, R. Stiefelhagen. “Analysis of Local Appearance Based Face recognition: Effects of Feature Selection and Feature Normalization”. International Conference on Computer vision and Pattern Recognition Workshop, 2006
10 S. Lin. “An Introduction to Face Recognition Technology”. Informing Science Special Issue on Multimedia Informing Technologies- Part 2, 3(1): 2000
11 J. Choi, Y. Chung, K. Kim, J. Yoo. "Face Recognition using Energy Probability in DCT Domain".IEEE International Conference on Multimedia and Expo, 2006
12 H. B. Kekre, Ms. Tanuja K. Sarode, S. D. Thepade. “Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”. ICGSTInternational Journal on Graphics, Vision and Image Processing (GVIP), 9(5):1-8, 2009. Available at http:// www.icgst.com/gvip/Volume9/Issue5/ P1150921752.html.
13 “Georgia Tech Face Database”. Available at: http://www.face-rec.org/databases.
14 ”Face Recognition”. Available at: http://www.biometrics.gov/Documents/FaceRec.pdf
15 P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997
16 M. Begum, N. Nahar, K. Fatimah, M. K.Hasan and M. A. Rahaman. “An Efficient Algorithm for Codebook Design in Transform Vector Quantization”. WSCG, 2003
17 F. Basit, M. Y. Javed and U. Qayyum. “Face Recognition Using Processed Histogram and Phase-only Correlation (POC)”. International conference on Emerging Technologies (ICET), 2007
18 M. J. Swain and D. H. Ballard, "Indexing via color histogram", In Proceedings of third international conference on Computer Vision (ICCV), Osaka, Japan, 1990.
19 G. L. Gimel'farb, A. K. Jain. "On retrieving textured images from an image database". Pattern Recognition, 29(9):1461-1483, 1996
20 C. Dorai, A. K. Jain, Cosmos. "A representation scheme for free form surfaces". IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 19(10):1115-1130, 1997
21 B. Huet, E. R. Hancock. "Line pattern retrieval using relational histograms". IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 21(12):1363-1370, 1999
22 Y. Li, E. R. Hancock. "Face Recognition using Shading-based Curvature Attributes". IEEE Proceedings ofthe 17th International Conference on Pattern Recognition (ICPR'04) 1051-4651/04
23 H.B.Kekre, S. D. Thepade. “Improving the Performance of Image Retrieval using Partial Coefficients of Transformed Image”. International Journal of Information Retrieval (IJIR), Serials Publications, 2(1):72-79, 2009
24 H.B.Kekre, T. Sarode, S. D. Thepade. “DCT Applied to Row Mean and Column Vectors in Fingerprint Identification”. In Proceedings of International Conference on Computer Networks and Security (ICCNS), VIT, Pune, 2008
25 H.B.Kekre, S. D. Thepade, A. Athawale, A. Shah, P. Verlekar, S. Shirke. “Energy Compaction and Image Splitting for Image Retrieval using Kekre Transform over Row and Column Feature Vectors”. International Journal of Computer Science and Network Security (IJCSNS), 10(1): 2010, (ISSN: 1738-7906) Available at www.IJCSNS.org.
26 H.B.Kekre, S. D. Thepade, A. Athawale, A. Shah, P. Verlekar, S. Shirke. “Performance Evaluation of Image Retrieval using Energy Compaction and Image Tiling over DCT Row Mean and DCT Column Mean”. Springer-International Conference on Contours of Computing Technology (Thinkquest-2010), Babasaheb Gawde Institute of Technology, Mumbai, 2010
27 H.B.Kekre, T. K. Sarode, S. D. Thepade, V. Suryavanshi. “Improved Texture Feature Based Image Retrieval using Kekre’s Fast Codebook Generation Algorithm”. Springer-International Conference on Contours of Computing Technology (Thinkquest-2010), Babasaheb Gawde Institute of Technology, Mumbai, 2010
28 H. B. Kekre, T. K. Sarode, S. D. Thepade. “Image Retrieval by Kekre’s Transform Applied on Each Row of Walsh Transformed VQ Codebook”. (Invited), ACM-International Conference and Workshop on Emerging Trends in Technology (ICWET 2010),Thakur College of Engg. And Tech., Mumbai, 2010
29 H. B. Kekre, T. Sarode, S. D. Thepade. “Color-Texture Feature based Image Retrieval using DCT applied on Kekre’s Median Codebook”. International Journal on Imaging (IJI), 2(A09):55-65, 2009.Available at www.ceser.res.in/iji.html (ISSN: 0974-0627).
30 H. B. Kekre, Ms. T. K. Sarode, S. D. Thepade. "Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation". ICGSTInternational Journal on Graphics, Vision and Image Processing (GVIP), 9(5):1-8, 2009. Available at: http://www.icgst.com/gvip/ Volume9/Issue5/P1150921752.html.
31 H. B. Kekre, S. Thepade, A. Maloo. “Image Retrieval using Fractional Coefficients of Transformed Image using DCT and Walsh Transform”. International Journal of Engineering Science and Technology, 2(4): 362-371, 2010
32 H. B. Kekre, S. Thepade, A. Maloo. ”Performance Comparison of Image Retrieval Using Fractional Coefficients of Transformed Image Using DCT, Walsh, Haar and Kekre’s Transform”. CSC-International Journal of Image processing (IJIP), 4(2)142-155, 2010
33 H. B. Kekre, T. Sarode. “Two Level Vector Quantization Method for Codebook Generation using Kekre’s Proportionate Error Algorithm”. CSC-International Journal of Image Processing, 4(1):1-10, 2010
34 H. B. Kekre, S. Thepade, A. Maloo. “Eigenvectors of Covariance Matrix using Row Mean and Column Mean Sequences for Face Recognition”. CSC-International Journal of Biometrics and Bioinformatics (IJBB), 4(2):42-50, 2010
35 H. B. Kekre, T. Sarode, S.i Natu, P. Natu. “Performance Comparison Of 2-D DCT On Full/Block Spectrogram And 1-D DCT On Row Mean Of Spectrogram For Speaker Identification”. CSC International Journal of Biometrics and Bioinformatics (IJBB), 4(3).
Mr. Shachi J. Natu
- India
shachi_natu@yahoo.com
Mr. Prachi J. Natu
- India
Mr. Tanuja K. Sarode
- India
Dr. H. B. Kekre
- India